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What we've learned



Module 1: Simple Regression
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Simple linear regression model

1 input and just fit a line to data
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“Cost” of using a given line

Residual sum of squares (RSS)
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Minimizing the cost

3D plot of RSS with tangent plane at minimum
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Gradient descent

3D plot of RSS with tangent plane at minimum
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Module 2: Multiple Regression
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Regression with multiple features

Yy .

Sl : Fit more complex
O K relationships than
20, . % : just a line

o "

Incorporate more inputs

+ features thereof
- Square feet

x[2] - # bathrooms
O - # bedrooms
- Lot size
- Year built

house size XM -
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Formally...

feature 1 = hy(x) ... e.g., 1
feature 2 = h,(x) ... e.g., x[1] = sq. ft.

feature 3 = h,(x) ... e.g., x[2] = #bath
or, log(x[7]) x[2] = log(#bed) x #bath

-----
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RSS for multiple regression
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Closed-form solution

w=(H'H)'H'y
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Gradient descent
for multiple regression

3D plot of RSS with tangent plane at minimum
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Module 3: Assessing Performance
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Measuring loss

Loss function: Cost of using W at x
L(y,fw(x)) wheny is true
P ——
actual Doy . .
value (X)= predicted value ¥
Examples:
(assuming loss for underpredicting = overpredicting)
Absolute error: L(y,f; (X)) = |y-f; (x|

Squared error: L(y,fw( )) = (y-f;(x))?
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3 Measures of error

Training error (W)
N

square feet

Generalization

error (W) Yy

square feet
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Test error (W) =

square feet

Machine Learning Specialization



Training, true, & test error vs.
model complexity

Error
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3 Sources of prediction error
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Blas-variance tradeoff
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Model selection & assessment

Validation Test
set set

it v T

test performance
of W, to select A"

assess
generalization
error of Wi«

Training set
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Module 4: Ridge Regression
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Balancing fit and model complexity
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Ridge total cost =
measure of fit + measure of magnitude
Z -»  of coefficients

bias-variance tradeoff
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n

coefficients W,

23

Ridge objective function
(L, regularized regression)

W selected to minimize
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Ridge closed-form solution

W= (HTH + A\D)1HTy
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Invertible if:
Always if A>0,
evenif N <D

Complexity of
iInverse:

O(DJ)...

big for large D!
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K-fold cross validation

error,(A) W)@

For k=1,....K
1. Estimate W, on the training blocks
2. Compute error on validation block: error, (A)

K
Compute average error: CV(\) =% > error,(\)
k=1
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Module 5: Lasso Regression

©2015 Emily Fox & Carlos Guestrin Machine Learning Specialization



Performing feature selection

Useful for efficiency
of predictions and
iInterpretability

27

Lot size

Single Family

Year built

Last sold price
Last sale price/sqft
Finished sqft
Unfinished sgft
Finished basement sqft
# floors

Flooring types
Parking type
Parking amount
Cooling

Heating

Exterior materials
Roof type
Structure style

Dishwasher
Garbage disposal
Microwave
Range / Oven
Refrigerator
Washer

Dryer

Laundry location
Heating type
Jetted Tub

Deck

Fenced Yard
Lawn

Garden
Sprinkler System
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All subsets vs. greedy
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©
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Lasso objective function
(L, regularized regression)
W selected to minimize

v
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Coordinate descent for lasso

N
Precompute: z =D hi(x;)?
1=1

Initialize w = 0 (or smartly...)
while not converged
for j=0,1,..D

N
compute: p; =2_ h(x)(y; = V(W)

(p; + A2)/z,
set: v“vj =< 0
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if p; < -\/2
if p;in [-A/2, A/2]
if p;>A\/2
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Module 6: Nearest Neighbor
& Kernel Regression
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1-Nearest neighbor regression

o

(

Here, this is the
closest datapoint

house size
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Weighted k-NN

Weigh more similar houses more than
those less similar in list of k-NN

_ weights on NN
Predict:

CanN1YNNTL T CannaYNN2 T CannzY NN T ConnkY NNk

yq k
ZCQNNJ
j=1
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Kernel regression

Instead of just weighting NN, weight all points

Predict: weight on each datapoint

./

N
Cqi Z Kernel, (distance(x;X,)) * v,
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Visualizing kernel regression

Epanechnikov Kernel (lambda = 0.2)

1.5+ 0 o ©

0.7
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Summary of what we learned

e Linear regression
Reqgularization: Ridge (L2), Lasso (L1)
o Nearest neighbor and kernel regression

Models

e Gradient descent
e Coordinate descent

Algorithms

e Loss functions, bias-variance tradeoff,
Concepts cross-validation, sparsity, overfitting,
model selection, feature selection
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What we didn't cover
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Other important regression topics

Multivariate outputs y
...when correlated

Maximum likelinood estimation

- Equivalent to least squares when errors are
‘normal’/Gaussian

Statistical inferences

“Generalized linear models”

— Models for non-Gaussian error

- E.g., outputs are
(i) constrained to be positive or bounded
(ii) discrete ("yes"/"no”)

Regression trees
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What's ahead in this
specialization



3. Classification
Case study: Analyzing sentiment

Linear classifiers
Decision trees
Boosted trees and random forests

Models

Stochastic gradient descent
Boosting

Algorithms

e Decision boundaries, MLE,

Conce pts ensemble methods, online

learning
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4. Clustering & Retrieval
Case study: Finding documents
 Nearest neighbors

Clustering, mixtures of Gaussians
e Latent Dirichlet allocation (LDA)

Models

e KD-trees

a\lelelgldglagl M * K-means
e Expectation-maximization (EM)

e Distance metrics, approximation

@e)alel= pts algorithms, sampling algorithms,
scaling up with map-reduce
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5. Recommender Systems &

Dimensionality Reduction
Case study: Recommending Products

o Collaborative filtering

MOdel_S e Matrix factorization
e PCA

e Coordinate descent

A\le[elflialans ¢ Eigen decomposition
o SVD

Concepts cold-start problem, diversity,
scaling up
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e Matrix completion, eigenvalues,

Rating=

N

R’

Parameters

of model
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6. Capstone: Build and deploy an intelligent
application with deep learning

Text
sentiment

analysis ‘ ‘

Capstone

Computer
vision

project

Recommenders Deep
‘ learning

Deploy
Intelligent
web app
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Thank you...



