Recap & Look ahead

Emily Fox & Carlos Guestrin

Machine Learning Specialization

University of Washington

What we've learned

Module 1: Simple Regression

Simple linear regression model

1 input and just fit a line to data

"Cost" of using a given line

Residual sum of squares (RSS)

Minimizing the cost

Minimize function over all possible w₀,w₁

$$\min_{\mathbf{W_0,W_1}} \sum_{i=1}^{N} (\mathbf{y_i} - [\mathbf{w_0} + \mathbf{w_1} \mathbf{x_i}])^2$$

 $RSS(w_0, w_1)$ is a function of 2 variables

Gradient descent

Algorithm:

while not converged

$$w^{(t+1)} \leftarrow w^{(t)} - \eta \nabla RSS(w^{(t)})$$

Module 2: Multiple Regression

Regression with multiple features

Fit more complex relationships than just a line

Incorporate more inputs

- + features thereof
 - Square feet
 - # bathrooms
 - # bedrooms
 - Lot size
 - Year built
 - ...

Formally...

Model:

$$y_i = \underset{D}{\mathbf{w}_0} h_0(\mathbf{x}_i) + \mathbf{w}_1 h_1(\mathbf{x}_i) + \dots + \mathbf{w}_D h_D(\mathbf{x}_i) + \boldsymbol{\epsilon}_i$$
$$= \sum_{j=0}^{D} \mathbf{w}_j h_j(\mathbf{x}_i) + \boldsymbol{\epsilon}_i$$

```
feature 1 = h_0(\mathbf{x}) ... e.g., 1

feature 2 = h_1(\mathbf{x}) ... e.g., \mathbf{x}[1] = \text{sq. ft.}

feature 3 = h_2(\mathbf{x}) ... e.g., \mathbf{x}[2] = \text{#bath}

or, \log(\mathbf{x}[7]) \mathbf{x}[2] = \log(\text{#bed}) x #bath
```

. . .

feature $D+1 = h_D(\mathbf{x})$... some other function of $\mathbf{x}[1],...,\mathbf{x}[d]$

RSS for multiple regression

Closed-form solution

Gradient descent for multiple regression


```
init \mathbf{w}^{(1)} = 0 (or randomly, or smartly), t=1
while ||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon
       for j = 0,...,D
              partial[j] = -2\sum_{i=1}^{n} h_j(\mathbf{x}_i)(y_i - \hat{y}_i(\mathbf{w}^{(t)}))

\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} - \mathbf{\eta} \text{ partial[j]}
       t \leftarrow t + 1
```

Module 3: Assessing Performance

Measuring loss

Loss function:

$$L(y,f_{\hat{\mathbf{w}}}(\mathbf{x}))$$

Cost of using ŵ at x when y is true

actual value

$$f(\mathbf{x})$$
 = predicted value \hat{y}

Examples:

(assuming loss for underpredicting = overpredicting)

Absolute error: $L(y, f_{\hat{\mathbf{w}}}(\mathbf{x})) = |y - f_{\hat{\mathbf{w}}}(\mathbf{x})|$

Squared error: $L(y,f_{\hat{\mathbf{w}}}(\mathbf{x})) = (y-f_{\hat{\mathbf{w}}}(\mathbf{x}))^2$

3 Measures of error

Training, true, & test error vs. model complexity

3 Sources of prediction error

Bias-variance tradeoff

Model selection & assessment

Module 4: Ridge Regression

Balancing fit and model complexity

Ridge total cost =

measure of fit + measure of magnitude of coefficients

bias-variance tradeoff

Ridge objective function $(L_2 \text{ regularized regression})$

w selected to minimize

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$$

tuning parameter = balance of fit and magnitude

Ridge closed-form solution

Invertible if: Always if $\lambda > 0$, even if N < D

Complexity of inverse:

O(D³)...
big for large D!

K-fold cross validation

For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

Compute average error: $CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_k(\lambda)$

Module 5: Lasso Regression

Performing feature selection

Useful for efficiency of predictions and interpretability

Lot size

Single Family

Year built

Last sold price

Last sale price/sqft

Finished sqft

Unfinished sqft

Finished basement sqft

floors

Flooring types

Parking type

Parking amount

Cooling

Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave

Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn

Garden

Sprinkler System

:

All subsets vs. greedy

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront

Lasso objective function $(L_1 \text{ regularized regression})$

 $\hat{\mathbf{w}}$ selected to minimize tuning parameter = balance of fit and sparsity $|\mathbf{v}| = \mathbf{v}$

Coordinate descent for lasso

Precompute: $z_j = \sum_{i=1}^{N} h_j(\mathbf{x}_i)^2$ Initialize $\hat{\mathbf{w}} = 0$ (or smartly...) while not converged for j = 0,1,...,D

compute:
$$\rho_j = \sum_{i=1}^N h_j(\mathbf{x}_i)(y_i - \hat{y}_i(\hat{\mathbf{w}}_{-j}))$$

set:
$$\hat{\mathbf{w}}_{j} = \begin{cases} (\rho_{j} + \lambda/2)/z_{j} & \text{if } \rho_{j} < -\lambda/2 \\ 0 & \text{if } \rho_{j} \text{ in } [-\lambda/2, \lambda/2] \\ (\rho_{j} - \lambda/2)/z_{j} & \text{if } \rho_{j} > \lambda/2 \end{cases}$$

Module 6: Nearest Neighbor & Kernel Regression

1-Nearest neighbor regression

Weighted k-NN

Weigh more similar houses more than those less similar in list of k-NN

Kernel regression

Instead of just weighting NN, weight all points

Predict:

weight on each datapoint

$$\hat{y}_{q} = \frac{\sum_{i=1}^{N} c_{qi} y_{i}}{\sum_{i=1}^{N} c_{qi}} = \frac{\sum_{i=1}^{N} Kernel_{\lambda}(distance(\mathbf{x}_{i}, \mathbf{x}_{q})) * y_{i}}{\sum_{i=1}^{N} c_{qi}}$$

$$\sum_{i=1}^{N} Kernel_{\lambda}(distance(\mathbf{x}_{i}, \mathbf{x}_{q}))$$

Visualizing kernel regression

Summary of what we learned

Models

- Linear regression
- Regularization: Ridge (L2), Lasso (L1)
- Nearest neighbor and kernel regression

Algorithms

- Gradient descent
- Coordinate descent

Concepts

 Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection, feature selection

What we didn't cover

Other important regression topics

- Multivariate outputs **y** ...when correlated
- Maximum likelihood estimation
 - Equivalent to least squares when errors are "normal"/Gaussian
- Statistical inferences
- "Generalized linear models"
 - Models for non-Gaussian error
 - E.g., outputs are
 - (i) constrained to be positive or bounded (ii) discrete ("yes"/"no")
- Regression trees

What's ahead in this specialization

3. Classification

Case study: Analyzing sentiment

Models

- Linear classifiers
- Decision trees
- Boosted trees and random forests

Algorithms

- Stochastic gradient descent
- Boosting

Concepts

 Decision boundaries, MLE, ensemble methods, online learning

4. Clustering & Retrieval Case study: Finding documents

Models

- Nearest neighbors
- Clustering, mixtures of Gaussians
- Latent Dirichlet allocation (LDA)

Algorithms

- KD-trees
- K-means
- Expectation-maximization (EM)

 Distance metrics, approximation algorithms, sampling algorithms, scaling up with map-reduce

SPORTS

FNTFRTAINMFNI

WORLD NEWS

SCIENCE

5. Recommender Systems & Dimensionality Reduction

Case study: Recommending Products

Models

- Collaborative filtering
- Matrix factorization
- PCA

Algorithms

- Coordinate descent
- Eigen decomposition
- SVD

Concepts

 Matrix completion, eigenvalues, cold-start problem, diversity, scaling up

Machine Learning Specialization

6. Capstone: Build and deploy an intelligent application with deep learning

Thank you...