## Ridge Regression:

Regulating overfitting when using many features

Emily Fox & Carlos Guestrin

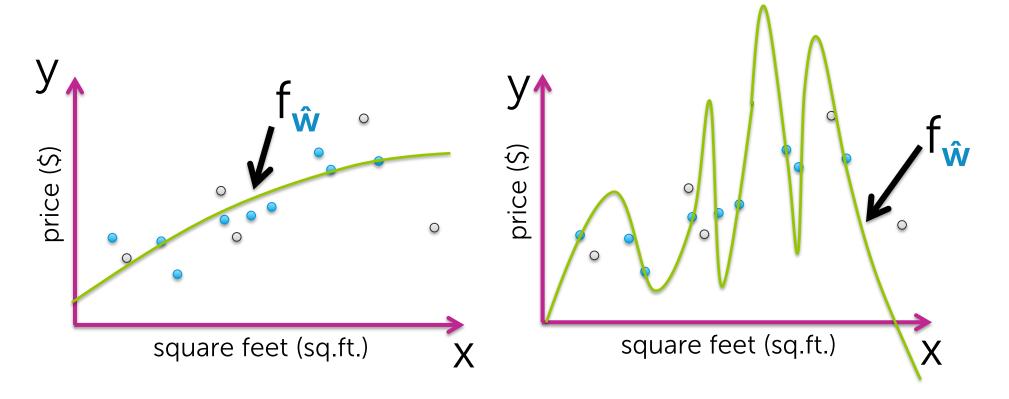
Machine Learning Specialization

University of Washington

# Overfitting of polynomial regression

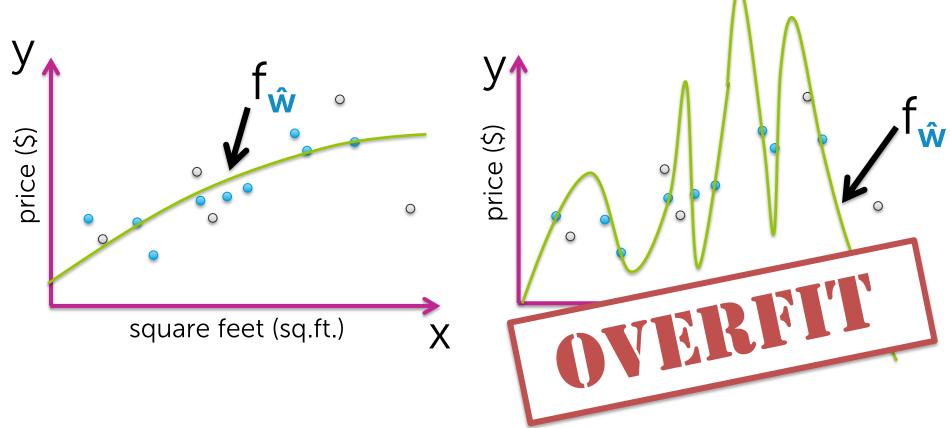
## Flexibility of high-order polynomials

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \varepsilon_i$$



## Flexibility of high-order polynomials

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \varepsilon_i$$



## Symptom of overfitting

Often, overfitting associated with very large estimated parameters w

# Overfitting of linear regression models more generically

## Overfitting with many features

Not unique to polynomial regression, but also if **lots of inputs** (d large)

Or, generically, lots of features (D large)  $y_i = \sum_{j=0}^{D} w_j h_j(\mathbf{x}_i) + \epsilon_i$ 

- Square feet
- # bathrooms
- # bedrooms
- Lot size
- Year built

- ...

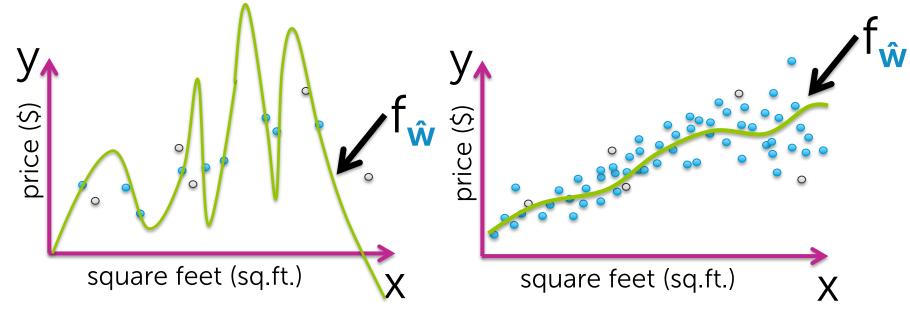
## How does # of observations influence overfitting?

#### Few observations (N small)

> rapidly overfit as model complexity increases

#### Many observations (N very large)

→ harder to overfit

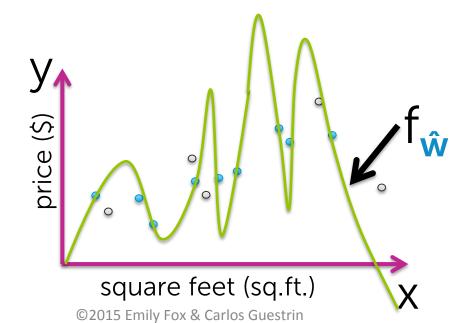


### How does # of inputs influence overfitting?

1 input (e.g., sq.ft.):

Data must include representative examples of all possible (sq.ft., \$) pairs to avoid overfitting

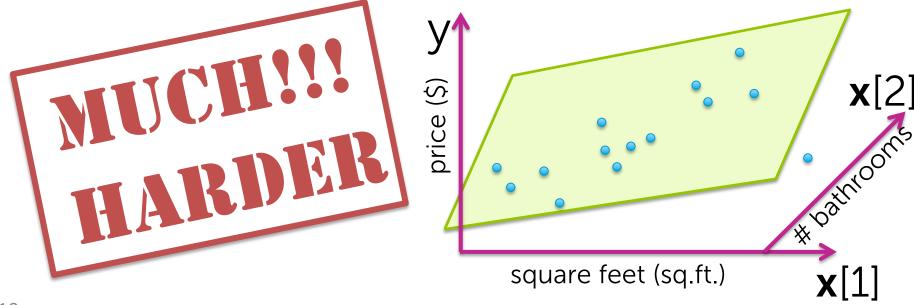




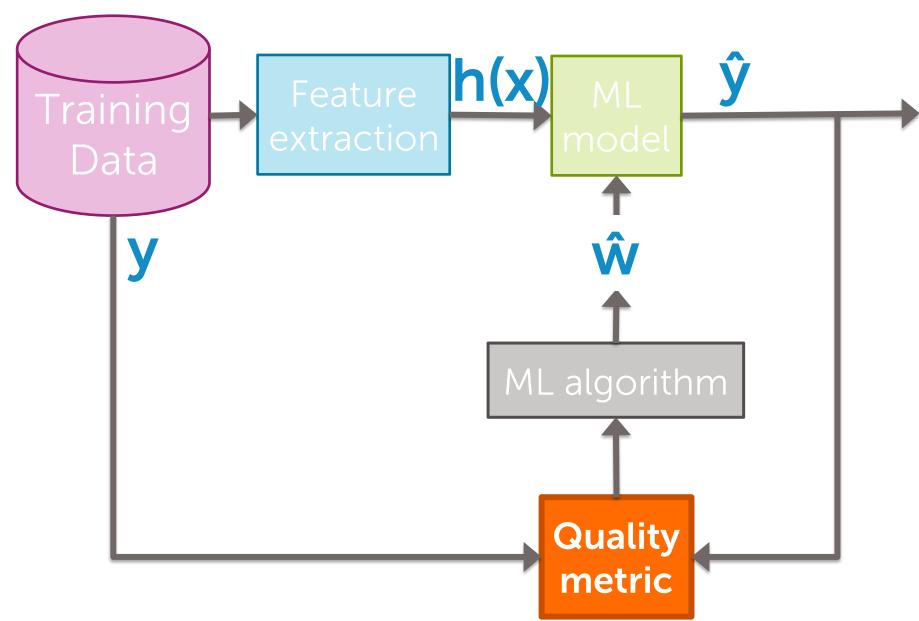
### How does # of inputs influence overfitting?

d inputs (e.g., sq.ft., #bath, #bed, lot size, year,...):

Data must include examples of all possible (sq.ft., #bath, #bed, lot size, year,...., \$) combos to avoid overfitting



Adding term to cost-of-fit to prefer small coefficients



#### Desired total cost format

#### Want to balance:

- i. How well function fits data
- ii. Magnitude of coefficients

```
Total cost =

measure of fit + measure of magnitude

of coefficients

small # = good fit to

training data

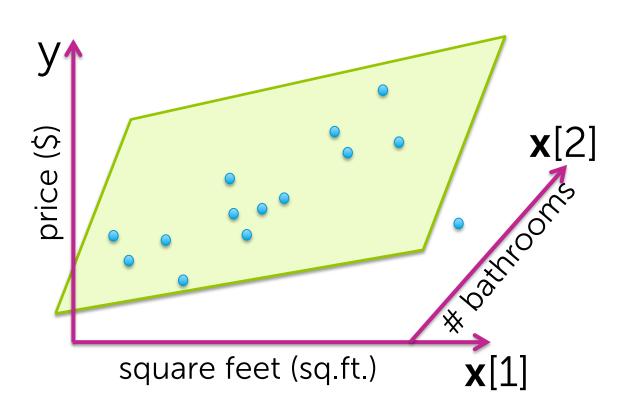
want Total cetuality of fit

measure of magnitude

of coefficients

small # = not overfit
```

## Measure of fit to training data



$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

$$= \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^T \mathbf{w})^2$$

$$= \sum_{i=1}^{N} -\hat{y}_i(\mathbf{w})^2$$

small RSS -> model fitting training data well

# Measure of magnitude of regression coefficient

What summary # is indicative of size of regression coefficients?

- Sum? 
$$W_0 = 1,527,301$$
  $W_1 = -1,605,253$   $W_0 + W_1 = small \#$ 

- Sum of absolute value?  $|w_0| + |w_1| + \dots + |w_D| = \sum_{j=0}^{D} |w_j| \triangleq ||w||, \quad L_i \text{ norm } \dots \text{ discuss more in next module}$
- Sum of squares  $(L_2 \text{ norm})$   $w_0^2 + w_1^2 + \dots + w_D^2 = \sum_{j=0}^{2} w_j^2 \triangleq \|\mathbf{w}\|_2^2 \quad L_2 \text{ norm} \quad \dots \quad \text{focus of this module}$

## Consider specific total cost

Total cost =

measure of fit + measure of magnitude of coefficients

## Consider specific total cost

```
Total cost =

measure of fit + measure of magnitude

of coefficients

RSS(w)

||w||<sub>2</sub>
```

## Consider resulting objective

What if <u>w</u> selected to minimize

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$$

tuning parameter = balance of fit and magnitude

```
If \lambda=0:
reduces to minimizing RSS(w), as before (old solution) \longrightarrow \hat{w}^{LS} tleast squares
```

```
If \lambda = \infty:

For solutions where \hat{w} \neq 0, then total cost is \infty

If \hat{w} = 0, then total cost = RSS(0) \longrightarrow solution is \hat{w} = 0
```

If  $\lambda$  in between: Then  $0 \leq \|\hat{\omega}\|_{\infty}^{2} \leq \|\hat{\omega}\|_{\infty}^{2}$ 

## Consider resulting objective

What if w selected to minimize

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$$
tuning parameter = balance of fit and magnitude

Ridge regression (a.k.a  $L_2$  regularization)

#### Bias-variance tradeoff

#### Large $\lambda$ :

high bias, low variance

(e.g.,  $\hat{\mathbf{w}} = 0$  for  $\lambda = \infty$ )

In essence,  $\lambda$  controls model complexity

#### Small $\lambda$ :

low bias, high variance

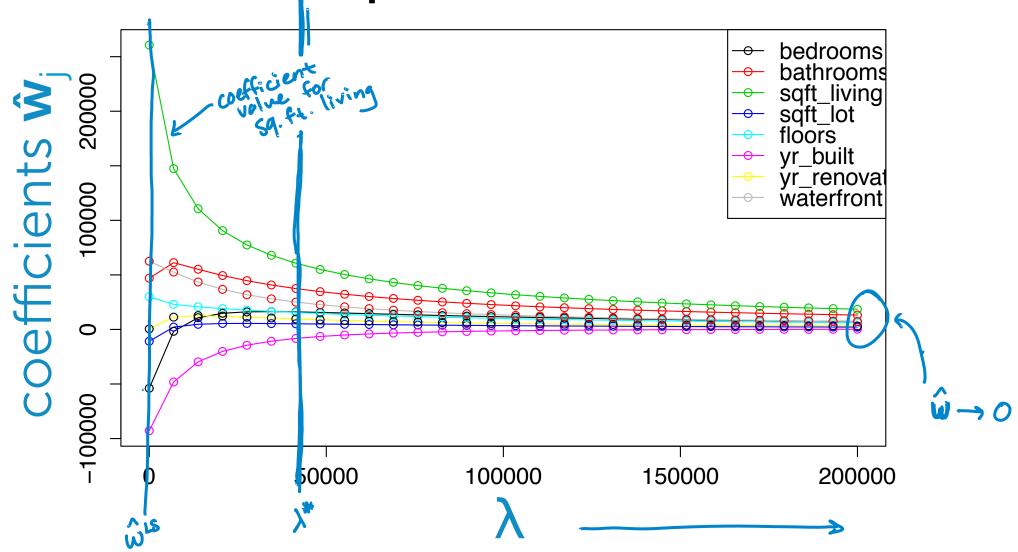
(e.g., standard least squares (RSS) fit of high-order polynomial for  $\lambda=0$ )

## Revisit polynomial fit demo

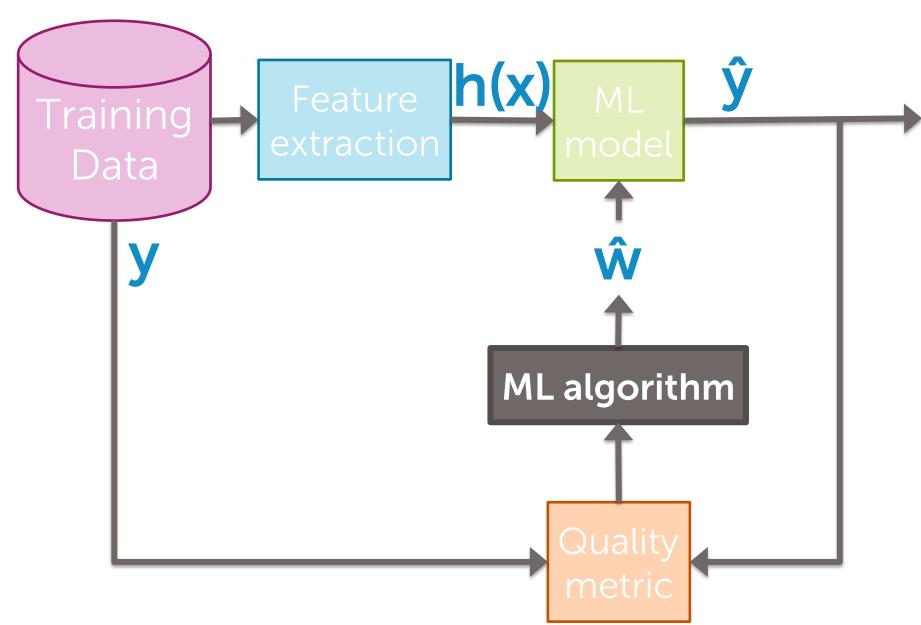
What happens if we refit our high-order polynomial, but now using ridge regression?

Will consider a few settings of  $\lambda$  ...

## Coefficient path



# Fitting the ridge regression model (for given $\lambda$ value)

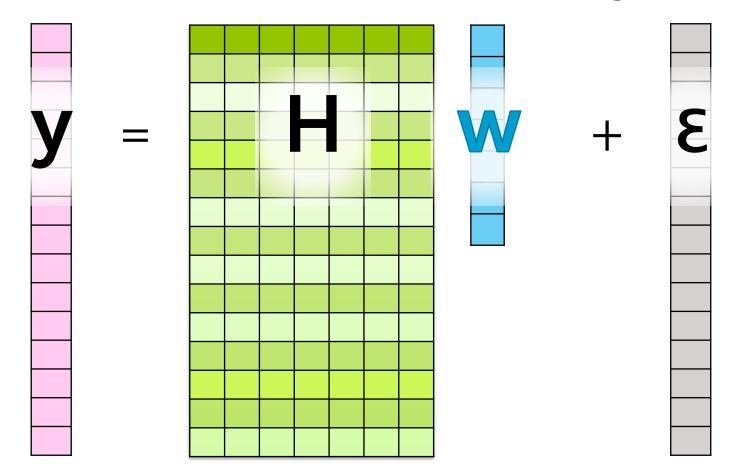


#### Step 1:

Rewrite total cost in matrix notation

#### Recall matrix form of RSS

Model for all N observations together



#### Recall matrix form of RSS

RSS(w) = 
$$\sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{h}(\mathbf{x}_i)^T \mathbf{w})^2$$
  
=  $(\mathbf{y} - \mathbf{H} \mathbf{w})^T (\mathbf{y} - \mathbf{H} \mathbf{w})$ 

## Rewrite magnitude of coefficients in vector notation

## Putting it all together

In matrix form, ridge regression cost is:

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}$$
$$= (\mathbf{y} - \mathbf{H} \mathbf{w})^{T} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^{T} \mathbf{w}$$

## Step 2: Compute the gradient

## Gradient of ridge regression cost

$$\nabla \left[ RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2} \right] = \nabla \left[ (\mathbf{y} - \mathbf{H} \mathbf{w})^{T} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \mathbf{w}^{T} \mathbf{w} \right]$$

$$= \left[ \nabla \mathbf{y} - \mathbf{H} \mathbf{w} \right]^{T} (\mathbf{y} - \mathbf{H} \mathbf{w}) + \lambda \left[ \nabla \mathbf{y} - \mathbf{H} \mathbf{w} \right]$$

$$-2\mathbf{H}^{T} (\mathbf{y} - \mathbf{H} \mathbf{w})$$

$$2\mathbf{w}$$

Why? By analogy to 1d case...

 $\mathbf{w}^{\mathsf{T}}\mathbf{w}$  analogous to  $\mathbf{w}^2$  and derivative of  $\mathbf{w}^2 = 2\mathbf{w}$ 

## Step 3, Approach 1: Set the gradient = 0

#### Aside:

### Refresher on identity matrics

$$I_1 = \begin{bmatrix} 1 \end{bmatrix}, \ I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \cdots, \ I_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$IA = A$$
 $A = A$ 

Fun facts:
$$Iv = v$$

$$IA = A$$

$$A^{-1}A = I$$

$$A = A$$

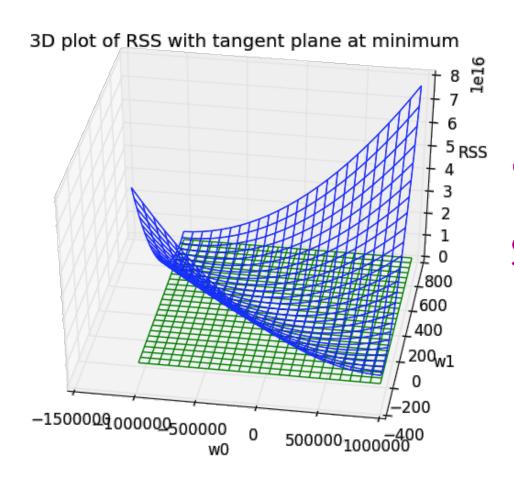
$$A$$

$$AA^{-1} = I^{A}$$

$$\nabla cost(\mathbf{w}) = -2\mathbf{H}^{T}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{w}$$

$$= -2\mathbf{H}^{T}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w}$$

## Ridge closed-form solution



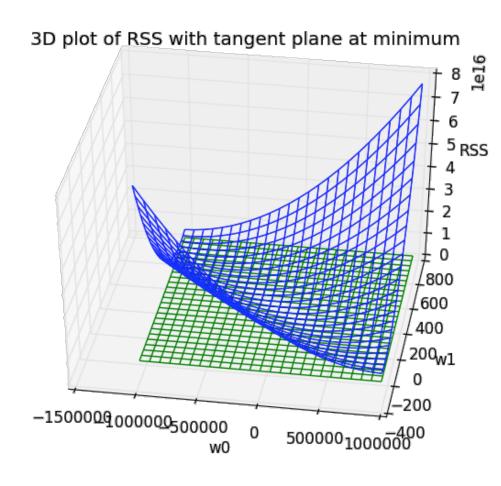
$$\nabla \text{cost}(\mathbf{w}) = -2\mathbf{H}^{T}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\lambda \mathbf{I}\mathbf{w} = 0$$
Solve for  $\mathbf{w}'' + \mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda \mathbf{I}\hat{\mathbf{w}} = 0$ 

$$\mathbf{H}^{T}\mathbf{H}\hat{\mathbf{w}} + \lambda \mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$(\mathbf{H}^{T}\mathbf{H} + \lambda \mathbf{I})\hat{\mathbf{w}} = \mathbf{H}^{T}\mathbf{y}$$

$$\hat{\mathbf{w}} = (\mathbf{H}^{T}\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^{T}\mathbf{y}$$

## Interpreting ridge closed-form solution

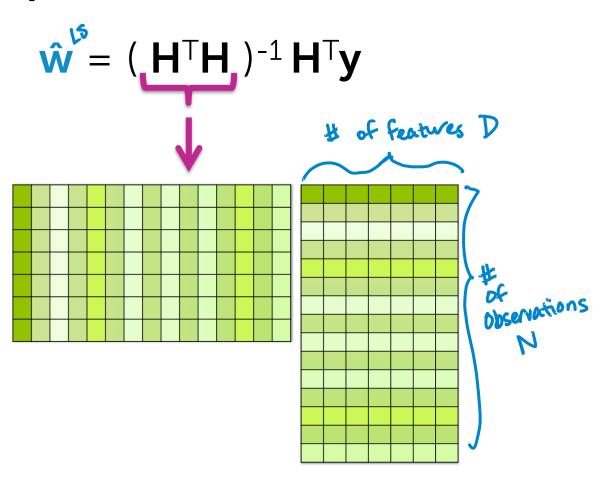


$$\hat{\mathbf{w}} = (\mathbf{H}^{\mathsf{T}}\mathbf{H} + \lambda \mathbf{I})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{y}$$

If 
$$\lambda = 0$$
:  $\hat{\omega}^{ridge} = (H^TH)^{-1}H^Ty = \hat{\omega}^{LS} \leftarrow \text{old}_{Solution}$ 

If 
$$\lambda = \infty$$
:  $\hat{w}^{ridge} = 0$   $\leftarrow$  because it's like dividing by  $\infty$ 

## Recall discussion on previous closed-form solution



Invertible if:

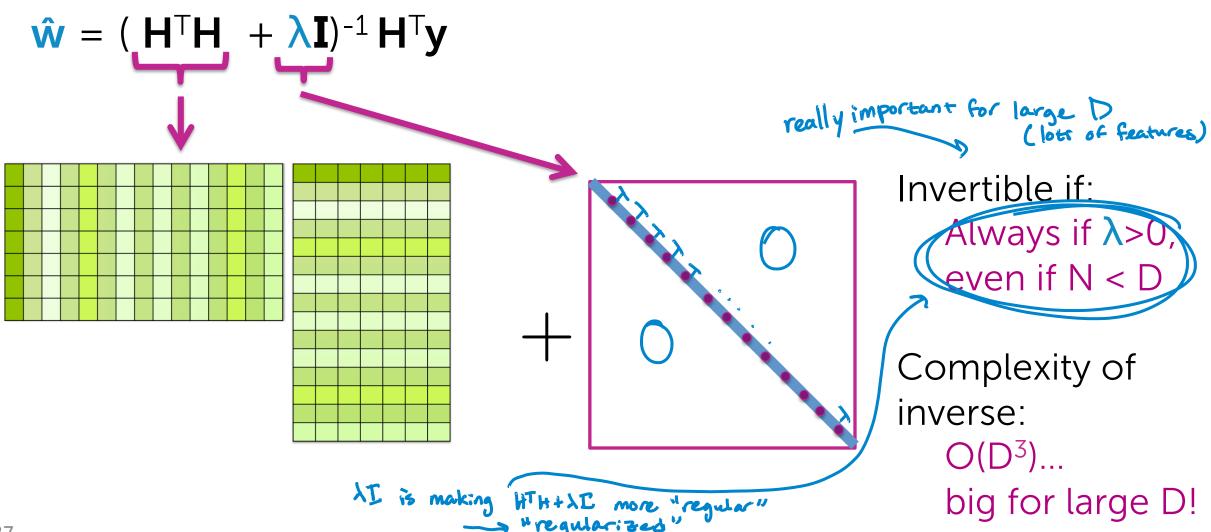
In general,
(# linearly independent obs)

N > D

Complexity of inverse:

 $O(D^3)$ 

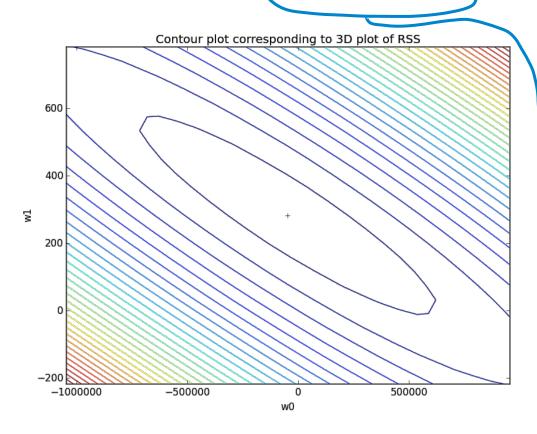
# Discussion of ridge closed-form solution



## Step 3, Approach 2: Gradient descent

# Elementwise ridge regression gradient descent algorithm

$$\nabla$$
cost(w) =  $-2H^{T}(y-Hw) + 2\lambda w$ 



#### Update to jth feature weight:

$$W_{j}^{(t+1)} \leftarrow W_{j}^{(t)} - \eta *$$

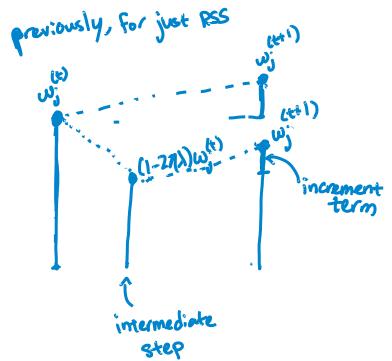
$$\sum_{i=1}^{N} (\mathbf{x}_{i}) (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}(\mathbf{w}^{(t)}))$$

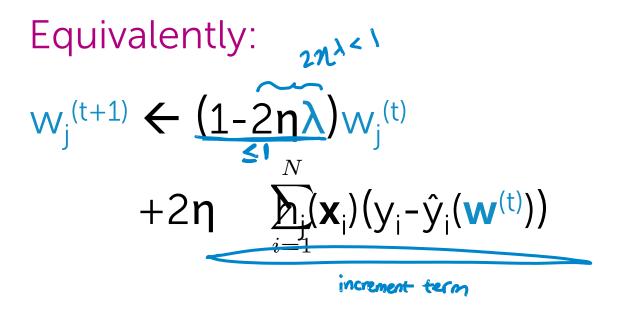
$$+2\lambda (\mathbf{y}_{i}^{(t)})$$

$$\sum_{i=1}^{N} (\mathbf{x}_{i}) (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}(\mathbf{w}^{(t)}))$$

## Elementwise ridge regression gradient descent algorithm

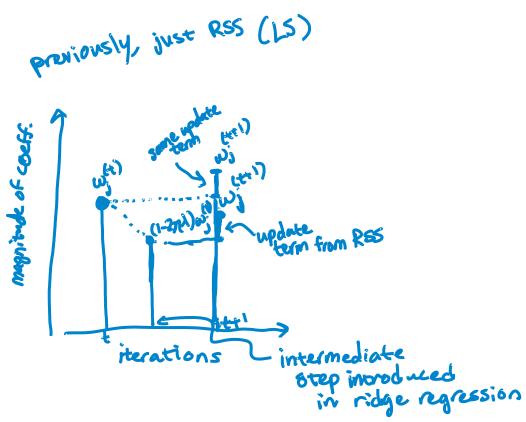
$$\nabla$$
cost( $\mathbf{w}$ ) =  $-2\mathbf{H}^{\mathsf{T}}(\mathbf{y}-\mathbf{H}\mathbf{w}) + 2\lambda\mathbf{w}$ 

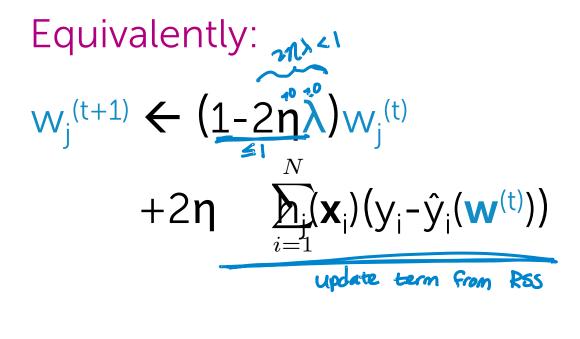




## Elementwise ridge regression gradient descent algorithm

$$\nabla$$
cost( $\mathbf{w}$ ) =  $-2\mathbf{H}^{\mathsf{T}}(\mathbf{y}-\mathbf{H}\mathbf{w}) + 2\lambda\mathbf{w}$ 





## Recall previous algorithm

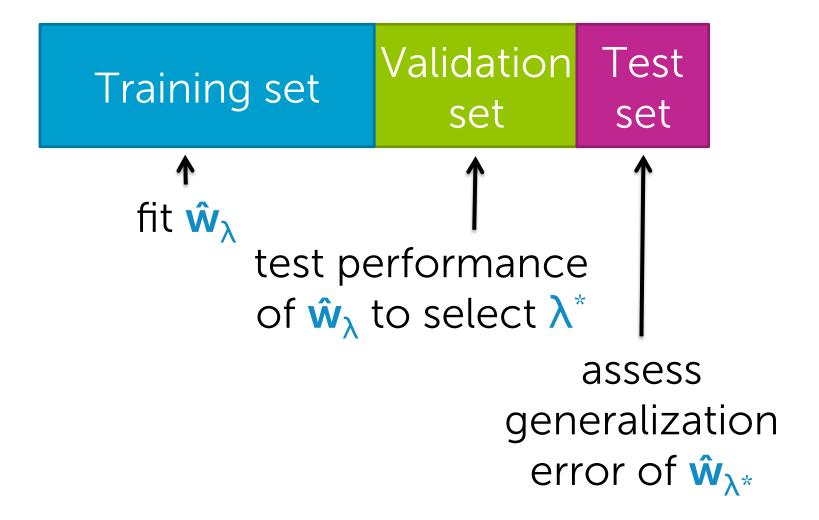
```
init \mathbf{w}^{(1)} = 0 (or randomly, or smartly), t=1
while ||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon
     for j = 0,...,D
     partial[j] = -2 \sum_{i=1}^{N} \mathbf{x}_{i} (\mathbf{y}_{i} - \hat{\mathbf{y}}_{i}(\mathbf{w}^{(t)}))
     w_i^{(t+1)} \leftarrow w_i^{(t)} - \eta \text{ partial[j]}
     t \leftarrow t + 1
```

## Summary of ridge regression algorithm

```
init \mathbf{w}^{(1)} = 0 (or randomly, or smartly), t=1
while ||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon
     for j = 0,...,D
     partial[j] = -2 \sum_{i=1}^{N} (\mathbf{x}_i) (y_i - \hat{y}_i(\mathbf{w}^{(t)}))
     w_i^{(t+1)} \leftarrow (1-2\eta\lambda)w_i^{(t)} - \eta \text{ partial[j]}
     t \leftarrow t + 1
```

#### How to choose λ

#### If sufficient amount of data...



#### Start with smallish dataset

All data

#### Still form test set and hold out

Rest of data

Test
set

#### How do we use the other data?

Rest of data

use for both training and validation, but not so naively

## Recall naïve approach



Is validation set enough to compare performance of  $\hat{\mathbf{w}}_{\lambda}$  across  $\lambda$  values?



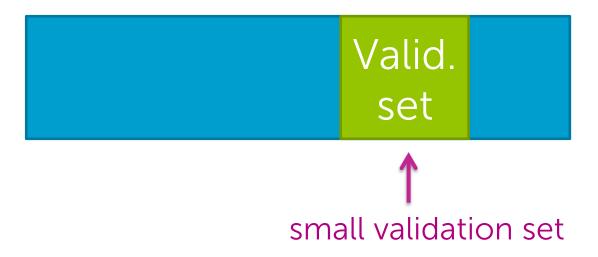
## Choosing the validation set



Didn't have to use the last data points tabulated to form validation set

Can use any data subset

## Choosing the validation set



Which subset should I use?

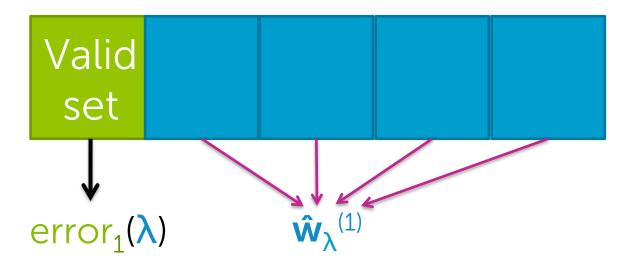


average performance over all choices

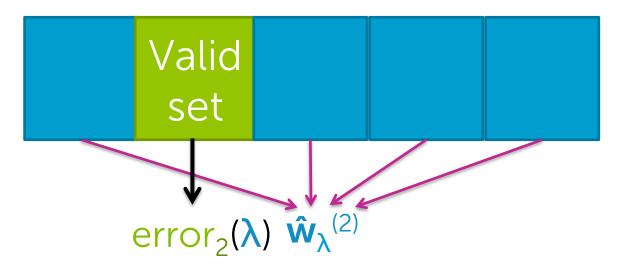
#### Preprocessing:

Randomly assign data to K groups

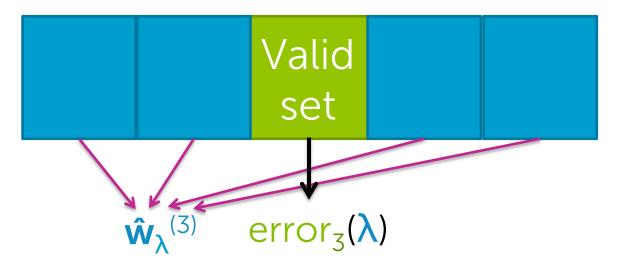
(use same split of data for all other steps)



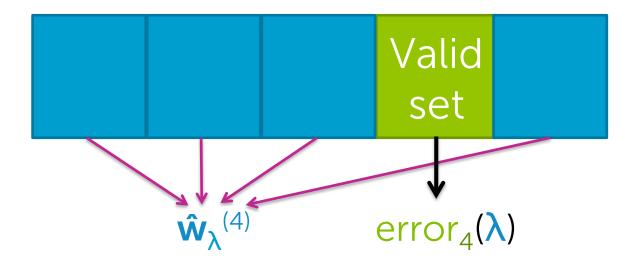
- 1. Estimate  $\hat{\mathbf{w}}_{\lambda}^{(k)}$  on the training blocks
- 2. Compute error on validation block:  $error_k(\lambda)$



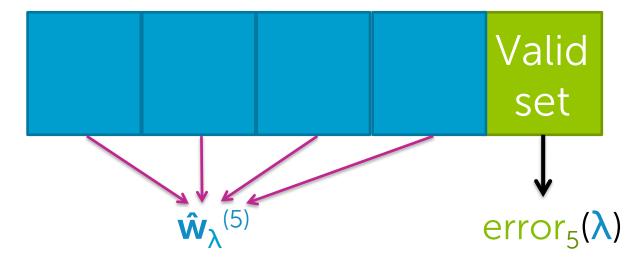
- 1. Estimate  $\hat{\mathbf{w}}_{\lambda}^{(k)}$  on the training blocks
- 2. Compute error on validation block:  $error_k(\lambda)$



- 1. Estimate  $\hat{\mathbf{w}}_{\lambda}^{(k)}$  on the training blocks
- 2. Compute error on validation block:  $error_k(\lambda)$



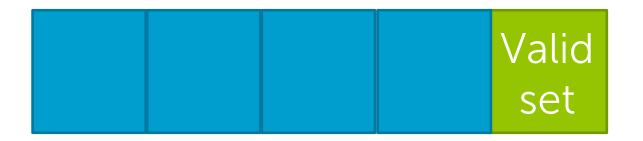
- 1. Estimate  $\hat{\mathbf{w}}_{\lambda}^{(k)}$  on the training blocks
- 2. Compute error on validation block:  $error_k(\lambda)$



For k=1,...,K

- 1. Estimate  $\hat{\mathbf{w}}_{\lambda}^{(k)}$  on the training blocks
- 2. Compute error on validation block:  $error_k(\lambda)$

Compute average error:  $CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_k(\lambda)$ 



Repeat procedure for each choice of  $\lambda$ 

Choose  $\lambda^*$  to minimize  $CV(\lambda)$ 

#### What value of K?

Formally, the best approximation occurs for validation sets of size 1 (K=N)

leave-one-out cross validation

#### Computationally intensive

- requires computing N fits of model per  $\lambda$ 

Typically, K=5 or 10

5-fold CV

10-fold CV

### How to handle the intercept

## Recall multiple regression model

#### Model:

$$y_i = \mathbf{w}_0 h_0(\mathbf{x}_i) + \mathbf{w}_1 h_1(\mathbf{x}_i) + \dots + \mathbf{w}_D h_D(\mathbf{x}_i) + \boldsymbol{\epsilon}_i$$
$$= \sum_{j=0}^{D} \mathbf{w}_j h_j(\mathbf{x}_i) + \boldsymbol{\epsilon}_i$$

feature  $1 = h_0(\mathbf{x})$ ...often 1 (constant) feature  $2 = h_1(\mathbf{x})$ ... e.g.,  $\mathbf{x}[1]$ feature  $3 = h_2(\mathbf{x})$ ... e.g.,  $\mathbf{x}[2]$ 

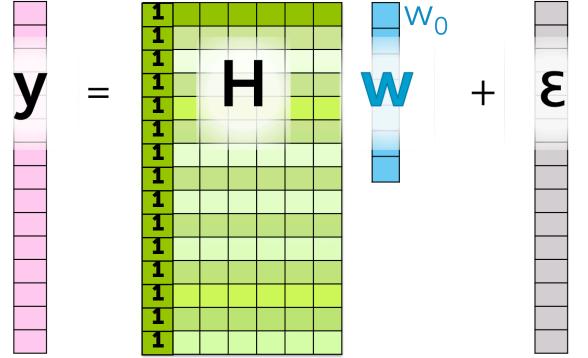
. . .

feature  $D+1 = h_D(\mathbf{x})$ ... e.g.,  $\mathbf{x}[d]$ 

#### If constant feature...

$$y_i = w_0 + w_1 h_1(\mathbf{x}_i) + ... + w_D h_D(\mathbf{x}_i) + \epsilon_i$$

In matrix notation for N observations:



## Do we penalize intercept?

Standard ridge regression cost:

RSS(w) + 
$$\lambda ||\mathbf{w}||_2^2$$
 strength of penalty

Encourages intercept  $w_0$  to also be small

Do we want a small intercept? Conceptually, not indicative of overfitting...

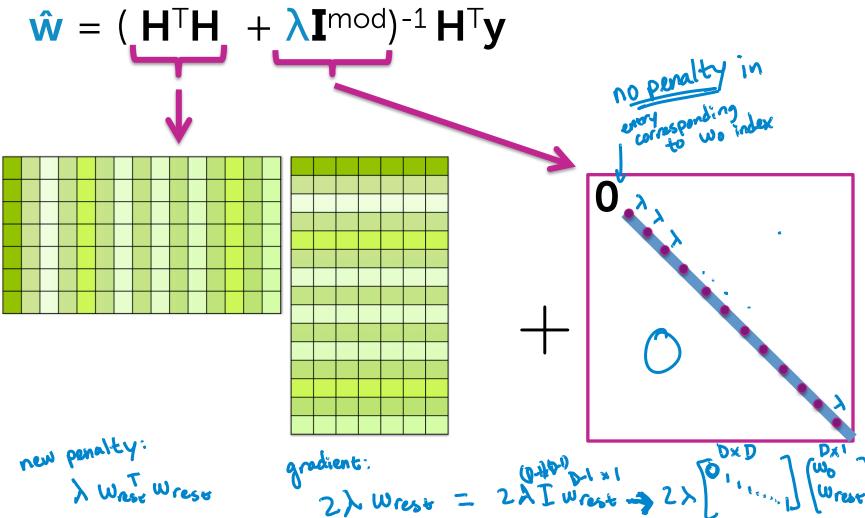
## Option 1: Don't penalize intercept

Modified ridge regression cost:

$$RSS(\mathbf{w}_{0}, \mathbf{w}_{rest}) + \lambda ||\mathbf{w}_{rest}||_{2}^{2}$$

How to implement this in practice?

## Option 1: Don't penalize intercept – Closed-form solution –



### Option 1: Don't penalize intercept

- Gradient descent algorithm -

```
while ||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon
    for j = 0,...,D
     partial[j] = -2 \sum_{i=1}^{n} \mathbf{x}_i (\mathbf{y}_i - \hat{\mathbf{y}}_i(\mathbf{w}^{(t)}))
     if j==0
                                                                     (no shrinkage to wo)
         w_0^{(t+1)} \leftarrow w_0^{(t)} - \eta \text{ partial[j]}
    else - for all other features
         w_i^{(t+1)} \leftarrow (1-2\eta\lambda)w_i^{(t)} - \eta \text{ partial[j]}
                                                                               ridge update
     t \leftarrow t + 1
```

## Option 2: Center data first

If data are first centered about 0, then favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean

Step 2: Run ridge regression as normal

(closed-form or gradient algorithms)

# Summary for ridge regression

## What you can do now...

- Describe what happens to magnitude of estimated coefficients when model is overfit
- Motivate form of ridge regression cost function
- Describe what happens to estimated coefficients of ridge regression as tuning parameter  $\lambda$  is varied
- Interpret coefficient path plot
- Estimate ridge regression parameters:
  - In closed form
  - Using an iterative gradient descent algorithm
- Implement K-fold cross validation to select the ridge regression tuning parameter λ