Regression:

A machine learning perspective

Emily Fox & Carlos Guestrin

Machine Learning Specialization

University of Washington

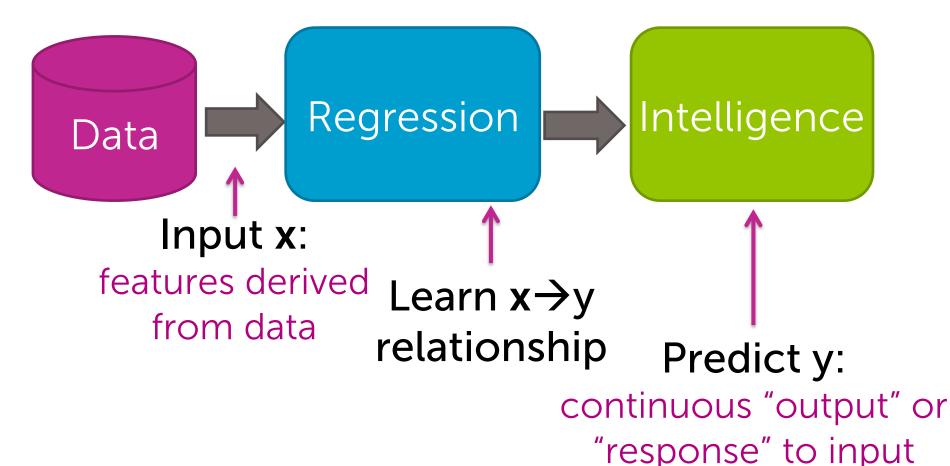
Part of a specialization

This course is a part of the Machine Learning Specialization

What is the course about?

What is regression?

From features to predictions

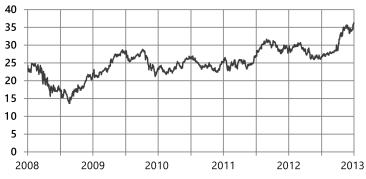


Salary after ML specialization

- How much will your salary be? (y = \$\$)
- Depends on x = performance in courses, quality of capstone project, # of forum responses, ...

Stock prediction

- Predict the price of a stock (y)
- Depends on $\mathbf{x} =$
 - Recent history of stock price
 - News events
 - Related commodities

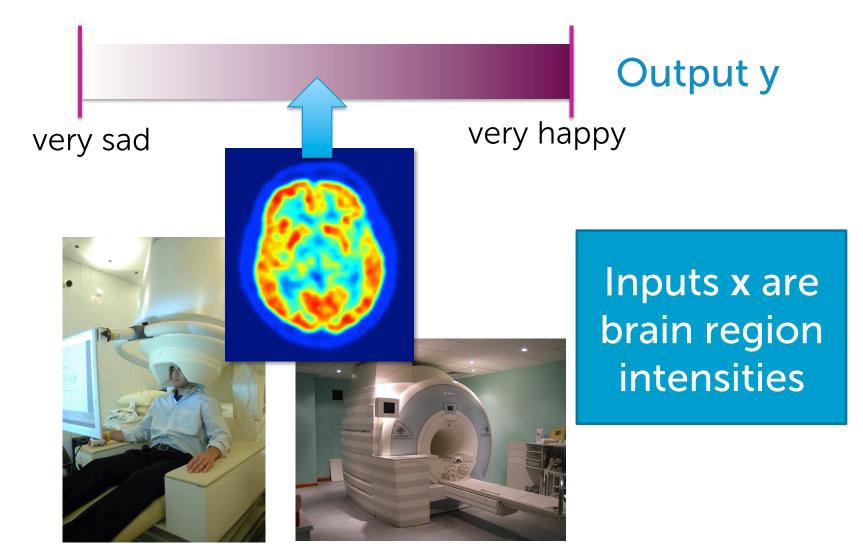


Tweet popularity

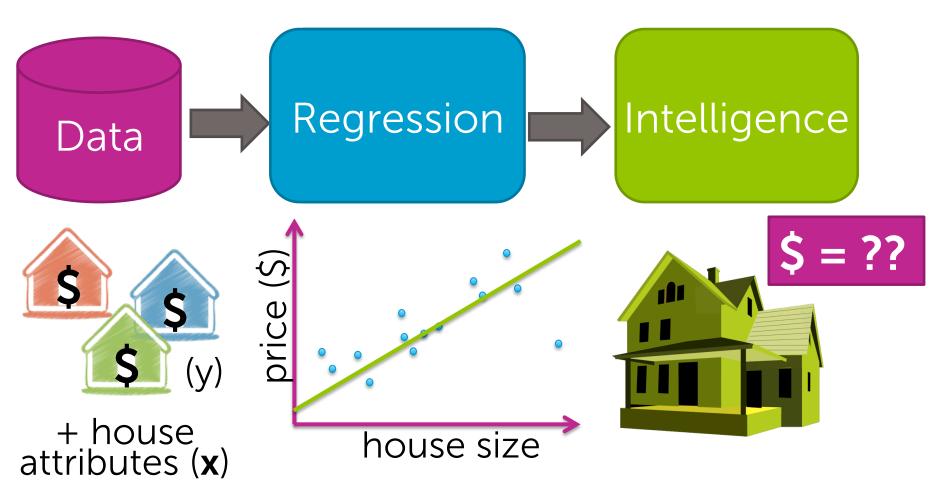
How many people will retweet your tweet? (y)

• Depends on $\mathbf{x} = \#$ followers, # of followers of followers, features of text tweeted, popularity of hashtag, # of past retweets,...

Reading your mind



Case Study: Predicting house prices



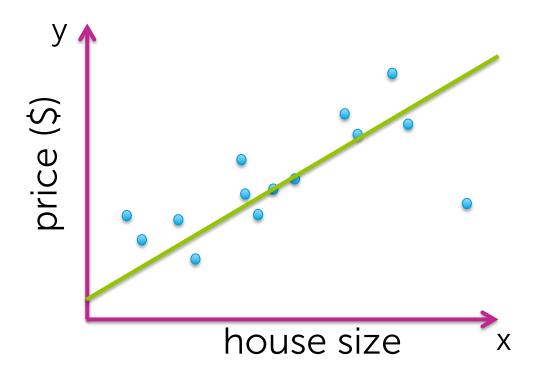
Impact of regression

Course outline

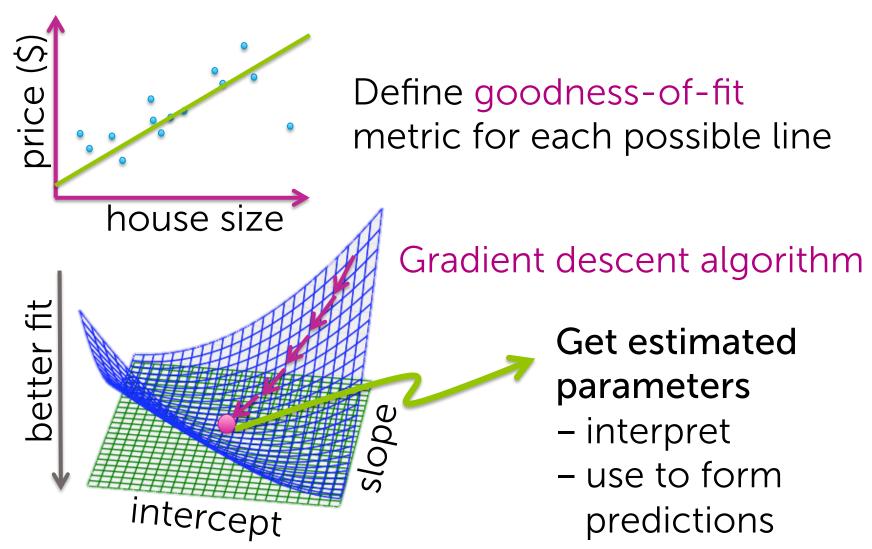
Module 1: Simple Regression

What makes it simple?

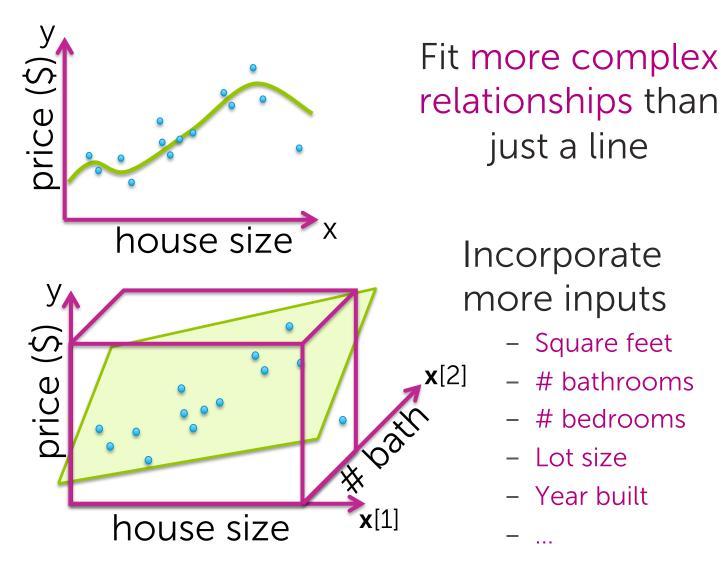
1 input and just fit a line to data



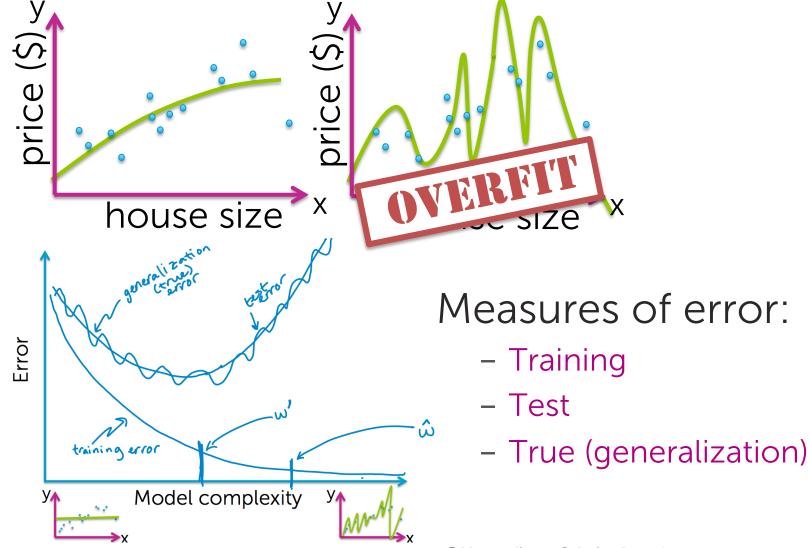
Module 1: Simple Regression



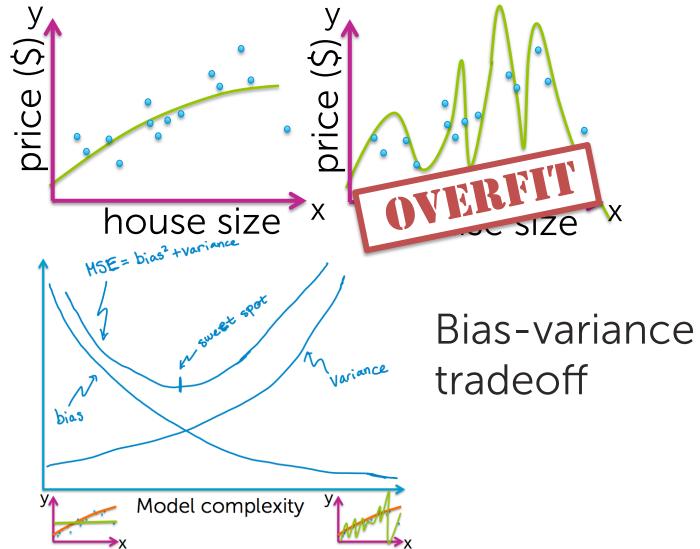
Module 2: Multiple Regression



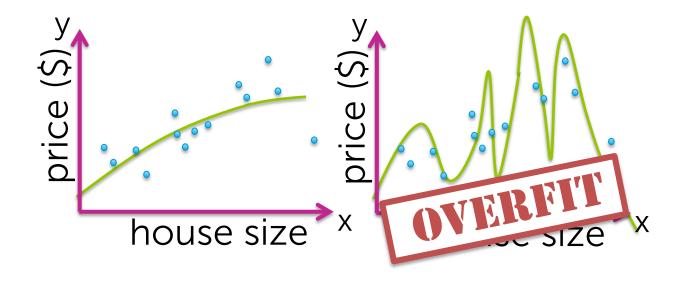
Module 3: Assessing Performance



Module 3: Assessing Performance



Module 4: Ridge Regression



Ridge total cost =

measure of fit + measure of
model complexity

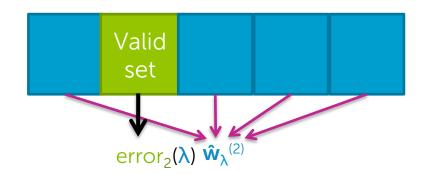
bias-variance tradeoff

Module 4: Ridge Regression

How to choose balance? (i.e., model complexity)

measure of fit + measure of model complexity

Cross validation



Module 5: Feature Selection & Lasso Regression

Useful for efficiency of predictions and interpretability

Lot size

Single Family

Year built

Last sold price

Last sale price/sqft

Finished sqft

Unfinished sqft

Finished basement sqft

floors

Flooring types

Parking type

Parking amount

Cooling

Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave

Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn

Garden

Sprinkler System

:

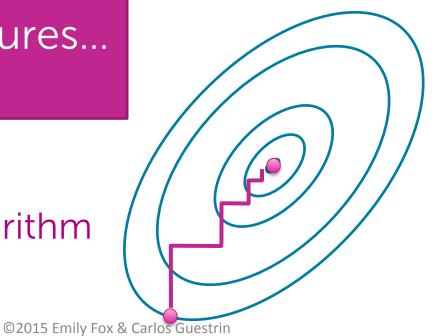
Module 5: Feature Selection & Lasso Regression

Lasso total cost =

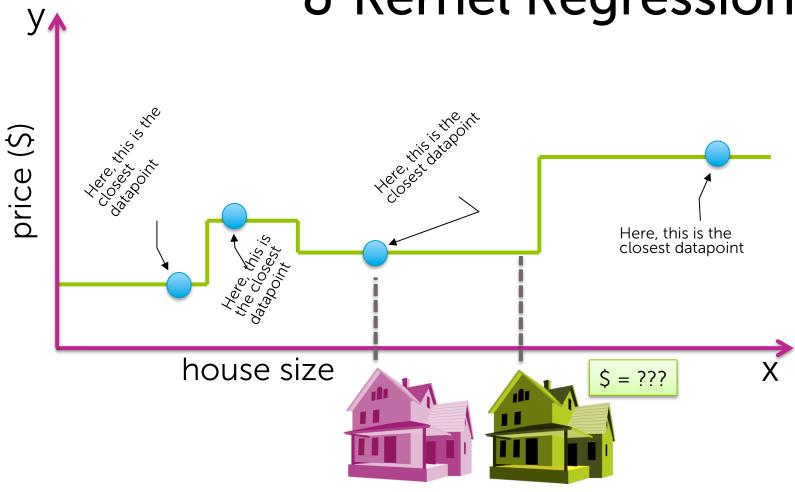
measure of fit + (different) measure of model complexity

knocks out certain features...
"sparsity"

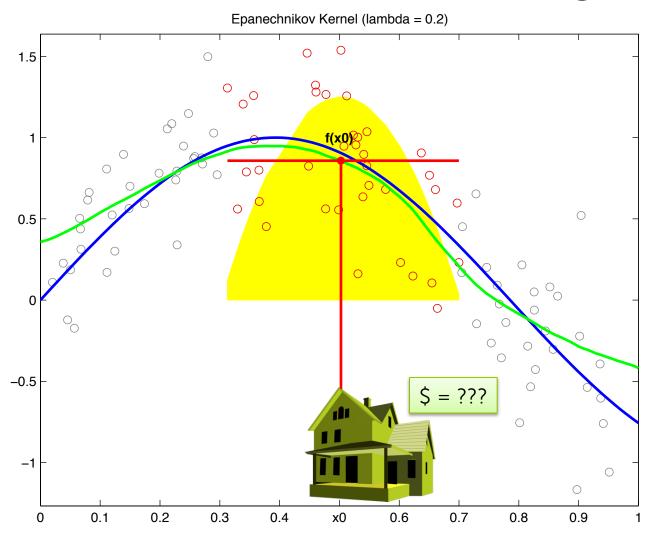
Coordinate descent algorithm



Module 6: Nearest Neighbor & Kernel Regression



Module 6: Nearest Neighbor & Kernel Regression



Summary of what's covered

Models

- Linear regression
- Regularization: Ridge (L2), Lasso (L1)
- Nearest neighbor and kernel regression

Algorithms

- Gradient descent
- Coordinate descent

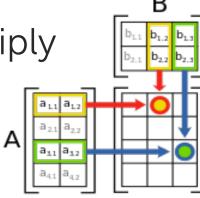
Concepts

 Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection, feature selection

Assumed background

Math background

- Basic calculus
 - Concept of derivatives
- Basic linear algebra
 - Vectors
 - Matrices



Programming experience

- Basic Python used
 - Can pick up along the way if knowledge of other language

Reliance on GraphLab Create

- SFrames will be used, though not required
 - open source project of Dato (creators of GraphLab Create)
 - can use pandas and numpy instead
- Assignments will:
 - 1. Use GraphLab Create to explore high-level concepts
 - 2. Ask you to implement all algorithms without GraphLab Create
- Net result:
 - learn how to code methods in Python

Computing needs

- Basic 64-bit desktop or laptop
- Access to internet
- Ability to:
 - Install and run Python (and GraphLab Create)
 - Store a few GB of data

Let's get started!