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It’s a big day & I want to book a table at  
a nice Japanese restaurant 
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Seattle has many 
★★★★  

sushi restaurants 

What are people 
saying about  

the food?  
the ambiance?...  
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Positive reviews not positive about everything 
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Sample review: 
Watching the chefs create 
incredible edible art made  
the experience very unique.  

My wife tried their ramen  
and it was pretty forgettable.  

All the sushi was delicious!   
Easily best sushi in Seattle. 

Experience 
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From reviews to topic sentiments 
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Experience  
★★★★	  

Ramen 
★★★	  

Sushi 
★★★★★	  

Novel intelligent  
restaurant review app 

Easily best sushi  
in Seattle. 

All reviews  
for restaurant 
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Intelligent restaurant review system 
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All reviews  
for restaurant 

 
 
 
 

The seaweed salad was just OK, 
vegetable salad was just ordinary. 

I like the interior decoration and 
the blackboard menu on the wall.  

My wife tried their ramen and  
it was pretty forgettable.  

The service is somewhat hectic. 

Easily best sushi in Seattle. 

All the sushi was delicious. 

The sushi was amazing, and  
the rice is just outstanding. 

Break all reviews  
into sentences 
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Core building block  
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Easily best sushi in Seattle. 

Sentence Sentiment 
Classifier 

Easily best sushi in Seattle. 
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Intelligent restaurant review system 
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All reviews  
for restaurant 

 
 
 
 

The seaweed salad was just OK, 
vegetable salad was just ordinary. 

I like the interior decoration and 
the blackboard menu on the wall.  

My wife tried their ramen and  
it was pretty forgettable.  

The service is somewhat hectic. 

Easily best sushi in Seattle. 

All the sushi was delicious. 

The sushi was amazing, and  
the rice is just outstanding. 

Break all reviews  
into sentences 

Easily best sushi in Seattle. 

All the sushi was delicious. 

The sushi was amazing, and  
the rice is just outstanding. 

 
 
 
 

Select sentences 
about “sushi” 

 
 
 
 

Sentence  
Sentiment 
Classifier 

 
 
 
 

Sushi 
★★★★★	  

Average 
predictions 

Easily best 
sushi  

in Seattle. 

Most  
& 
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Classifier applications 
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Classifier 
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Sentence  
from  

review 

Classifier 
MODEL 

Input:  x 
Output:  y  
Predicted  
class 
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Example multiclass classifier 
Output y has more than 2 categories 
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Education 

Finance 

Technology 

Input:  x 
Webpage 

Output:  y  
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Spam filtering  

Input:  x Output:  y  

Not spam 

Spam 
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Text of email, 
sender, IP,… 
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Image classification 
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Input:  x 
Image pixels 

Output:  y 
Predicted object 
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Personalized medical diagnosis 

©2015 Emily Fox & Carlos Guestrin 

Disease 
Classifier 
MODEL 

Input:  x 

Healthy 

Flu 

… 

Cold 

Pneumonia 

Output:  y 
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Reading your mind 
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“Hammer” 

“House” 
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Linear classifiers 
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Representing classifiers 
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Sentence  
from  

review 

Classifier 
MODEL 

Input:  x 
Output:  y  
Predicted class 

How does it work??? 
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Count positive & negative words 
in sentence  
 
If number of positive words >  

  number of negative words: 
  ŷ =  

Else: 
  ŷ =  

List of positive 
words 

List of negative 
words 

great, awesome, 
good, amazing,… 

bad, terrible, 
disgusting, sucks,… 
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Sentence  
from  

review 

Input:  x 

Simple threshold classifier  
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Count positive & negative words 
in sentence  
 
If number of positive words >  

  number of negative words: 
  ŷ =  

Else: 
  ŷ =  

List of positive 
words 

List of negative 
words 

great, awesome, 
good, amazing,… 

bad, terrible, 
disgusting, sucks,… 
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Sushi was 
great, the 
food was 
awesome, 

but the 
service was 

terrible.  

Simple threshold classifier  

2 

1 
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Problems with threshold classifier 

•  How do we get list of  
positive/negative words? 

•  Words have different  
degrees of sentiment: 
- Great > good 
- How do we weigh  

different words? 

•  Single words are not enough: 
- Good è Positive 
- Not good è Negative 
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Addressed 
by learning 
a classifier  

Addressed 
by more 
elaborate 
features 
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A (linear) classifier 
•  Will use training data to learn a weight  

for each word  
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Word Weight 
good   1.0 

great   1.5 

awesome   2.7 

bad -1.0 

terrible -2.1 

awful -3.3 

restaurant, the, we, where, …   0.0 

…  … 
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Scoring a sentence 
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Word Weight 
good   1.0 

great   1.2 

awesome   1.7 

bad -1.0 

terrible -2.1 

awful  -3.3 

restaurant, the,  
we, where, … 

  0.0 

…  … 

Input x: 
Sushi was great,  
the food was awesome,  
but the service was terrible.  

Called a linear classifier, because output is weighted sum of input. 
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Score(x) = weighted count of 
      words in sentence 

 
If Score (x) > 0: 

  ŷ =  
Else: 

  ŷ =  

Word Weight 

… … 
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Sentence  
from  

review 

Input:  x 

Simple linear classifier  
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Decision boundaries 
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Suppose only two words had non-zero weight 
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Word Weight 
awesome   1.0 

awful  -1.5 

awesome 
0 1 2 3 4 … 

aw
fu

l 

0 

1 

2 

3 

4 

… 

Sushi was awesome,  
the food was awesome,  
but the service was awful.  

Score(x) = 1.0 #awesome – 1.5 #awful 
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Decision boundary example 
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Word Weight 
awesome   1.0 

awful  -1.5 

awesome 

aw
fu

l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) = 1.0 #awesome – 1.5 #awful 

Score(x) > 0 

Score(x) < 0 
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Decision boundary separates 
positive & negative predictions 

•  For linear classifiers: 
- When 2 weights are non-zero  
è line 

- When 3 weights are non-zero  
è plane 

- When many weights are non-zero 
è hyperplane  

•  For more general classifiers  
è more complicated shapes 
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Training and evaluating  
a classifier  
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Training a classifier = Learning the weights 
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Data 

(x,y) 
(Sentence1,     ) 
(Sentence2,     ) 

… 

Training 
set 

Test  
set 

Learn 
classifier 

Evaluate?  

Word Weight 
good   1.0 

awesome   1.7 

bad -1.0 

awful  -3.3 

…  … 
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Test example 
 
 

Classification error 
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(Sushi was great,      ) 

Learned classifier 

Hide label 

Correct 

Mistakes Sushi was great	  

ŷ = 

Correct! 
0 
0 
1 
1 (Food was OK,      ) Food was OK	  

Mistake! 
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Classification error & accuracy 

•  Error measures fraction of mistakes 

- Best possible value is 0.0  

•  Often, measure accuracy 
- Fraction of correct predictions 

- Best possible value is 1.0 
©2015 Emily Fox & Carlos Guestrin 

error =                            . 
 

accuracy=                            . 
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What’s a good accuracy? 
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What if you ignore the sentence, and just guess? 

•  For binary classification: 
- Half the time, you’ll get it right! (on average) 
 è accuracy = 0.5 

•  For k classes, accuracy = 1/k 
- 0.333 for 3 classes, 0.25 for 4 classes,… 
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At the very, very, very least,  
you should healthily beat random…  
Otherwise, it’s (usually) pointless… 
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• One class is more common than others 
•  Beats random (if you know the majority class) 

Is a classifier with 90% accuracy good? Depends… 

2010 data shows:  
“90% emails sent are spam!” 

Predicting every email is spam 
gets you 90% accuracy!!! 

Majority class prediction  

Amazing performance when 
there is class imbalance  
(but silly approach) 
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So, always be digging in and asking the  
hard questions about reported accuracies 

•  Is there class imbalance? 
•  How does it compare to a simple,  

baseline approach? 
- Random guessing 
- Majority class 
- … 

•  Most importantly:  
what accuracy does my application need? 
- What is good enough for my user’s experience? 
- What is the impact of the mistakes we make? 
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False positives, false negatives,  
and confusion matrices 
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Types of mistakes 
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True 
Positive 

False 
Positive 
(FP) 

False 
Negative 
(FN) 

True 
Negative T

ru
e 

la
b

el
 

Predicted label 

True 
Positive 

False 
Negative 
(FN) 

False 
Positive 
(FP) 

True 
Negative 
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Cost of different types of mistakes can be 
different (& high) in some applications 
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Spam 
filtering 

Medical 
diagnosis 

False 
negative 

False 
positive 

Annoying 

Email lost 

Disease  
not treated 

Wasteful 
treatment 
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Confusion matrix –  
  binary classification 
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True 
Positive 

False 
Positive 
(FP) 

False 
Negative 
(FN) 

True 
Negative T

ru
e 

la
b

el
 

Predicted label 
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Confusion matrix –  
  multiclass classification 
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Healthy Cold Flu 

Healthy 

Cold 

Flu 

T
ru

e 
la

b
el

 

Predicted label 
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Learning curves: 
How much data do I need?  
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How much data does a model need to learn? 

•  The more the merrier J  
- But data quality is most important factor 

•  Theoretical techniques sometimes  
can bound how much data is needed  
- Typically too loose for practical application 
- But provide guidance 

•  In practice: 
- More complex models require more data 
- Empirical analysis can provide guidance 
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Learning curves 
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Amount of training data 

T
es

t 
er

ro
r 
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Is there a limit?   
Yes, for most models… 
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Amount of training data 

T
es

t 
er

ro
r 

Bias of model 
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More complex models tend to have less bias… 
Sentiment classifier using  

single words can do OK, but…  

Never classifies correctly:  
“The sushi was not good.” 

More complex model:  
consider pairs of words (bigrams) 
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Word Weight 

good +1.5 

not good -2.1 

Less bias è  
potentially more accurate,  
needs more data to learn 
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Models with less bias tend to  
need more data to learn well,  
but do better with sufficient data 
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Amount of training data 

T
es

t 
er

ro
r 

Classifier based  
on single words 
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Class probabilities 
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How confident is your prediction? 
•  Thus far, we’ve outputted a prediction 

•  But, how sure are you about the prediction? 
-  “The sushi & everything  

 else were awesome!” 
-  “The sushi was good,  

 the service was OK.”  
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Definite  

Not sure 

Many classifiers provide a confidence level: 
 

    P(y|x) 
 

 Extremely useful in practice 

Output label Input sentence 

P(y=+|x) = 0.99  

P(y=+|x) = 0.55  
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Summary of classification 
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What you can do now… 
•  Identify a classification problem and 

some common applications 
•  Describe decision boundaries and linear 

classifiers 
•  Train a classifier  
•  Measure its error 
- Some rules of thumb for good accuracy 

•  Interpret the types of error associated 
with classification 

•  Describe the tradeoffs between model 
bias and data set size 

•  Use class probability to express degree 
of confidence in prediction  
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