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What we’ve learned 
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Module 1: Nearest neighbor search 
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1-NN search 
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Space of all articles, 
organized by similarity of text 

 

query article 

nearest neighbor 
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k-NN search 
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Space of all articles, 
organized by similarity of text 

 

query article 

set of nearest neighbors 
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TF-IDF document representation 

Emphasizes important words 
 

- Appears frequently in document  (common locally) 

- Appears rarely in corpus (rare globally) 

Trade off: local frequency vs. global rarity 
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Term frequency = 

Inverse doc freq. = log
# docs

1 + # docs using word

word counts 

tf * idf 
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Scaled Euclidean distance 

 distance(xi, xq) = 

             a1(xi[1]-xq[1])2 + … + ad(xi[d]-xq[d])2 
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p

weight on each feature 

title  
abstract 
main body 
conclusion 
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Cosine similarity – normalize 
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Similarity =          xi[j] xq[j] 
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 xq    = cos(θ)  
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-  Efficient to 
compute for 
sparse vecs 

p p
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To normalize or not? 
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long document 

short tweet 

long document long document 

Normalizing can 
make dissimilar 
objects appear 
more similar 

Common 
compromise: 

Just cap maximum 
word counts 
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Complexity of brute-force search 

Given a query point, scan through each point 
- O(N) distance computations per 1-NN query! 

- O(Nlogk) per k-NN query! 
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What if N is huge??? 
(and many queries) 
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KD-trees 
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x[1] 
>.5	

Recursively partition the 
feature space 

Split dim 1 

Split value 2 

x[2] 
>.1	

Split dim 2 

Split value 2 

YES NO 

NO 

Pt x[1] x[2] 

2 1.00 4.31 

… … … 
YES 

Pt x[1] x[2] 

1 0.00 0.00 

… … … 

Pt x[1] x[2] 

3 0.13 2.85 

… … … 
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Nearest neighbor with KD-trees 
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1. Start by exploring leaf node containing query point 

2. Compute distance to each other point at leaf node 

3. Backtrack and try other branch at each node visited 

 

Update distance bound when new 
nearest neighbor is found 
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Nearest neighbor with KD-trees 
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Use distance bound and bounding box of each node to 
prune parts of tree that cannot include nearest neighbor 
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Approximate k-NN with KD-trees 
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Before: Prune when distance to bounding box > r 

Now: Prune when distance to bounding box > r/α 
 

Saves lots of search time at little cost in quality of NN! 
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Limitations of KD-trees 
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•  Difficult to implement 

•  Don’t tend to perform 
well in high dimensions 

•  Under some conditions, 
visit at least 2d nodes 
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Locality sensitive hashing 

©2016	Emily	Fox	&	Carlos	Guestrin		

#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 
Line 1 

Line 2 

Line 3 

Bin index:  
[0 0 0] 

Bin index:  
[0 1 0] 

Bin index:  
[1 1 0] 

Bin index:  
[1 1 1] 
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LSH for approximate NN search 
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Bin [0 0 0] 
= 0 

[0 0 1] 
= 1 

[0 1 0] 
= 2 

[0 1 1] 
= 3 

[1 0 0] 
= 4 

[1 0 1] 
= 5 

[1 1 0] 
= 6 

[1 1 1] 
= 7 

Data 
indices:  

{1,2} -- {4,8,11} -- -- -- {7,9,10} {3,5,6} 

#awesome 

#
aw

fu
l 

0 1 2 3 4 … 
0 
1 
2 
3 
4 
… Line 1 

Line 2 

Line 3 

Bin index:  
[0 0 0] 

Bin index:  
[0 1 0] 

Bin index:  
[1 1 0] 

Bin index:  
[1 1 1] 

Next closest 
bins (flip 1 bit) 

Query point here,  
but is NN? 
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Module 2: k-means and MapReduce 
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Module 2: k-means and MapReduce 
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Cluster 1 Cluster 2 

Cluster 3 Cluster 4 

Discover clusters of related documents 
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k-means algorithm  

0.  Initialize cluster centers 

1.  Assign observations to 
closest cluster center 

2.  Revise cluster centers 
as mean of assigned 
observations  

3.  Repeat 1.+2. until 
convergence 
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A coordinate descent algorithm 

1.  Assign observations to closest cluster center 

2.  Revise cluster centers as mean of assigned 
observations  

3.  Revise cluster centers as mean of assigned 
observations  

4.  Repeat 1.+2. until convergence 
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zi  argmin
j

||µj � xi||22

µj  argmin
µ

X

i:zi=j

||µ� xi||22

Alternating minimization 
1. (z given µ)   and   2. (µ given z)  

= coordinate descent 
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Convergence of k-means to local mode 
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MapReduce framework 
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MapReduce abstraction 
 Map:  
-  Data-parallel over elements,  

e.g., documents 
-  Generate (key,value) pairs 

•  “value” can be any data type 

 

Reduce: 
-  Aggregate values for each key 
-  Must be commutative-associative  

operation 
-  Data-parallel over keys 
-  Generate (key,value) pairs 

 

 

MapReduce has long history in functional programming 
-  Popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo! 
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Word count example: 
 
map(doc) 

 for word in doc 
   emit(word,1) 

reduce(word, counts_list) 
  c = 0   
 for i in counts_list 
   c += counts_list[i] 
  emit(word, c) 
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MapReducing 1 iteration of k-means 

Classify: Assign observations to closest cluster center 

 

 

Recenter: Revise cluster centers as mean of assigned 
observations  

1.  Revise cluster centers as mean of assigned 
observations  

2.  Repeat 1.+2. until convergence 
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zi  argmin
j

||µj � xi||22

µj =
1

nj

X

i:zi=k

xi

Map: For each data point, given ({µj},xi), emit(zi,xi) 

Reduce: Average over all points in cluster j (zi=k) 
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Module 3: Mixture models 
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Mixture models 
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Cluster 1 

Cluster 3 
27 

Cluster 4 

Cluster 2 

Probabilistic clustering model 

captures 
uncertainty 
in clustering 
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Failure modes of k-means 
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disparate cluster sizes 

overlapping clusters 

different shaped/
oriented clusters 
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Jumble of unlabeled images 
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blue 
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Model of jumble of unlabeled images 
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blue 0.3 

blue 0.8 

blue 0.42 
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Mixture of Gaussians (1D) 

Each mixture component represents  
a unique cluster specified by: 

                {πk , μk , σk } 
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x 

π2 

π1 

π3 

μ2 μ1 μ3 

σ2	

σ1	

σ3	

2 
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Mixture of Gaussians for 
clustering documents 
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Space of all documents 

(really lives in RV for vocab size V) 

Make soft assignments 
of docs to each 
Gaussian 
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Restricting to diagonal covariance 
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Each cluster has {πk , μk , Σk diagonal } 

 

Σ = 

 

 σ1
2

  

     σ2
2


        σ3
2


   

 

                 σV
2 

 

V params 

0 
0 
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Inferring cluster labels 

Data              

©2016	Emily	Fox	&	Carlos	Guestrin	

EM algorithm à 
soft assignments 
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Expectation maximization (EM): 
An iterative algorithm 

1.  E-step: estimate cluster responsibilities 
given current parameter estimates 

2.  M-step: maximize likelihood over 
parameters given current responsibilities 
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EM for mixtures of Gaussians 
in pictures - replay 
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Relationship to k-means 

Consider Gaussian mixture model with 

 

 

 

 

 

 

and let the variance parameter σ à 0 
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Σ = 

 

Spherically  
symmetric clusters 

Datapoint gets fully assigned to 
nearest center, just as in k-means 

 σ2
  

    σ2


    σ2


   
 

     σ2 
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Module 4: Latent Dirichlet allocation 
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Modeling the Complex Dynamics and Changing

Correlations of Epileptic Events

Drausin F. Wulsina, Emily B. Foxc, Brian Litta,b

a
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA

b
Department of Neurology, University of Pennsylvania, Philadelphia, PA

c
Department of Statistics, University of Washington, Seattle, WA

Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible

Preprint submitted to Artificial Intelligence Journal July 29, 2014
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Comparing and contrasting 

Previously 
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SCIENCE 
experiment 0.1 

test 0.08 

discover 0.05 

hypothesize 0.03 

climate 0.01 

… … 

TECH 
develop 0.18 

computer 0.09 

processor 0.032 

user 0.027 

internet 0.02 

… … 

SPORTS 
player 0.15 

score 0.07 

team 0.06 

goal 0.03 

injury 0.01 

… … 

Now 
Prior topic 
probabilities 

p(zi = k) = ⇡k p(zi = k) = ⇡k

Likelihood 
under 
each topic 

… 

tf-idf vector 

compute likelihood of tf-idf 
vector under each Gaussian 

{modeling, complex, epilepsy, 
 modeling, Bayesian, clinical, 
 epilepsy, EEG, data, dynamic…}  

compute likelihood of the 
collection of words in doc 

under each topic distribution 
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able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
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dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Gibbs sampling for LDA 
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Gibbs sampling for LDA 
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Collapsed Gibbs sampling for LDA 
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Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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what defines a seizure. This ignorance stems both from the complexity of
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Collapsed conditional distribution 
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3 ? 1 3 1 

epilepsy dynamic Bayesian EEG model 

Topic 1 Topic 2 Topic 3 

How much 
topic likes  
word	

How much  
doc likes  

topic 

Probability of assignment of word 
in doc i to topic k proportional to: 
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What to do with sampling output? 

Predictions: 
1.  Make prediction for each snapshot of randomly 

assigned variables/parameters (full iteration) 

2.  Average predictions for final result 

Parameter or assignment estimate: 
-  Look at snapshot of randomly assigned  

variables/parameters that maximizes  
“joint model probability” 
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Summary of what we learned 
Models 

Nearest neighbors 
Module 1 

Clustering 
Module 2, 3 

Mixture of Gaussians 
Module 3 

Latent Dirichlet 
allocation 
Module 4 

Algorithms 

KD-trees 
Module 1 

Locality sensitive 
hashing 

Module 1 

k-means 
Module 2 

MapReduce 
Module 2 

Expectation 
Maximization 

Module 3 

Gibbs sampling 
Module 4 

Core ML 

Distance metrics 
Module 1 

Approximation 
algorithms 
Module 1 

Unsupervised 
learning 

Module 2 

Probabilistic 
modeling 

Module 2, 3, 4 

Data parallel 
problems 
Module 2 

Bayesian inference 
Module 4 
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Bonus content:  
Hierarchical clustering 
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Why hierarchical clustering? 

•  Avoid choosing # clusters beforehand 

•  Dendrograms help visualize  
different clustering granularities 
- No need to rerun algorithm 

•  Most algorithms allow user to choose 
any distance metric 
-  k-means restricted us to Euclidean distance 
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Why hierarchical clustering? 
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Can often find more complex 
shapes than k-means or 
Gaussian mixture models 

k-means: spherical 
clusters 

Gaussian mixtures: 
ellipsoids 
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Why hierarchical clustering? 
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Can often find more complex 
shapes than k-means or 
Gaussian mixture models 

What about these? 
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Two main types of algorithms 

Divisive, a.k.a top-down: Start with all data in 
one big cluster and recursively split. 

-  Example: recursive k-means 
 

Agglomerative a.k.a. bottom-up: Start with 
each data point as its own cluster. Merge 
clusters until all points are in one big cluster. 

-  Example: single linkage 
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Divisive clustering 
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Divisive in pictures – level 1 
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Divisive in pictures – level 2 
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Divisive: Recursive k-means 
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Wikipedia 
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Divisive: Recursive k-means 
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Athletes Non-athletes 

Wikipedia 
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Divisive: Recursive k-means 
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Athletes Non-athletes 

Wikipedia 

Baseball Soccer/ 
Ice hockey 

Musicians, 
artists, actors 

Scholars, politicians, 
government officials 

…
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Divisive choices to be made 

•  Which algorithm to recurse 

•  How many clusters per split 

•  When to split vs. stop 
- Max cluster size: 

number of points in cluster falls below threshold 

- Max cluster radius:  

distance to furthest point falls below threshold  
-  Specified # clusters: 

split until pre-specified # clusters is reached 

©2016	Emily	Fox	&	Carlos	Guestrin	
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Agglomerative clustering 
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Agglomerative: Single linkage 
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1.  Initialize each point to be its own cluster 
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Agglomerative: Single linkage 
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1.  Initialize each point to be its own cluster 
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Agglomerative: Single linkage 
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2.  Define distance between clusters to be: 

distance(C1,C2) =     
     min  d(xi, xj) 

xi in C1,  
xj in C2 

specified pairwise 
distance function 

Linkage criteria 
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Agglomerative: Single linkage 
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3.  Merge the two closest clusters 
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Agglomerative: Single linkage 
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4.  Repeat step 3 until all points are in one cluster 
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Agglomerative: Single linkage 
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4.  Repeat step 3 until all points are in one cluster 
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Agglomerative: Single linkage 
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4.  Repeat step 3 until all points are in one cluster 
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Agglomerative: Single linkage 
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4.  Repeat step 3 until all points are in one cluster 
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Agglomerative: Single linkage 
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4.  Repeat step 3 until all points are in one cluster 
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Clusters of clusters 

72 ©2016	Emily	Fox	&	Carlos	Guestrin	

Just like our picture for divisive clustering… 
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The dendrogram for  
agglomerative clustering 
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The dendrogram 

•  x axis shows data points (carefully ordered) 

•  y-axis shows distance between pair of clusters 
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Cluster 
distance 

Data points 
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The dendrogram 

•  x axis shows data points (carefully ordered) 

•  y-axis shows distance between pair of clusters 
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Cluster 
distance 

Data points 

Height here indicates 
min distance between 
blue pts and green pts 
(2 clusters) 
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The dendrogram 

Path shows all clusters to which a point belongs 
and the order in which clusters merge 

76 ©2016	Emily	Fox	&	Carlos	Guestrin	

Cluster 
distance 

Data points 
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Extracting a partition 

Choose a distance D* at which to cut dendogram 
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Data points 

D* 
Cluster 
distance 
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Extracting a partition 

Every branch that crosses D* 
becomes a separate cluster 
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Data points 

D* 
Cluster 
distance 
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Extracting a partition 

Every branch that crosses D* 
becomes a separate cluster 
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Agglomerative clustering details 
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Agglomerative choices to be made 

•  Distance metric: d(xi, xj) 

•  Linkage function: e.g.,  

•  Where and how to cut dendrogram 

©2016	Emily	Fox	&	Carlos	Guestrin	

min  d(xi, xj) 
xi in C1,  
xj in C2 

Data points 

D* 
Cluster 
distance 
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More on cutting dendrogram 

•  For visualization, smaller # clusters is preferable 
•  For tasks like outlier detection, cut based on: 

- Distance threshold 
-  Inconsistency coefficient  

•  Compare height of merge to average merge heights below 
•  If top merge is substantially higher, then it is joining two 

subsets that are relatively far apart compared to the 
members of each subset internally 

•  Still have to choose a threshold to cut at, but now in terms 
of "inconsistency" rather than distance 

•  No cutting method is "incorrect", some are just 
more useful than others 
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Computational considerations 

•  Computing all pairs of distances is expensive 
-  Brute force algorithm is O(N2log(N)) 

 

 

•  Smart implementations use triangle inequality 
to rule out candidate pairs 

•  Best known algorithm is O(N2) 
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# datapoints 
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Statistical issues 

Chaining: Distant points clustered together if 
there is a chain of pairwise close points between 
 
 
 
 
Other linkage functions can be more robust, but 
restrict the shapes of clusters that can be found 

-  Complete linkage:  
max pairwise distance between clusters 

-  Ward criterion:  
min within-cluster variance at each merge 
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Hidden Markov models (HMMs): 
Another notion of “clustering” 
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So far, looked at clustering unordered data 

Data index (i.e., when 
observation was 
recorded) does not 
influence clustering  

©2016	Emily	Fox	&	Carlos	Guestrin	
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What if we have time series data? 
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Would be hard to 
distinguish red, 
blue, and green 
clusters if we 
ignored order of 
data 
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Example: Honey bee dances 
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Seq. 1 

Seq. 2 

Seq. 3 
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Repeated patterns of dance transitions 
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Sequence 1 Sequence 2 Sequence 3 

turn 
right 

waggle 
dance 

turn 
left 

Cluster labels over time 
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Similar ideas appear in many applications 
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Hidden Markov model (HMM) 

As in mixture model… 
 
Every observation xt is associated with 
cluster assignment variable zt 

 
 
Each cluster has 
a distribution  
over observed  
values 
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X 0.3 

X 0.8 

X 0.42 
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Hidden Markov model (HMM) 
Difference from mixture model: 
Probability of (zt = k) depends on 
previous cluster assignment zt-1 
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x 

π2 

π1 

π3 
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Inference in HMMs 

•  Learn MLE of HMM parameters using 
EM algorithm = Baum Welch 

•  Infer MLE of state sequence given fixed 
model parameters using dynamic 
programming = Viterbi algorithm 

•  Infer soft assignments of state sequence 
using dynamic programming  
= forward-backward algorithm 
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What we didn’t cover 
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Other clustering + retrieval topics 

Retrieval: 
- Other distance metrics 
- Distance metric learning 

Clustering: 
- Nonparametric clustering 
- Spectral clustering 

Related ideas: 
- Density estimation 
- Anomaly detection 
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What’s ahead in this  
specialization 
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This course is a part of the 
Machine Learning Specialization 

©2016	Emily	Fox	&	Carlos	Guestrin	

1. Foundations 

2. Regression 3. Classification 4. Clustering 
& Retrieval 

5. Recommender 
Systems 

6. Capstone 
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5. Recommender Systems &  
Dimensionality Reduction    
Case study: Recommending Products 

•  Collaborative filtering 
•  Matrix factorization 
•  PCA 

Models 

©2016	Emily	Fox	&	Carlos	Guestrin	

≈	

Xij known for black cells
Xij unknown for white cells

Rows index movies
Columns index users

X =Rating 

Parameters  
of model 

•  Coordinate descent 
•  Eigen decomposition 
•  SVD 

Algorithms 

•  Matrix completion, eigenvalues, 
cold-start problem, diversity, 
scaling up 

Concepts 
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6. Capstone: Build and deploy an intelligent  
application with deep learning 
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Capstone 
project 

Recommenders 

Text 
sentiment 
analysis 

Computer 
vision 

Deep 
learning 

Deploy 
intelligent 
web app 
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Thank you… 
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