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Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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π = [π1  π2 … πK] 
represents corpus-wide 
topic prevalence 
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SCIENCE 
experiment 0.1 

test 0.08 

discover 0.05 

hypothesize 0.03 

climate 0.01 

… … 

TECH 
develop 0.18 

computer 0.09 

processor 0.032 

user 0.027 

internet 0.02 

… … 

SPORTS 
player 0.15 

score 0.07 

team 0.06 

goal 0.03 

injury 0.01 

… … 

… 

(table now organized by decreasing probabilities 
showing top words in each category) 
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Likelihood 
under 
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tf-idf vector 

compute likelihood of tf-idf 
vector under each Gaussian 

{modeling, complex, epilepsy, 
 modeling, Bayesian, clinical, 
 epilepsy, EEG, data, dynamic…}  

compute likelihood of the 
collection of words in doc 

under each topic distribution 
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Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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assignments that can help automate clinical analysis of seizures and enable
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what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Despite over three decades of research, we still have very little idea of
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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could yield important insights into the nature and intrinsic dynamics of
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into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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graphical model for the innovations process driving the channel dynamics and
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Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Typical LDA implementations 

Normally LDA is specified as a Bayesian model 
(otherwise, “probabilistic latent semantic analysis/indexing”) 

- Account for uncertainty in parameters  
when making predictions 

- Naturally regularizes parameter estimates  
in contrast to MLE 

 

EM-like algorithms (e.g., “variational EM”), or… 
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Gibbs sampling 

Benefits: 
•  Typically intuitive updates 

•  Very straightforward to implement 

©2016	Emily	Fox	&	Carlos	Guestrin	

Iterative random hard assignment! 
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Random sample #10000 
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Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Random sample #10001 
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into distinct dynamic regimes. A challenge posed by the intracranial EEG
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switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Random sample #10002 
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can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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What do we know about this process? 
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probability of observations given variables/parameters 
and probability of variables/parameters themselves 

Not an optimization algorithm  

Eventually 
provides 
“correct” 
Bayesian 
estimates… 
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What to do with sampling output? 

Predictions: 
1.  Make prediction for each snapshot of randomly 

assigned variables/parameters (full iteration) 

2.  Average predictions for final result 

Parameter or assignment estimate: 
-  Look at snapshot of randomly assigned  

variables/parameters that maximizes  
“joint model probability” 
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Standard Gibbs sampling steps 
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Gibbs sampling algorithm outline 

Assignment variables and model parameters  
treated similarly 
 

Iteratively draw variable/parameter from 
conditional distribution having fixed: 
-  all other variables/parameters 

•  values randomly selected in previous rounds 

•  changes from iter to iter 

-  observations 
•  always the same values 
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Iterative random hard assignment! 
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Gibbs sampling for LDA 
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Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Gibbs sampling for LDA 
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these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
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switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Gibbs sampling for LDA 
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unknown dictionary of dynamic regimes. We encode a sparse and changing
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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“Collapsed” Gibbs sampling for LDA 

Based on special structure of LDA model, can 
sample just indicator variables ziw  

- No need to sample other parameters 
•  corpus-wide topic vocab distributions 

•  per-doc topic proportions 

 

Often leads to much better performance 
because examining uncertainty in smaller space 
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the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.

Keywords: Bayesian nonparametric, EEG, factorial hidden Markov model,
graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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graphical model, time series

1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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Abstract

Patients with epilepsy can manifest short, sub-clinical epileptic “bursts” in
addition to full-blown clinical seizures. We believe the relationship between
these two classes of events—something not previously studied quantitatively—
could yield important insights into the nature and intrinsic dynamics of
seizures. A goal of our work is to parse these complex epileptic events
into distinct dynamic regimes. A challenge posed by the intracranial EEG
(iEEG) data we study is the fact that the number and placement of electrodes
can vary between patients. We develop a Bayesian nonparametric Markov
switching process that allows for (i) shared dynamic regimes between a vari-
able number of channels, (ii) asynchronous regime-switching, and (iii) an
unknown dictionary of dynamic regimes. We encode a sparse and changing
set of dependencies between the channels using a Markov-switching Gaussian
graphical model for the innovations process driving the channel dynamics and
demonstrate the importance of this model in parsing and out-of-sample pre-
dictions of iEEG data. We show that our model produces intuitive state
assignments that can help automate clinical analysis of seizures and enable
the comparison of sub-clinical bursts and full clinical seizures.
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1. Introduction

Despite over three decades of research, we still have very little idea of
what defines a seizure. This ignorance stems both from the complexity of
epilepsy as a disease and a paucity of quantitative tools that are flexible
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What you can do now… 
•  Compare and contrast clustering and mixed 

membership models 

•  Describe a document clustering model for the bag-
of-words doc representation 

•  Interpret the components of the LDA mixed 
membership model 

•  Analyze a learned LDA model 
-  Topics in the corpus 

-  Topics per document 

•  Describe Gibbs sampling steps at a high level 

•  Utilize Gibbs sampling output to form predictions or 
estimate model parameters 

•  Implement collapsed Gibbs sampling for LDA 
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