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Why a probabilistic approach?



Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluster 3 Cluster 4
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Uncertainty in cluster assignments

Slightly closer to
Cluster 4 than
Cluster 2, but count
fully for Cluster 47

Cluster 4
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Uncertainty in cluster assignments

Hard assignments
don't tell full story

Cluster 4
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Other limitations of k-means

Assign observations to closest cluster center
: 2
zi <= argmin ||; — X[3
J

I\

Can use weighted Euclidean,
but requires known weights

Only center matters

Still assumes all clusters have
the same axis-aligned ellipses
Equivalent to assuming

spherically symmetric clusters
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Faillure modes of k-means

different shaped/
oriented clusters
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Motivates probabilistic model.
mixture model

* Provides soft assignments of observations
to clusters (uncertainty in assignment)

- e.g., 54% chance document is world news,
45% science, 1% sports, and 0% entertainment

* Accounts for cluster shapes not just centers

* Enables learning weightings of dimensions

- e.g., how much to weight each word in the
vocabulary when computing cluster assignment
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Mixture models



Motivating application: Clustering images

Discover groups of
similar images
- Ocean

- Pink flower ==

- Dog = Provide groupings
- Sunset s bUt NOt category

10
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Simple image representation

Consider average red, green, blue pixel intensities

[R =0.85 G =0.05 B =0.35]
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Distribution over all cloud images

Let's look at just the blue dimension

T

>
0.8 blue
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Distribution over all sunset images

Let's look at just the blue dimension

13
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Distribution over all forest images

Let's look at just the blue dimension

14

0.42 blue
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Distribution over all images

15

>
blue
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Can be distinguished along other dim

Now look at the red dimension

>

0.05 09 reg
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Background:
Gaussian distributions
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Model for a given image type

For each dimension of the [R, G, B] vector,

and each image type, assume a
Gaussian distribution over color intensity

0.8 blue
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1D Gaussians

Fully specified by mean u and variance o*
(or standard deviation 0)

Random variable the
distribution is over
e.g., blue intensity

H X
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Notating a 1D Gaussian distribution

N(x | b, 0?)
H_/

parameters

Random variable the
distribution is over
e.g., blue intensity
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2D Gaussians — Bird's eye view

3D mesh plot Contour plot
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2D Gaussians — Parameters

Fully specified by mean py and covariance 2

M= [ublue ! Ugreen]

mean centers the a:) _“[2]
distribution in 2D O ‘v
= |
p (1]
blue

22 ©2016 Emily Fox & Carlos Guestrin Machine Learning Specialization



2D Gaussians — Parameters

Fully specified by mean p and covariance 2

M= [ublue ! ngeen]

C
2 L %
> = Obiue Ublue,green &) b/%
2 (@)
\Ggreen,blue O-green Py

covariance determines R
orientation + spread blue
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Covariance structures
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Notating a multivariate Gaussian

N(x | p, Z)
H_J

parameters

Random vector
e.g., [R, G, B] intensities

25 ©2016 Emily Fox & Carlos Guestrin Machine Learning Specialization




Mixture of Gaussians
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Model as Gaussian per category/cluster

AT TS
S NAAR D

.',‘33-;%"? s

635 2l i

0.42

0.3
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Jumble of unlabeled images

HISTOGRAM

blue

How do we model
this distribution?
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Model of jumble of unlabeled images

0.42

0.3
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What if image types not equally represented?

e.qg., forest images are very
likely in the collection
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Combination of weighted Gaussians

Associate a weight 11, with each Gaussian component

m T, T3
m = [0.47 0.26 0.27]

A Ve

Relative proportion of
each class in world from
which we get data

LLE
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Combination of weighted Gaussians

Associate a weight 11, with each Gaussian component

m T, T3
m = [0.47 0.26 0.27

O<m <1

K
Zﬂk= 1
k=1
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Mixture of Gaussians (1D)

Each mixture component represents
a unique cluster specified by:

{TTJFT: Uy, O}

2
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Mixture of Gaussians (general)

Each mixture component
represents a unique cluster
specified by:

{TTy . Ky, 2}
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According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.g., prob. of seeing “clouds” image)

&')o“'w’o\“ p(zz p— k) p— T‘-k -‘->('\0f‘

N —

Given observatior‘@s from cluster k, what's thg

likelihnood of seeing Xi? (e.g., just look at distribution for “cloyds”)
p(%‘ Zq Z_kyﬂcl??k) — N(%‘Wk;
’a\ (&5

) \lk&l]hood

X
clowds

‘ = ::_’ S trees

& dtS‘E b(: ‘0\"

TV

\N%&S

— = ,ﬁ.‘
T NS
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Document clustering
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Discover groups of related documents

37
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Document representation

X

tovee ® b

B R e I e
e b and wv M seme Sal b A wan we e
e
Ak g = e — g

e A I S
b bag e or 2 . B ik A s
i o o ol g s wh s A g gy
s s amvgen she S s sl Sa - -
o vt e 8 vl et s We e femd e
D el I S
- e v S qyne d Sa b el B Ma
wnd An o g el v A g —
wdrw, v wh wnrve be we o s ol hmae
o sl sl g o Svshah & s 4t -
By s v - d ——— N - - g—
- lee e Aphma o b 4 e v e e e
prehain = e A s pab 1n v e w, A

Reh aw A puagusns of A bug oa de sollng
-

Prom o g g @ e o Ay -
L i I e N S
- congees de cald Mugh | hoe hag ene cnguss
e s v Ve e gt - v—
et V. bgmahd e - smse %o e bl ool
D et e I
e = anden B codgyed cob v enckun Bo
Mond o amebun B wwn mmndly byl s - o s

DU P A S A" —
A w s wgn b Amann Poaw svun ot e -
-y gy o D B S T Wit
e tent g = e - o g e
Sund an S S o v A s S Ay
e et b A e A 2 S T
ol T e A L e

b o aom o A B s TN B N
s of o mlr wadd e 2R | e |
e why wn A e YA s b Taghel
A 1 onem Spns A on A 1 o se g & A
B I R O R i 3
Rt e e e
L I P
D e e R
Covmane B wodd b S avws o om e L0 bt
Agawd Vowhos ® e ah 2o B mms mahe .
Av s o b A e b A —— . -
R R et el e
s v Ay Rt @ Ay A o A v (0
PSSV U VRN S a— -
PSS NPV VI p— .

F i bawn B on sl W ol | el o
Nontal rgmhe m te (ne ool Ao s o o | ol our
-t

R R e I
R e R e e

actor

©2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization



Mixture of Gaussians for
clustering documents

Space of all documents
(really lives in RY for vocab size V)
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Mixture of Gaussians for
clustering documents

Space of all documents
(really lives in RY for vocab size V)

Make soft assignments
of docs to each
Gaussian
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Counting parameters

Each cluster has {11, , Y., 2, }

~ , ™
_ 91" O
0,; 0,7
_ /
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Counting parameters

Each cluster has {11, , Y., 2, }

In V (vocab size) dims:
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Restricting to diagonal covariance

Each clyster has {11, , U, , 2, diagonal }

V params
612 O\
2
02032

L 4
*
L 4

o /
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Restrictive assumption, but...

— Can learn weights on dimensions
® (e.g., weights on words in vocab)

- Can learn cluster-specific
weights on dimensions

Still more flexible than k-means

axis-aligned ellipses

Spherically
symmetrlc clusters
: Specify weights...
@ All clusters have same
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Inferring soft assignments with
expectation maximization (EM)
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Inferring cluster labels

Data
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Part 1:
What if we knew the cluster
parameters {11, , H,, 2, }?
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Compute responsibilities

[ O # clustess qeed velmes
(o2 Lrag fan fm} :

A"‘"‘;?ssw\lowﬁm
/ Responsibility cluster k takis/for observation i
(—ﬂw2:L—‘--__/~./”—_‘s\\\
— __ K
rie = p(zi =k [ {m), 15, 55 21, Ti)

vando® . probability of \

Verné
assignment given model
to cluster k parameters and
. observed value
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Responsibilities in pictures

Green cluster
takes more
responsibility

Blue cluster
<§<}; %ﬁjF tﬁﬁ‘o' takes more

responsibility

Uncertain...
split
responsibility
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Responsibilities in pictures

Need to weight by cluster probabilities,
not just cluster shapes

Still uncertain,

but green cluster seems
more probable...

takes more responsibility
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Responsibilities in equations

Vu'\, unli f

51
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Responsibility cluster k takes for observation |

How likely is the
Initial probability of observed value x; under
being from cluster k this cluster assignment?

wder bhe green clustes
eNeNn Wu—bh vhe fﬁ‘“ on qreen s hi
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Responsibilities in equations

Responsibility cluster k takes for observation |

-
Tik = Tk N(x | i, 2 )

K

E :ﬂ-jN(xi ‘ i 23) Normalized
j=1 - over all
possible

’ cluster

52

assignments
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Recall: According to the model...

Without observing the image content, what's the
probability it's from cluster k? (e.g., prob. of seeing “clouds” image)

p(z; = k) = 7y

Given observation x; is from cluster k, what's th§
likelihood of seeing Xi? (e.g., just look at distribution for “cloyds”)

p(l’z‘ i = kvﬂkazk) — N(%‘Wlm )
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Part 1 summary

Desired soft assignments
(responsibilities) are easy
to compute when
cluster parameters

{11, , K\, 2, } are known

But, we don't know these!

54
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Responsibility calculation as
and application of Bayes' rule
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An application of Bayes' rule

Responsibility cluster k takes for observation |

e

ric =p(2 A k| {7,params _, B)
‘:ukazk)
L | :uj723>

p(B| - A /', params)
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An application of Bayes' rule

Responsibility cluster k takes for observation |

m‘k/:p( Al|{m,params ., B)

- K
> N (x| g, 55)
j=1

p(+ C [ params)  p(B| - C /,params)
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An application of Bayes' rule

r. = p(A|B,params)
4
~ pl(Alparams)p( ) punts B and C
\ ¢
pE\params B|C, arams) “\%?ngc'f’wms)
C P (B,C \ Parems) - FCB | Params)
o(Alparams)p(B|A, ) /
(‘p Blparams) 3 <
gﬁ:\m & o) "m?t::
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Part 2a:
Imagine we knew the cluster
(hard) assignments z.
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Estimating cluster parameters

” N Imagine we know the
3 cluster assignments
AR PR —
. ERCN R RN Estimation problem
VTa WX decouples across
o o. - o o8 o
et | clusters
Qo 8
—~_Is green point informative of
fuchsia cluster parameters?
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Data table decoupling over clusters

61

G Cluster
x,[1] x,[2] x,[3] 3
X,[1] X,[2] X[ 3] 3
Xz[1] Xz[2] Xz[3] 3
X, [1] X,[2] X,4[3] 1
Xs[1] Xs[2] Xs[3] 2
Xgl1] Xgl2] Xgl3] 2
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Maximum likelihood estimation

R G B Cluster
x,[1] x,[2] x,[3] 3
X,[1] X,[2] X[ 3] 3
Xz[1] Xz[2] Xz[3] 3

Estimate {11, , Y, 2, }
gliven data assigned
to cluster K

maximum likelihood estimation

(MLE)

Find parameters that maximize the
score, or likelihood, of data
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Mean/covariance MLE

Cluster

¢
J
) X4 [1] X4[2] X4[3] 3 10
A
d<] il | %2 | 3 3 A govs)
Gl | xs2 | xl3] 3 (o8 0¥
e o\ﬂb
k.,,w) .:uk _ E : Ly &«— “UMT:‘E&CA ushe‘:

e
e Wﬂ of obs. in cluster
3 =
Nk > (@ — ) (s — fue)”

i 1N k
—_—
Scalar case: ";z. . __, 2 - A
K C lﬂk

63 ©2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization



64

Cluster proportion MLE

X, [1]

X,[2]

X,[3]

Cluster

xs[1]

Xs[2]

Xs[3]

Cluster

Xgl1]

Xgl2]

Xgl3]

Cluster
x,[1] x,[2] X,[3] 3
X,[1] X,[2] X,[3] 3
Xz[1] Xz[2] Xz[3] 3

N\

i, =

# obs In cluster k

Ny,

N
/r

total # of obs
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True for general mixtures of i.i.d. data,
not just Gaussian clusters
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Part 2a summary

needed to compute soft assignments

N\
Cluster parameters are simple

to compute if we know the
cluster assignments

But, we don't know these!

65
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Part 2b:
What can we do with just
soft assignments r;;?
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Estimating cluster parameters
from soft assignments

'.. - Instead of having a full

: .:.’3' observation x; in cluster k,
: “?r' u' Just allocate a portion r;,
AR
R A NG

X. divided across all clusters,
as determined by r,
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Maximum likelihood estimation
from soft assignments

Just like In boosting with weighted observations...

R G B i1 li2 liz

X, [1] x,[2] x3 | 030 | 018 | 052
X[1] X,[2] %3 | 001 | 026 | 073 \
X[ | xsl2] x[3] | 0.002 | 0.008 | 0.99
U | %@ | x3 | 075 | 010 | 015 S2% chance

1 > 3 | 005 | 093 | 002 | (Meobsisin
Xs[1] Xs2] X513l : ' : cluster 3
Xl | x2] x3 | 013 | 086 | 001

Total weight in cluster: | 1242 | 28 | 2.42
(effective # of obs)
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Maximum likelihood estimation
from soft assignments

x,[1] x,[2] %, [3] 030 | 018 | 052
X, [1] X,[2] X,[3] 0.01 | 026 | 073
X5 (1] X5[2] s3] | 0.002 | 0.008 | 0.99
X, 1] X,[2] X, [3] 075 | 010 | 0.15
Xs[1] Xz [2] X5 [3] 0.05 | 093 | 0.02
X¢[1] X¢[2] x¢[3] 013 | 086 | 0.01

©2016 Emily Fox & Carlos Guestrin
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Maximum likelihood estimation
from soft assignments

Cluster 1
G B weights

Cluster 2
R G B weights

X,[1]

X[1]
Xl
)’;E R G B e
X1 | x[1] X4[2] X4[3] 0.52
xs[1] | X[l X,[2] X,[3] 0.73
Xg[1] X3[1] X3[2] X;z[3] 0.99
X,[1] X,[2] X,[3] 0.15
Xs[1] Xs[2] Xs[3] 0.02
Xg[1] X¢[2] Xg[3] 0.01
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Cluster-specific location/shape MLE

Cluster 1
G e .
| %R | %3 | 001 N~ =
X3[1] X521 xi[3] | 0.002 .
S ~ ~ \T
X,[1] X,4[2] X,[3] 0.75 Y = — ik (s — i) (s — fig)
xe[1] X< [2] X [3] 0.05 (N}, fDizl

Xgl1] Xg[2] Xg13] 0.13 \ =
nSoft _ Z -

Compute cluster parameter estimates

: _ ) Total weight in cluster k
with weights on each row operation = effective # obs
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MLE of cluster proportions 7

Total weight
in cluster:

Total weight
INn dataset:

72

Fig Fio Iz
030 | 0.18 0.52
0.01 0.26 0.73 Nsoft
0.002 | 0.008 | 0.99 ES— k
k —
0.75 0.10 0.15 ——— N
0.05 | 0.93 0.02
013 | 0.86 0.01 :
Estimate cluster
: ~ r rtions from
| 1242 | 28 242 | RLASRISIAIOIAE UIAS

relative weights

6«

# datapoints N
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= effective # obs
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Defaults to hard assignment case

when r; in {0,1}

73

Hard assignments have:

TikZ{

1

0 otherwise

1 1n k

R G B
X, [1] X, [2] X, [3] 0 0 1
X, (1] X,[2] X,[3] 0 0 1
Xz[1] Xz[2] Xz[3] 0 0 1
X,[1] X,[2] X,[3] 1 0 0
Xs[1] Xs[2] Xs[3] 0 1 0
Xgl1] X¢[2] X¢[3] 0 1 0
Total weight in cluster: | 1 2 3 |

©2016 Emily Fox & Carlos Guestrin
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Equating the

—

ngoft
N

=
%y
|

74

estimates...

[ %D"g "

0w, 4 v

N
Nyt = Z@> JUsE S0 useer
1=1

- Nw
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Part 2b summary

Still straightforward

to compute cluster
parameter estimates
from soft assignments

©2016 Emily Fox & Carlos Guestrin
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Expectation maximization (EM)
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Expectation maximization (EM):
An Iterative algorithm

Motivates an iterative algorithm:

1. E-step: estimate cluster responsibilities

given current parameter estimates
fo = ;;Tk]\j(flfz | :&ka?k)A
23:1 TN (@i | fij,25)
2. M-step: maximize likelihood over
parameters given current responsibilities

Toes [, S | {Fin, i}
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EM for mixtures of Gaussians
In pictures — initialization

lnikialize
6l H:c.r wuﬂw
(o) (o)
iwk / Iximl zk -{
a4l
Q)
)| Mk
Cudst® bue Q("m
“:Jps2 0.4 0.087)
ol
-2 Il ! ! !
-2 0 2 4 6 8

ing Specialization
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EM for mixtures of Gaussians
in pictures — after 15 iteration

°l Haﬁg’«u likd'nl«oo% o
qiven soft assiqn. i,
Ao A 1) ”("E

q ? T‘k( / Mk‘ b Zk

4l
Thw f&CDMPW‘E& asponsilall:ﬁc-,

A

2t le‘:’)

ol

-2 L . ) 1

-2 0 2 2 6 :
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EM for mixtures of Gaussians
in pictures — after 2" iteration

61l
rinse
J e
repest
2 -
ol
_2 Il
2 0 2 4 6 8
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EM for mixtures of Gaussians
In pictures — converged solution
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EM for mixtures of Gaussians
In pictures - replay

©2016 Emily Fox & Carlos Guestrin
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The nitty gritty of EM
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Convergence of EM

 EM Is a coordinate-ascent algorithm

- Can equate E-and M-steps with alternating
maximizations of an objective function

» Convergences to a local mode

* We will assess via (log) likelihood of data
under current parameter and
responsibility estimates

©2016 Emily Fox & Carlos Guestrin
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Initialization

* Many ways to initialize the EM algorithm

* Important for convergence rates and quality
of local mode found

* Examples:

- Choose K observations at random to define K “centroids”.
Assign other observations to nearest centriod to form initial
parameter estimates.

- Pick centers sequentially to provide good coverage of data
like in k-means++

— Initialize from k-means solution

- Grow mixture model by splitting (and sometimes removing)
clusters until K clusters are formed

85 ©2016 Emily Fox & Carlos Guestrin
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Overfitting of MLE

Maximizing likelihood can overfit to data

Imagine at K=2 example with one obs assigned to
cluster 1 and others assigned to cluster 2
- What parameter values maximize likelihood?

o\ Set cent [t
3+ o~ et center equal to
¥ + | |
+ 7 gt point and shrink
4+ ++++ variance to O

Likelihood goes to oo |

©2016 Emily Fox & Carlos Guestrin
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Overfitting in high dims

Doc-clustering example:
Imagine only 1 doc assigned to cluster k has word w
(or all docs in cluster agree on count of word w)

Likelihood maximized by setting p, [w] = x[w] and crfvlk =0

Likelihood of any doc with different count on
word w being in cluster k is O/

87 ©2016 Emily Fox & Carlos Guestrin
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Simple regularization of M-step
for mixtures of Gaussians

Simple fix: Don't let variances - 0!

Add small amount to diagonal of
covariance estimate

Alternatively, take Bayesian approach
and place prior on parameters.

Similar idea, but all parameter
estimates are "smoothed” via cluster
pseudo-observations.

©2016 Emily Fox & Carlos Guestrin
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Relationship to k-means

Consider Gaussian mixture model with  _ spherical clusters with

equal variances, so relative
likelihoods just function of
distance to cluster center

Spherically
6‘2 \ symmetric clusters

> — o2 . .
= — As variances—=>0, likelihood
. ratio becomes O or 1

\_ o2 _/ _ Responsibilities weigh in
cluster proportions, but

. dominated by likelihood
and let the variance parameter o 2> 0 disparity

. TN (w | g, 0%1)
Tik =

Datapoint gets fully assigned to S AN (s | fiy, 02T)

nearest center, just as in k-means

39 ©2016 Emily Fox & Carlos Guestrin
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Infinitesimally small variance EM
= k-means

1. E-step: estimate cluster responsibilities given
current parameter estimates

R ’ﬁ'kN(ZIZZ ‘/lk,0'2])
Tik = — ¢ — € {0,1}
Zj:17TjN(33i | i, 04T) L
Decision based on
Infinitesimally small distance to nearest
cluster center

2. M-step: maximize likelihood over parameters
given current responsibilities (hard assignments!)

7/-I-k:a ,[)Jk ’ {fzka ZUZ}
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Summary for mixture models
and the EM algorithm
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What you can do now...

Interpret a probabilistic model-based approach to
clustering using mixture models

Describe model parameters

Motivate the utility of soft assignments and describe
what they represent

Discuss issues related to how the number of parameters
grow with the number of dimensions
- Interpret diagonal covariance versions of mixtures of Gaussians

Compare and contrast mixtures of Gaussians and
k-means

Implement an EM algorithm for inferring soft
assignments and cluster parameters

- Determine an initialization strateqgy

- Implement a variant that helps avoid overfitting issues
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