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Why a probabilistic approach? 
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Learn user preferences 
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Cluster 1 

Cluster 3 
3 

Cluster 4 

Cluster 2 
Use feedback 
to learn user 
preferences 
over topics 

Set of clustered documents read by user 
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Uncertainty in cluster assignments 
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Cluster 1 

Cluster 3 
4 

Cluster 4 

Cluster 2 

Slightly closer to 
Cluster 4 than 
Cluster 2, but count 
fully for Cluster 4? 
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Uncertainty in cluster assignments 
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Cluster 1 

Cluster 3 
5 

Cluster 4 

Cluster 2 

Hard assignments 
don’t tell full story 
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Other limitations of k-means 
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Assign observations to closest cluster center 

Revise cluster centers as mean of assigned 
observatvergence 

zi  argmin
j

||µj � xi||22

Can use weighted Euclidean,  
but requires known weights 

Equivalent to assuming 
spherically symmetric clusters 

Still assumes all clusters have 
the same axis-aligned ellipses 

Only center matters 
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Failure modes of k-means 
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disparate cluster sizes 

overlapping clusters 

different shaped/
oriented clusters 
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Motivates probabilistic model: 
mixture model 

•  Provides soft assignments of observations 
to clusters (uncertainty in assignment) 
-  e.g., 54% chance document is world news,  

45% science, 1% sports, and 0% entertainment 

•  Accounts for cluster shapes not just centers 

•  Enables learning weightings of dimensions 
-  e.g., how much to weight each word in the 

vocabulary when computing cluster assignment 
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Mixture models 
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Motivating application: Clustering images 

 Discover groups of  
    similar images 

- Ocean 

- Pink flower 

- Dog 

- Sunset 

- Clouds 

- … 
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Provide groupings 
but not category 

names 
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Simple image representation 

Consider average red, green, blue pixel intensities 
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[R = 0.05, G = 0.7, B = 0.9] 

[R = 0.85, G = 0.05, B = 0.35] 

[R = 0.02, G = 0.95, B = 0.4] 
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Distribution over all cloud images 

Let’s look at just the blue dimension 
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blue 0.8 
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Distribution over all sunset images 

Let’s look at just the blue dimension 
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blue 0.3 
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Distribution over all forest images 

Let’s look at just the blue dimension 
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blue 0.42 
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Distribution over all images 
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blue 
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Can be distinguished along other dim 

Now look at the red dimension 
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red 0.9 0.05 
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Background: 
Gaussian distributions 
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Model for a given image type 

For each dimension of the [R, G, B] vector, 
and each image type, assume a  
Gaussian distribution over color intensity 
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blue 0.8 
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1D Gaussians 
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µ 

2σ 

Fully specified by mean µ and variance σ2 
(or standard deviation σ)  

x 

Random variable the 
distribution is over 
e.g., blue intensity 
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Notating a 1D Gaussian distribution 
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µ 

2σ 

N(x | µ, σ2)   

x 

Random variable the 
distribution is over 
e.g., blue intensity 

parameters 
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2D Gaussians – Bird’s eye view 
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Contour plot 3D mesh plot 
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2D Gaussians – Parameters 
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g
re

e
n

 

µ = [µblue , µgreen] 
 mean centers the 
distribution in 2D 

Fully specified by mean µ and covariance Σ 

blue 

g
re

e
n

 

µ[2] 

µ[1] 
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g
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n
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g
re

e
n

 

2D Gaussians – Parameters 
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µ = [µblue , µgreen] 
 

covariance determines 
orientation + spread 

Σ = 

 

 σblue
2

    σblue,green 

  σgreen,blue   σgreen
2 

Σ 

Fully specified by mean µ and covariance Σ 
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Covariance structures 

Σ = 

 

 σB
2

    σB,G 

  σG,B   σG
2 

Σ = 

 

 σB
2

     0  
   0   σG

2 
Σ = 

 

 σ2
     0  

  0     σ2 
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Notating a multivariate Gaussian 
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N(x | µ, Σ)   

Random vector  
e.g., [R, G, B] intensities 

parameters 

−5

0
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0

5
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0.15

0.2

spherical
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Mixture of Gaussians 
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Model as Gaussian per category/cluster 
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blue 0.3 

blue 0.8 

blue 0.42 
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Jumble of unlabeled images 
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blue 

HISTOGRAM 

How do we model 
this distribution? 
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Model of jumble of unlabeled images 
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blue 0.3 

blue 0.8 

blue 0.42 
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What if image types not equally represented? 

e.g., forest images are very 
        likely in the collection  
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blue 0.3 0.8 0.42 
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Combination of weighted Gaussians 

Associate a weight πk with each Gaussian component 
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x 

π2 

π1 

π3 

π = [0.47  0.26  0.27] 
π1 π2 π3 

Relative proportion of 
each class in world from 
which we get data 
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Combination of weighted Gaussians 

Associate a weight πk with each Gaussian component 
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x 

π2 

π1 

π3 

π = [0.47  0.26  0.27] 
π1 π2 π3 

0 ≤ πk ≤ 1 
 

πk = 1 
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Mixture of Gaussians (1D) 

Each mixture component represents  
a unique cluster specified by: 

          {πk , μk , σk } 
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x 

π2 

π1 

π3 

μ2 μ1 μ3 

σ2	

σ1	

σ3	

2 



Machine	Learning	Specializa0on	34	

Mixture of Gaussians (general) 

Each mixture component 
represents a unique cluster 
specified by:  

            {πk , μk , Σk } 

©2016	Emily	Fox	&	Carlos	Guestrin	

π1 
π2 

π3 

μ3,Σ3	

μ1,Σ1	

μ2,Σ2	
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According to the model…  
Without observing the image content, what’s the 
probability it’s from cluster k? (e.g., prob. of seeing “clouds” image) 

 
 

Given observation xi is from cluster k, what’s the 
likelihood of seeing xi? (e.g., just look at distribution for “clouds”) 

©2016	Emily	Fox	&	Carlos	Guestrin	

p(zi = k) = ⇡k

p(xi | zi = k, µk,⌃k) = N(xi|µk,⌃k)

x 

π2 

π1 

π3 
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Document clustering 

36 ©2016	Emily	Fox	&	Carlos	Guestrin	



Machine	Learning	Specializa0on	

Discover groups of related documents 
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Document representation 
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tf-idf vector xi =  
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Mixture of Gaussians for 
clustering documents 
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Space of all documents 

(really lives in RV for vocab size V) 
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Mixture of Gaussians for 
clustering documents 
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Space of all documents 

(really lives in RV for vocab size V) 

Make soft assignments 
of docs to each 
Gaussian 
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Counting parameters 
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Each cluster has {πk , μk , Σk } 

 

Σ = 

 

 σ1
2

   σ1,2 

  σ2,1  σ2
2 

In 2D: 
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Counting parameters 
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Each cluster has {πk , μk , Σk } 

 

Σ = 

 

 .  .  .  .  .  .  .  .  .  .  .  . 
 .  .  .  .  .  .  .  .  .  .  .  .  
 .  .  .  .  .  .  .  .  .  .  .  .  
 .  .  .  .  .  .  .  .  .  .  .  .  
 .  .  .  .  .  .  .  .  .  .  .  .  
 .  .  .  .  .  .  .  .  .  .  .  .  
 

In V (vocab size) dims: 

V(V+1) 
2 
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Restricting to diagonal covariance 
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Each cluster has {πk , μk , Σk diagonal } 

 

Σ = 

 

 σ1
2

  

    σ2
2

     σ3
2

   

                  

 σV
2 

 

V params 

0 
0 
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Restrictive assumption, but… 

44 ©2016	Emily	Fox	&	Carlos	Guestrin	

-  Can learn weights on dimensions 
(e.g., weights on words in vocab) 

-  Can learn cluster-specific 
weights on dimensions 

Still more flexible than k-means  

Spherically  
symmetric clusters 

All clusters have same  
axis-aligned ellipses 

Specify weights… 



Machine	Learning	Specializa0on	

Inferring soft assignments with 
expectation maximization (EM) 
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Inferring cluster labels 
Data              

©2016	Emily	Fox	&	Carlos	Guestrin	

Desired soft assignments 
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Part 1: 
What if we knew the cluster  
parameters {πk , μk , Σk }? 

©2016	Emily	Fox	&	Carlos	Guestrin	47 
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Compute responsibilities 
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rik = p(zi = k | {⇡j , µj ,⌃j}Kj=1, xi)

Responsibility cluster k takes for observation i 

probability of 
assignment  
to cluster k 

given model 
parameters and 
observed value  
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Responsibilities in pictures 
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Green cluster 
takes more 
responsibility 

Uncertain… 
split 
responsibility 

Blue cluster 
takes more 
responsibility 
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Responsibilities in pictures 

Need to weight by cluster probabilities, 
not just cluster shapes 

©2016	Emily	Fox	&	Carlos	Guestrin	

Still uncertain,  
but green cluster seems  
more probable… 
takes more responsibility 
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Responsibilities in equations 
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rik = p(zi = k | {⇡j , µj ,⌃j}Kj=1, xi)

Responsibility cluster k takes for observation i 

⇡k N(xi | µk,⌃k)

Initial probability of 
being from cluster k 

How likely is the 
observed value xi under 
this cluster assignment? 
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rik = p(zi = k | {⇡j , µj ,⌃j}Kj=1, xi)

Responsibility cluster k takes for observation i 

⇡k N(xi | µk,⌃k)
KX

j=1

⇡jN(xi | µj ,⌃j) Normalized 
over all 
possible 
cluster 
assignments 

Responsibilities in equations 
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Recall: According to the model…  
Without observing the image content, what’s the 
probability it’s from cluster k? (e.g., prob. of seeing “clouds” image) 

 
 

Given observation xi is from cluster k, what’s the 
likelihood of seeing xi? (e.g., just look at distribution for “clouds”) 

©2016	Emily	Fox	&	Carlos	Guestrin	

p(zi = k) = ⇡k

p(xi | zi = k, µk,⌃k) = N(xi|µk,⌃k)

x 

π2 

π1 

π3 
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Part 1 summary 

Desired soft assignments 
(responsibilities) are easy 
to compute when  
cluster parameters 
{πk , μk , Σk } are known 

 

But, we don’t know these! 
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Responsibility calculation as 
and application of Bayes’ rule 
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OPTIONAL 
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An application of Bayes’ rule 
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rik = p(zi = k | {⇡j , µj ,⌃j}Kj=1, xi)

Responsibility cluster k takes for observation i 

⇡k N(xi | µk,⌃k)
KX

j=1

⇡jN(xi | µj ,⌃j)

rik = p(zi = k | {⇡j , µj ,⌃j}Kj=1, xi)

params A B 

B A 
A 
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An application of Bayes’ rule 
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rik = p(zi = k | {⇡j , µj ,⌃j}Kj=1, xi)

Responsibility cluster k takes for observation i 

⇡k N(xi | µk,⌃k)
KX

j=1

⇡jN(xi | µj ,⌃j)

rik = p(zi = k | {⇡j , µj ,⌃j}Kj=1, xi)

params A B 

C B C 
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An application of Bayes’ rule 
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rik  = p(A|B,params) 

           p(A|params)p(B|A,params) 

     p(C|params)p(B|C,params) 
 

         p(A|params)p(B|A,params) 

      p(B|params) 

 

 

X

C

= 

= 



Machine	Learning	Specializa0on	

 
Part 2a: 
Imagine we knew the cluster  
(hard) assignments zi 

©2016	Emily	Fox	&	Carlos	Guestrin	59 
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Estimating cluster parameters 

Imagine we know the 
cluster assignments  

©2016	Emily	Fox	&	Carlos	Guestrin	

Is green point informative of 
fuchsia cluster parameters? 

NO! 

Estimation problem 
decouples across 

clusters 
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R G B Cluster 

x4[1] x4[2] x4[3] 1 R G B Cluster 

x5[1] x5[2] x5[3] 2 

x6[1] x6[2] x6[3] 2 

Data table decoupling over clusters 

©2016	Emily	Fox	&	Carlos	Guestrin	

R G B Cluster 

x1[1] x1[2] x1[3] 3 

x2[1] x2[2] x2[3] 3 

x3[1] x3[2] x3[3] 3 

x4[1] x4[2] x4[3] 1 

x5[1] x5[2] x5[3] 2 

x6[1] x6[2] x6[3] 2 

R G B Cluster 

x1[1] x1[2] x1[3] 3 

x2[1] x2[2] x2[3] 3 

x3[1] x3[2] x3[3] 3 
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Maximum likelihood estimation 

Estimate {πk , μk , Σk }  

given data assigned 

to cluster k 

©2016	Emily	Fox	&	Carlos	Guestrin	

maximum likelihood estimation 
(MLE) 

R G B Cluster 

x1[1] x1[2] x1[3] 3 

x2[1] x2[2] x2[3] 3 

x3[1] x3[2] x3[3] 3 

Find parameters that maximize the 
score, or likelihood, of data 
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Mean/covariance MLE 
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µ̂k =
1

Nk

X

i in k

xi

⌃̂k =
1

Nk

X

i in k

(xi � µ̂k)(xi � µ̂k)
T

Scalar case: 

R G B Cluster 

x1[1] x1[2] x1[3] 3 

x2[1] x2[2] x2[3] 3 

x3[1] x3[2] x3[3] 3 
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Cluster proportion MLE 

True for general mixtures of i.i.d. data, 
not just Gaussian clusters 
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⇡̂k =
Nk

N

R G B Cluster 

x4[1] x4[2] x4[3] 1 

R G B Cluster 

x5[1] x5[2] x5[3] 2 

x6[1] x6[2] x6[3] 2 

R G B Cluster 

x1[1] x1[2] x1[3] 3 

x2[1] x2[2] x2[3] 3 

x3[1] x3[2] x3[3] 3 

# obs in cluster k 

total # of obs 
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Part 2a summary 

Cluster parameters are simple 
to compute if we know the 
cluster assignments 

 

But, we don’t know these! 
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needed to compute soft assignments 
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Part 2b: 
What can we do with just 
soft assignments rij? 

©2016	Emily	Fox	&	Carlos	Guestrin	66 
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Estimating cluster parameters 
from soft assignments 

Instead of having a full 
observation xi in cluster k, 
just allocate a portion rik 

©2016	Emily	Fox	&	Carlos	Guestrin	

xi divided across all clusters, 
as determined by rik 
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Maximum likelihood estimation 
from soft assignments 

Just like in boosting with weighted observations… 
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R G B ri1 ri2 ri3 

x1[1] x1[2] x1[3] 0.30 0.18 0.52 

x2[1] x2[2] x2[3] 0.01 0.26 0.73 

x3[1] x3[2] x3[3] 0.002 0.008 0.99 

x4[1] x4[2] x4[3] 0.75 0.10 0.15 

x5[1] x5[2] x5[3] 0.05 0.93 0.02 

x6[1] x6[2] x6[3] 0.13 0.86 0.01 

Total weight in cluster: 
   (effective # of obs) 

1.242 2.8 2.42 

52% chance 
this obs is in 
cluster 3 
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R G B 

x1[1] x1[2] x1[3] 

x2[1] x2[2] x2[3] 

x3[1] x3[2] x3[3] 

x4[1] x4[2] x4[3] 

x5[1] x5[2] x5[3] 

x6[1] x6[2] x6[3] 

R G B 
Cluster 

data 
weights 

x1[1] x1[2] x1[3] 

x2[1] x2[2] x2[3] 

x3[1] x3[2] x3[3] 

x4[1] x4[2] x4[3] 

x5[1] x5[2] x5[3] 

x6[1] x6[2] x6[3] 

Maximum likelihood estimation 
from soft assignments 
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R G B 
Cluster 1 
weights 

x1[1] x1[2] x1[3] 0.30 

x2[1] x2[2] x2[3] 0.01 

x3[1] x3[2] x3[3] 0.002 

x4[1] x4[2] x4[3] 0.75 

x5[1] x5[2] x5[3] 0.05 

x6[1] x6[2] x6[3] 0.13 

ri1 ri2 ri3 

0.30 0.18 0.52 

0.01 0.26 0.73 

0.002 0.008 0.99 

0.75 0.10 0.15 

0.05 0.93 0.02 

0.13 0.86 0.01 
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Maximum likelihood estimation 
from soft assignments 
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R G B Cluster 1 
weights 

x1[1] x1[2] x1[3] 0.30 

x2[1] x2[2] x2[3] 0.01 

x3[1] x3[2] x3[3] 0.002 

x4[1] x4[2] x4[3] 0.75 

x5[1] x5[2] x5[3] 0.05 

x6[1] x6[2] x6[3] 0.13 

R G B Cluster 2 
weights 

x1[1] x1[2] x1[3] 0.18 

x2[1] x2[2] x2[3] 0.26 

x3[1] x3[2] x3[3] 0.008 

x4[1] x4[2] x4[3] 0.10 

x5[1] x5[2] x5[3] 0.93 

x6[1] x6[2] x6[3] 0.86 

R G B Cluster 3 
weights 

x1[1] x1[2] x1[3] 0.52 

x2[1] x2[2] x2[3] 0.73 

x3[1] x3[2] x3[3] 0.99 

x4[1] x4[2] x4[3] 0.15 

x5[1] x5[2] x5[3] 0.02 

x6[1] x6[2] x6[3] 0.01 
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Cluster-specific location/shape MLE 
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Compute cluster parameter estimates 
with weights on each row operation 

R G B Cluster 1 
weights  

x1[1] x1[2] x1[3] 0.30 

x2[1] x2[2] x2[3] 0.01 

x3[1] x3[2] x3[3] 0.002 

x4[1] x4[2] x4[3] 0.75 

x5[1] x5[2] x5[3] 0.05 

x6[1] x6[2] x6[3] 0.13 

µ̂k =

1

N

soft

k

NX

i=1

rikxi

ˆ

⌃k =

1

N

soft

k

NX

i=1

rik(xi � µ̂k)(xi � µ̂k)
T

Nsoft

k =

NX

i=1

rik

Total weight in cluster k 
= effective # obs 
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MLE of cluster proportions 
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Estimate cluster 
proportions from 
relative weights 

ri1 ri2 ri3 

0.30 0.18 0.52 

0.01 0.26 0.73 

0.002 0.008 0.99 

0.75 0.10 0.15 

0.05 0.93 0.02 

0.13 0.86 0.01 

Total weight 
in cluster: 1.242 2.8 2.42 

Total weight 
in dataset: 6 

⇡̂k

# datapoints N 

⇡̂k =

Nsoft

k

N
Nsoft

k =

NX

i=1

rik

Total weight in cluster k 
= effective # obs 
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Defaults to hard assignment case  
when rij in {0,1} 
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rik =

⇢
1 i in k
0 otherwise

Hard assignments have: 

R G B ri1 ri2 ri3 

x1[1] x1[2] x1[3] 0 0 1 

x2[1] x2[2] x2[3] 0 0 1 

x3[1] x3[2] x3[3] 0 0 1 

x4[1] x4[2] x4[3] 1 0 0 

x5[1] x5[2] x5[3] 0 1 0 

x6[1] x6[2] x6[3] 0 1 0 

Total weight in cluster: 1 2 3 

One-hot encoding of 
cluster assignment 
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Equating the estimates… 
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⇡̂k =

N

soft

k

N

µ̂k =

1

N

soft

k

NX

i=1

rikxi

ˆ

⌃k =

1

N

soft

k

NX

i=1

rik(xi � µ̂k)(xi � µ̂k)
T

Nsoft

k =

NX

i=1

rik
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Part 2b summary 

Still straightforward  
to compute cluster 
parameter estimates 
from soft assignments 
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Expectation maximization (EM) 
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Expectation maximization (EM): 
An iterative algorithm 
Motivates an iterative algorithm: 

1.  E-step: estimate cluster responsibilities 
given current parameter estimates 

2.  M-step: maximize likelihood over 
parameters given current responsibilities 
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EM for mixtures of Gaussians 
in pictures – initialization  
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EM for mixtures of Gaussians 
in pictures – after 1st iteration 
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EM for mixtures of Gaussians 
in pictures – after 2nd iteration 
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EM for mixtures of Gaussians 
in pictures – converged solution 
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EM for mixtures of Gaussians 
in pictures - replay 
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The nitty gritty of EM 
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Convergence of EM 

•  EM is a coordinate-ascent algorithm 
- Can equate E-and M-steps with alternating 

maximizations of an objective function 

•  Convergences to a local mode 

•  We will assess via (log) likelihood of data 
under current parameter and  
responsibility estimates 
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Initialization 

•  Many ways to initialize the EM algorithm 

•  Important for convergence rates and quality 
of local mode found 

•  Examples: 
-  Choose K observations at random to define K “centroids”. 

Assign other observations to nearest centriod to form initial 
parameter estimates. 

-  Pick centers sequentially to provide good coverage of data 
like in k-means++ 

-  Initialize from k-means solution 

-  Grow mixture model by splitting (and sometimes removing) 
clusters until K clusters are formed 
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Overfitting of MLE 

Maximizing likelihood can overfit to data 

 

Imagine at K=2 example with one obs assigned to 
cluster 1 and others assigned to cluster 2 

- What parameter values maximize likelihood? 
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Set center equal to 
point and shrink 

variance to 0 

Likelihood goes to ∞	! 
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Overfitting in high dims 

Doc-clustering example:  
Imagine only 1 doc assigned to cluster k has word w 
(or all docs in cluster agree on count of word w) 

 

 

 

Likelihood of any doc with different count on  
word w being in cluster k is 0! 
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Likelihood maximized by setting µk[w] = xi[w] and σw,k = 0 2 
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Simple regularization of M-step 
for mixtures of Gaussians 

Simple fix: Don’t let variances à 0!  
 

Add small amount to diagonal of  
covariance estimate 
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Alternatively, take Bayesian approach 
and place prior on parameters.   

 
Similar idea, but all parameter 

estimates are “smoothed” via cluster 
pseudo-observations. 
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Relationship to k-means 

Consider Gaussian mixture model with 

 

 

 

 

 

 

and let the variance parameter σ à 0 
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Σ = 

 

Spherically  
symmetric clusters 

Datapoint gets fully assigned to 
nearest center, just as in k-means 

 σ2
  

    σ2

   σ2

   
 

   σ2 
 

-  Spherical clusters with 
equal variances, so relative 
likelihoods just function of 
distance to cluster center  

-  As variancesà0, likelihood 
ratio becomes 0 or 1 

-  Responsibilities weigh in 
cluster proportions, but 
dominated by likelihood 
disparity 
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Infinitesimally small variance EM 
= k-means 

1.  E-step: estimate cluster responsibilities given 
current parameter estimates 

2.  M-step: maximize likelihood over parameters 
given current responsibilities (hard assignments!) 
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Decision based on 
distance to nearest 
cluster center 

Infinitesimally small 
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Summary for mixture models 
and the EM algorithm 
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What you can do now… 
•  Interpret a probabilistic model-based approach to 

clustering using mixture models 
•  Describe model parameters 
•  Motivate the utility of soft assignments and describe 

what they represent 
•  Discuss issues related to how the number of parameters 

grow with the number of dimensions 
-  Interpret diagonal covariance versions of mixtures of Gaussians 

•  Compare and contrast mixtures of Gaussians and  
k-means 

•  Implement an EM algorithm for inferring soft 
assignments and cluster parameters 
-  Determine an initialization strategy 
-  Implement a variant that helps avoid overfitting issues 
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