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Motivating clustering approaches



Goal: Structure documents by topic

Discover groups (clusters) of related articles

WORLD NEWS
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Why might clustering be useful?
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| don't just
like sports!
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Learn user preferences

Set of clustered documents read by user

Use feedback
to learn user
preferences
over topics

Cluster 3 Cluster 4
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Clustering: An unsupervised learning task
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What if some of the labels are known?

Training set of labeled docs

ENTERTAINMENT  SCIENCE
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Multiclass classification problem

ECHNOLOGY

Example of
supervised learning
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Clustering

No labels providead

..uncover cluster structure
from input alone

Input: docs as vectors x
Output: cluster labels z

learning task

word 7 cbunts
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What defines a cluster?

Cluster defined by
center & shape/spread

Assign observation x. (doc)
to cluster k (topic label) if

— Score under cluster k is Seent
higher than under others

- For simplicity, often define
score as distance to cluster
center (ignoring shape)
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Other (challenging!) clusters to discover...
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ther (challenging!) clusters to discover...
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k-means: A clustering algorithm
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k-means

Assume

—Score= distance to
cluster center
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k-means algorithm

0. Initialize cluster centers
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k-means algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

. 2 \Vorono
‘ ‘/’L] — Xy ‘ ‘2 kesselation
T§
J“‘;Z\nf"ef v (bor ‘ visuali uge,,
ot only ...
label for obs i, whereas Ny )
\/ou don 7+

ised learning has given labely, heed to

Com Pute %75)

6
e
N

©2016 Emily Fox & Carlos Guestrin Machine Learning Specialization



18

k-means algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers
as mean of assigned
observations

X’L .
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k-means algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers
as mean of assigned
observations

3. Repeat 1.4+2. until
convergence
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k-means as coordinate descent
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A coordinate descent algorithm

1. Assign observations to closest cluster center
. 2
z; < argmin ||pu; — X |5
J

2. Revise cluster centers as mean of assigned
observations

equivalent to
Z X
1:24 :J

py 4 argmin > [ = xill3

1:2;=)
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A coordinate descent algorithm

1. Assign observations to closest cluster center
. 2
z; < argmin ||pu; — X |5
J

2. Revise cluster centers as mean of assigned
observations

py + argmin Y i — x[3
a ZZZ:]
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A coordinate descent algorithm

1. Assign observations to closest cluster center
. 2
z; < argmin ||pu; — X |5
J

2. Revise cluster centers as mean of assigned
observations

g argmin > lu - x[3
K ZZz:]

Alternating minimization

1. (z given y) and 2. (u given z)
= coordinate descent
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Convergence of k-means

Converges to:
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Convergence of k-means to local mode
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Convergence of k-means to local mode
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Convergence of k-means to local mode
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Smart initialization with k-means++
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k-means++ overview

Initialization of k-means algorithm is
critical to quality of local optima found

Smart initialization:

1. Choose first cluster center uniformly at
random from data points

2. For each obs x, compute distance d(x) to
nearest cluster center

3. Choose new cluster center from amongst
data points, with probability of x being
chosen proportional to d(x)?

4. Repeat Steps 2 and 3 until k centers have
been chosen
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k-means++ visualized
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k-means++ visualized
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k-means++ visualized
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k-means++ visualized
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k-means++ pros/cons

Computationally costly relative to
random initialization, but the subsequent

k-means often converges more rapidly

Tends to improve quality of local
optimum and lower runtime
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Assessing quality of the clustering
and choosing the # of clusters
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Which clustering do | prefer?
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kK-means objective

15
°® o 10 | ® o -
L] s «»| k-meansis trying to
o ° o :3.‘ * o/ minimize the sum of
® ¢ Fe P ® g Fe " .
a2 ] c s %8 ° | squared distances:
o 0.‘!" o o o 0.':" e o /6\&”}\\5 sum OFf squard
*° *° k ”Z\w"“/ istances ',
e9 0 e o . ~ N e o . cluster
* o008 |° o 2age S ‘ S ‘ . 112
o o €8 . o o Q8 / / ||ILL]_X7/H2
%10 5 6 4 =2 0 2 4 6 8 Yo 8 % 4 =2 o0 2 4 & J=1lv.z,=y

©2016 Emily Fox & Carlos Guestrin Machine Learning Specialization



Cluster heterogeneity
At o)
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What happens as k increases?

Can refine clusters more and more to the data

-> overfitting!
AoNS
B of doserr*°
Ve

Extreme case of k=N:
- can set each cluster center equal to datapoint
- heterogeneity = () I (+ Oelji‘;'}ﬁ:}w s O)

Lowest possible cluster heterogeneity

decreases with increasing k
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How to choose k?

Lowest possible
cluster heterogeneity

40
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MapReduce
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Counting words on a single processor

(The "Hello World!” of MapReduce)

Suppose you have 10B documents and 1 machine and
— —
want to count the # of occurrences of each word in the corpus

Code:
count V & int hash toble

for 4 n documents

Fb( WA ‘m c;
Count (word | « = |
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Naive parallel word counting

 Word counts are | dent ments kgata Darallevl_)l
* Count occurrences in sets of documents separately, then merge

Machine 1 Machine 2 Machine 1000
- - S
NS 10M 10M T 10M
¥ pien docs docs docs

Count[] Count,[] Countyggol |

o:‘;’f:@é”” Count|word]= Z Count;[word]

> i=1

. | ,
How do we do this for all words in vocab: Y. U’A" tnrough )
Back to sequential problem to merge counts... o8 words w V@
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Counting words in parallel &
merging tables in parallel

1. Generate pairs (word,count) in parallel
2. Merge counts for each word in parallel

Machme 1 Machme 2 Machlne 1000
Phase 1: (“_ﬁ" ('uw 5‘)
ver d docs — lurn ~ 7)

countlng Count[] Count,! ] Countlooo[

Phase 2: ,
pa rallel 2k ok (""'}'
over words) Fueiek words

sum

All counts for a
subset of
words go to
same machine

How to map words to machines? Use a hash function!

h(word index) 2 machine index
44 ©2016 Emily Fox & Carlos Guestrin
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MapReduce abstraction

Map:

- Data-parallel ove
e.g., documents

- Generate (key,value) pairs

* “value” can be any data type
(‘uw’y 1)

Word count example:

map(doc)
for word in doc
emit(word,1)
T 1

kly velue

(' machiae’, \)
tt uw i‘ | )
(' learniag’, 1)

' i

key tist of valueg

e

Reduce:
- Aggregate values for each key

— Must be commutative-associative

operation oy bre

- Data-parallel de

- Generate (key,value) pairs
reduce ('UW’, 11,17,0,0,12,23)

)
Gabyre = ox(b¥ed

reduce(word, counts_list)
c=0
foriin counts_list
c += counts_list[i]
emit(word, c)

R
kay volue

emit (luwll 3-23 /’

MapReduce has long history in functional programming

- Popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
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MapReduce — Execution overview
Map Phase Shuffle Phase Reduce Phase

('uw,\) (uw’, ‘50

(k, vl) (k, vl)

(kzrvz) ‘ (k21V2) \

-_>(k1r,v1r) o (ks Vs) diok

= s A e 5_3_ (ko ‘
S SHEE i ¥
@) % _\ .§ g go é ’ .g Save ko
= _g s 7 g‘ Aisk
AN \ }z;‘ S{ < 6' =

£
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Improving performance:
Combiners

* Nailve implementation of MapReduce is very
wasteful in communication during shuffle:

("uw1) s 7
o (tww 1) [ Uoo2 :
‘ » ‘ c!s a ﬂ
[.'_1_‘-\ - ‘o8 (W) !

(Iu‘w"|> on ™\

« Combiner: Simple solution...Perform reduce
locally before communicating for global reduce
- Works because reduce iIs commutative-associative

_ (‘uW'1l> S
(*uw’, 4oo)
TUAY 7
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Scaling up k-means
via MapReduce
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MapReducing 1 iteration of k-means

Classify: Assign observations to closest cluster center

4 argmin||u; — i1

Map: For each data point, given ({p}.x), emit(z;x;)

Recenter: Revise cluster centers as mean of assigned
observations

Reduce: Average over all points in cluster j (z;=k)
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Classification step as Map

Classify: Assign observations to closest cluster center
=i ¢ argmin| 1 — i[5

sex of cluscer centers
/ ‘/a “&fd‘dt
map([g, Ho..... Hil, X))

Zi argrr}jin |15 — i[5

' a8 ot T)
emlt(Zl,Xl) ) ("55‘,‘9’\&“’“{ | |
,‘ ~o ME‘?OV\? 2. - Jok ‘Po‘nk ¥
cluster \abel 4
it (2,017,00,7,6,0,51)

C-q-
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Recenter step as Reduce

Recenter: Revise cluster centers as mean of assigned

observations

L Yx

112, =
e drtagoi s o

o cluset”
/ *SPweyd m (;m m;,) 3)
reducel(j, x_in_clusterj : [x, Xs,..., |)
sum = 0 & botal mass in cluster

count = Q « toksl ¥ of obs. in cluster

for x in x_in_clusterj

sum += X

count +=1

emit(j, sum/count) |
x g————l
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Some practical considerations

k-means needs an iterative version of MapReduce
- Not standard formulation

Mapper needs to get data point and all centers

- A lot of data!

- Better implementation:
mapper gets many data points
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Summary of parallel k-means
using MapReduce

Map: classification step;
data parallel over data points

Reduce: recompute means;
data parallel over centers
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Other examples



Clustering images

For search, group as:
- Ocean

- Dog

- Sunset
- Clouds
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Structuring web search results

» Search terms can have multiple meanings
 Example: “cardinal”

» Use clustering to structure output
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Grouping patients by medical condition

» Better characterize subpopulations
and diseases
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Example: Patients and seizures are diverse

2
7}
c
c
©
<
o
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Cluster seizures by observed time courses
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Products on Amazon

Discover product categories
from purchase histories

» Or discovering groups of users
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Discovering similar neighborhoods

* Task 1: Estimate price at a
small regional level
Challenge:

- Only a few (or nol) sales
INn each region per month

Solution:

— Cluster regions with similar
trends and share information

within a cluster City of Seattle

61
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Discovering similar neighborhoods

 Task 2: Forecast violent crimes
to better task police

* Again, cluster regions and
share information!

* Leads to improved predictions
compared to examining each
region independently

Washington, DC
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Summary for k-means
and MapReduce



64

What you can do now...

Describe potential applications of clustering

Describe the input (unlabeled observations) and output
(labels) of a clustering algorithm

Determine whether a task is supervised or unsupervised
Cluster documents using k-means

Interpret k-means as a coordinate descent algorithm
Define data parallel problems

Explain Map and Reduce steps of MapReduce framework

Use existing MapReduce implementations to parallelize k-
means, understanding what's being done under the hood
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