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Motivating clustering approaches 
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Goal: Structure documents by topic 

Discover groups (clusters) of related articles  
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SPORTS WORLD NEWS 
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Why might clustering be useful? 
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I don’t just 
like sports! 
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Learn user preferences 
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Cluster 1 

Cluster 3 
5 

Cluster 4 

Cluster 2 
Use feedback 
to learn user 
preferences 
over topics 

Set of clustered documents read by user 
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Clustering: An unsupervised learning task 
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What if some of the labels are known? 

Training set of labeled docs 
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SPORTS WORLD NEWS 

ENTERTAINMENT SCIENCE 
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Multiclass classification problem 
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? 

Example of 
supervised learning 

SPORTS 

WORLD  
NEWS 

ENTERTAINMENT 

SCIENCE TECHNOLOGY 
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Clustering 

No labels provided 
…uncover cluster structure 
from input alone 

Input: docs as vectors xi 
Output: cluster labels zi 
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An unsupervised 
learning task 
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What defines a cluster? 

Cluster defined by  
center & shape/spread 

Assign observation xi (doc) 
to cluster k (topic label) if 
- Score under cluster k is 

higher than under others 
- For simplicity, often define 

score as distance to cluster 
center (ignoring shape) 
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Hope for unsupervised learning 

Easy 
 
 
Impossible 
 
 
In between 
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Other (challenging!) clusters to discover… 
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Other (challenging!) clusters to discover… 
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k-means: A clustering algorithm 
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k-means  

Assume  
- Score= distance to 

cluster center 
(smaller better) 
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DATA  
to  

CLUSTER 
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k-means algorithm  

0.  Initialize cluster centers 

1.  Assign observations to 
closest cluster center 

2.  Revise cluster centers 
as mean of assigned 
observations  

3.  Repeat 1.+2. until 
convergence 
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µ1, µ2, . . . , µk
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k-means algorithm  

0.  Initialize cluster centers 

1.  Assign observations to 
closest cluster center 

2.  Revise cluster centers 
as mean of assigned 
observations  

3.  Repeat 1.+2. until 
convergence 
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zi  argmin
j

||µj � xi||22

Inferred label for obs i, whereas 
supervised learning has given label yi 
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k-means algorithm  

0.  Initialize cluster centers 

1.  Assign observations to 
closest cluster center 

2.  Revise cluster centers 
as mean of assigned 
observations  

3.  Repeat 1.+2. until 
convergence 
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µj =
1

nj

X

i:zi=j

xi
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k-means algorithm  

0.  Initialize cluster centers 

1.  Assign observations to 
closest cluster center 

2.  Revise cluster centers 
as mean of assigned 
observations  

3.  Repeat 1.+2. until 
convergence 
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k-means as coordinate descent 
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A coordinate descent algorithm  

1.  Assign observations to closest cluster center 

2.  Revise cluster centers as mean of assigned 
observations  

3.  Revise cluster centers as mean of assigned 
observations  

4.  Repeat 1.+2. until convergence 
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zi  argmin
j

||µj � xi||22

µj  argmin
µ

X

i:zi=j

||µ� xi||22

equivalent to 
µj =

1

nj

X

i:zi=j

xi
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A coordinate descent algorithm 

1.  Assign observations to closest cluster center 

2.  Revise cluster centers as mean of assigned 
observations  

3.  Revise cluster centers as mean of assigned 
observations  

4.  Repeat 1.+2. until convergence 
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zi  argmin
j

||µj � xi||22

µj  argmin
µ

X

i:zi=j

||µ� xi||22
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A coordinate descent algorithm 

1.  Assign observations to closest cluster center 

2.  Revise cluster centers as mean of assigned 
observations  

3.  Revise cluster centers as mean of assigned 
observations  

4.  Repeat 1.+2. until convergence 
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zi  argmin
j

||µj � xi||22

µj  argmin
µ

X

i:zi=j

||µ� xi||22

Alternating minimization 
1. (z given µ)   and   2. (µ given z)  

= coordinate descent 
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Convergence of k-means 

Converges to: 

- Global optimum 

- Local optimum 

- neither 
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Convergence of k-means to local mode 
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Convergence of k-means to local mode 
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Convergence of k-means to local mode 
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Smart initialization with k-means++ 
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k-means++ overview 

Initialization of k-means algorithm is  
critical to quality of local optima found 
 
Smart initialization: 
1.  Choose first cluster center uniformly at 

random from data points 
2.  For each obs x, compute distance d(x) to 

nearest cluster center 
3.  Choose new cluster center from amongst 

data points, with probability of x being 
chosen proportional to d(x)2 

4.  Repeat Steps 2 and 3 until k centers have 
been chosen 
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k-means++ visualized 
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k-means++ visualized 
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k-means++ visualized 
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k-means++ visualized 
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k-means++ pros/cons 

Computationally costly relative to 
random initialization, but the subsequent 
k-means often converges more rapidly 

 

Tends to improve quality of local 
optimum and lower runtime 
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Assessing quality of the clustering 
and choosing the # of clusters 
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Which clustering do I prefer? 
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k-means objective 
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k-means is trying to 
minimize the sum of 
squared distances: 

kX

j=1

X

i:zi=j

||µj � xi||22
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Cluster heterogeneity 
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Measure of quality of 
given clustering: 

kX

j=1

X

i:zi=j

||µj � xi||22

Lower is better! 
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What happens as k increases? 

Can refine clusters more and more to the data 

à overfitting! 

 

Extreme case of k=N: 

-  can set each cluster center equal to datapoint 

-  heterogeneity =  

©2016	Emily	Fox	&	Carlos	Guestrin	

Lowest possible cluster heterogeneity 
decreases with increasing k 
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How to choose k? 
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# of clusters k 
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MapReduce 
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Counting words on a single processor 

(The “Hello World!” of MapReduce) 

 

Suppose you have 10B documents and 1 machine and  

want to count the # of occurrences of each word in the corpus 

 

Code: 
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Naïve parallel word counting 
•  Word counts are independent across documents (data parallel) 
•  Count occurrences in sets of documents separately, then merge 

 

 
How do we do this for all words in vocab?  
 
Back to sequential problem to merge counts… 

      
©2016	Emily	Fox	&	Carlos	Guestrin	

10M 
docs 

… 
Machine 1 Machine 2 Machine 1000 

10M 
docs 

10M 
docs 

Count1[ ] Count2[ ] Count1000[ ] 

Count[word]=      Counti[word] 
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Counting words in parallel &  
merging tables in parallel 
1. Generate pairs (word,count) in parallel 

2. Merge counts for each word in parallel 
 

 

 

 

 

 

 

 

 

 

How to map words to machines?  Use a hash function! 

  h(word index) à machine index 
©2016	Emily	Fox	&	Carlos	Guestrin	

10M 
docs 

… 
Machine 1 Machine 2 Machine 1000 

10M 
docs 

10M 
docs 

Count1[ ] Count2[ ] Count1000[ ] 

2k 
words 

… 2k 
words 

2k 
words 

All counts for a 
subset of 
words go to 
same machine 

Phase 1: 
parallel  
(over docs) 
counting 

Phase 2: 
parallel  
(over words) 
sum 
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MapReduce abstraction 
 Map:  
-  Data-parallel over elements,  

e.g., documents 
-  Generate (key,value) pairs 

•  “value” can be any data type 

 

Reduce: 
-  Aggregate values for each key 
-  Must be commutative-associative  

operation 
-  Data-parallel over keys 
-  Generate (key,value) pairs 

 

 

MapReduce has long history in functional programming 
-  Popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo! 

©2016	Emily	Fox	&	Carlos	Guestrin	

Word count example: 
 
map(doc) 

 for word in doc 
  emit(word,1) 

reduce(word, counts_list) 
 c = 0   
 for i in counts_list 
  c += counts_list[i] 
 emit(word, c) 
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MapReduce – Execution overview 
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Improving performance: 
Combiners 
•  Naïve implementation of MapReduce is very 

wasteful in communication during shuffle:  

 

•  Combiner: Simple solution…Perform reduce 
locally before communicating for global reduce  
-  Works because reduce is commutative-associative  

©2016	Emily	Fox	&	Carlos	Guestrin	
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Scaling up k-means 
via MapReduce 
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MapReducing 1 iteration of k-means 

Classify: Assign observations to closest cluster center 

 

 

Recenter: Revise cluster centers as mean of assigned 
observations  

1.  Revise cluster centers as mean of assigned 
observations  

2.  Repeat 1.+2. until convergence 

©2016	Emily	Fox	&	Carlos	Guestrin	

zi  argmin
j

||µj � xi||22

µj =
1

nj

X

i:zi=k

xi

Map: For each data point, given ({µj},xi), emit(zi,xi) 

Reduce: Average over all points in cluster j (zi=k) 
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Classification step as Map 

Classify: Assign observations to closest cluster center 

 

 

1.  Revise cluster centers as mean of assigned 
observations  

2.  Repeat 1.+2. until convergence 
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zi  argmin
j

||µj � xi||22

map([µ1, µ2,…, µk], xi) 
 
 

 emit(zi,xi) 

zi  argmin
j

||µj � xi||22
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Recenter step as Reduce 

Recenter: Revise cluster centers as mean of assigned 
observations  

1.  Revise cluster centers as mean of assigned 
observations  

2.  Repeat 1.+2. until convergence 

©2016	Emily	Fox	&	Carlos	Guestrin	

µj =
1

nj

X

i:zi=k

xi

reduce(j, x_in_clusterj : [x1, x3,…, ]) 
 sum = 0 
 count = 0 
 for x in x_in_clusterj 
  sum += x 
  count += 1 
 emit(j, sum/count) 
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Some practical considerations 

k-means needs an iterative version of MapReduce 
- Not standard formulation 

Mapper needs to get data point and all centers 
-  A lot of data! 

-  Better implementation:  
mapper gets many data points 

©2016	Emily	Fox	&	Carlos	Guestrin	
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Summary of parallel k-means  
using MapReduce 
 
Map: classification step;  
          data parallel over data points 

Reduce: recompute means;  
               data parallel over centers 

©2016	Emily	Fox	&	Carlos	Guestrin	
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Other examples 
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Clustering images 

•  For search, group as: 
- Ocean 

- Pink flower 

- Dog 

- Sunset 

- Clouds 

- … 
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Structuring web search results 

•  Search terms can have multiple meanings 
•  Example: “cardinal” 

•  Use clustering to structure output 
©2016	Emily	Fox	&	Carlos	Guestrin	
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Grouping patients by medical condition 

•  Better characterize subpopulations 
and diseases 

©2016	Emily	Fox	&	Carlos	Guestrin	
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Example: Patients and seizures are diverse 

0me		
ch
an
ne

ls	
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Cluster seizures by observed time courses 

©2016	Emily	Fox	&	Carlos	Guestrin	



Machine	Learning	Specializa0on	60	

Products on Amazon 
•  Discover product categories  

from purchase histories 

•  Or discovering groups of users 
©2016	Emily	Fox	&	Carlos	Guestrin	

“furniture” 
“baby” 
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MODELING A HYPERLOCAL HOUSING PRICE INDEX 25
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Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.
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Fig 12. Map of clusters under the MAP sample. The cluster labels and associated map
colors are selected to indicate the level of deviance of the cluster’s average (across tracts)
latent trend from the global trend. Blue (1) represents a small deviance while red (16)
represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until

City of Seattle 

Discovering similar neighborhoods 

•  Task 1: Estimate price at a  
small regional level 

•  Challenge: 
- Only a few (or no!) sales  

in each region per month 

•  Solution: 
- Cluster regions with similar 

trends and share information 
within a cluster 
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•  Task 2: Forecast violent crimes 
to better task police 

•  Again, cluster regions and 
share information! 

•  Leads to improved predictions 
compared to examining each 
region independently 

©2016	Emily	Fox	&	Carlos	Guestrin	

Washington, DC 

Discovering similar neighborhoods 
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Summary for k-means 
and MapReduce 
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What you can do now… 
•  Describe potential applications of clustering 

•  Describe the input (unlabeled observations) and output 
(labels) of a clustering algorithm 

•  Determine whether a task is supervised or unsupervised 

•  Cluster documents using k-means 

•  Interpret k-means as a coordinate descent algorithm 

•  Define data parallel problems 

•  Explain Map and Reduce steps of MapReduce framework 

•  Use existing MapReduce implementations to parallelize k-
means, understanding what’s being done under the hood 
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