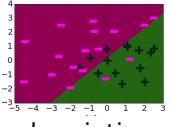


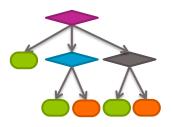
Boosting

Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

Simple (weak) classifiers are good!



Logistic regression w. simple features



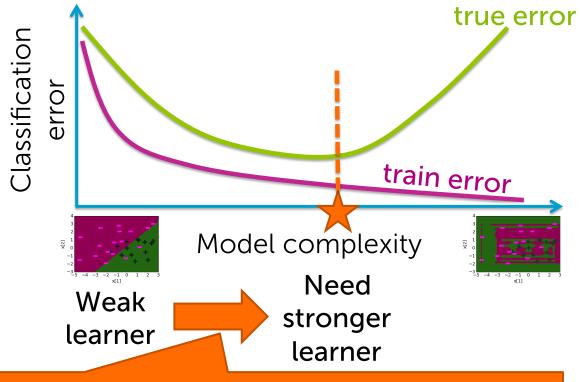
Shallow decision trees

Decision stumps

Low variance. Learning is fast!

But high bias...

Finding a classifier that's just right



Option 1: add more features or depth Option 2: ?????

Boosting question

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

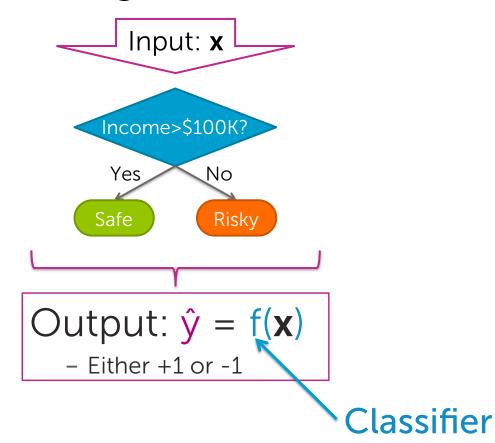
Yes! Schapire (1990)

Boosting

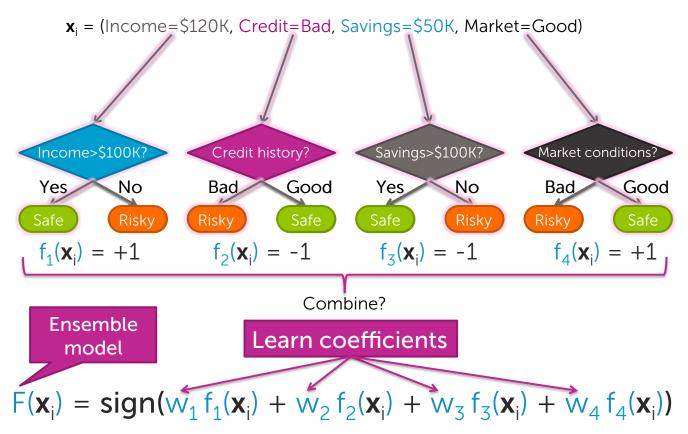
Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions

Ensemble classifier

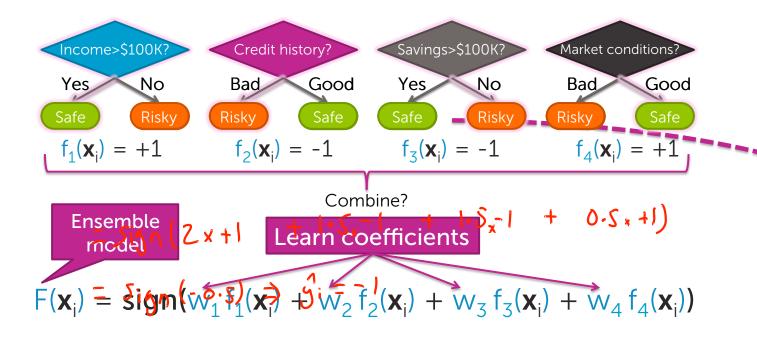
A single classifier



Ensemble methods: Each classifier "votes" on prediction



Prediction with ensemble



2				
1.5				
1.5				
0.5				

Ensemble classifier in general

- Goal:
 - Predict output y
 - Either +1 or -1
 - From input x
- Learn ensemble model:
 - Classifiers: $f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_T(\mathbf{x})$
 - Coefficients: $\hat{w}_1, \hat{w}_2, ..., \hat{w}_T$
- Prediction:

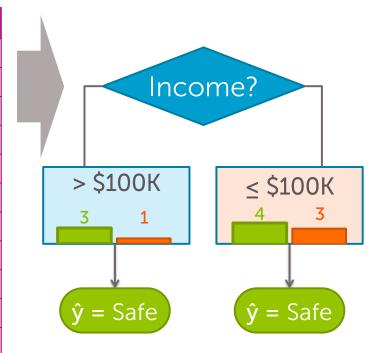
$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Boosting

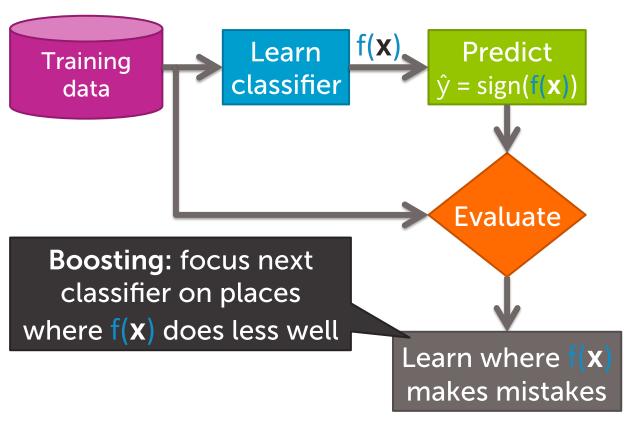
Training a classifier

Learning decision stump

Credit	Income	у
А	\$130K	Safe
В	\$80K	Risky
С	\$110K	Risky
А	\$110K	Safe
А	\$90K	Safe
В	\$120K	Safe
С	\$30K	Risky
С	\$60K	Risky
В	\$95K	Safe
А	\$60K	Safe
А	\$98K	Safe



Boosting = Focus learning on "hard" points



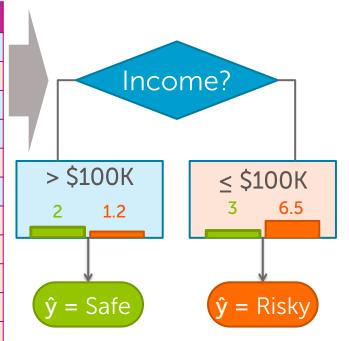
Learning on weighted data: More weight on "hard" or more important points

- Weighted dataset:
 - Each \mathbf{x}_i , \mathbf{y}_i weighted by $\mathbf{\alpha}_i$
 - More important point = higher weight α_i
- Learning:
 - Data point j counts as α_i data points
 - E.g., $\alpha_i = 2 \rightarrow$ count point twice

Learning a decision stump on weighted data

Increase weight **\alpha** of harder/misclassified points

Credit	Income	у	Weight α
Α	\$130K	Safe	0.5
В	\$80K	Risky	1.5
С	\$110K	Risky	1.2
Α	\$110K	Safe	0.8
Α	\$90K	Safe	0.6
В	\$120K	Safe	0.7
С	\$30K	Risky	3
С	\$60K	Risky	2
В	\$95K	Safe	0.8
Α	\$60K	Safe	0.7
Α	\$98K	Safe	0.9



Learning from weighted data in general

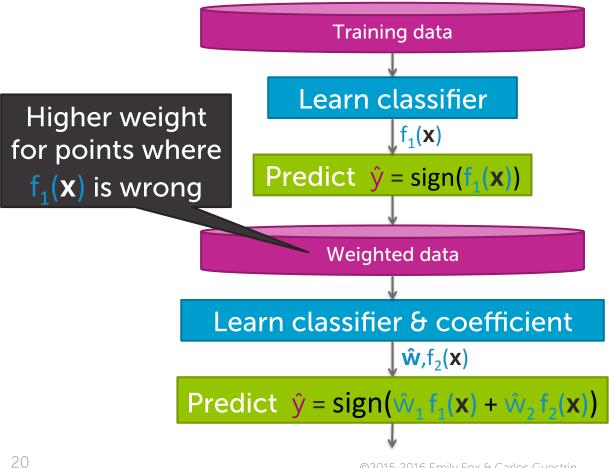
- Usually, learning from weighted data
 - Data point i counts as α_i data points
- E.g., gradient ascent for logistic regression:

Sum over data points

$$\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} + \eta \sum_{i=1}^{N} b_{j}(\mathbf{x}_{i}) \Big(\mathbb{1}[y_{i} = +1] - P(y = +1 \mid \mathbf{x}_{i}, \mathbf{w}^{(t)}) \Big)$$

Weigh each point by α_i

Boosting = Greedy learning ensembles from data



AdaBoost

AdaBoost: learning ensemble

[Freund & Schapire 1999]

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
 - Compute coefficient ŵ₊
 - Recompute weights α_i

Problem 1: How much do I trust fo?
Problem 2: weigh mistakes more?

Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Computing coefficient \hat{w}_t

AdaBoost: Computing coefficient $\hat{\mathbf{w}}_t$ of classifier $\mathbf{f}_t(\mathbf{x})$

$$\begin{array}{c} & \text{Yes} \\ \text{Is } f_t(\mathbf{x}) \text{ good?} \\ & \text{No} & \hat{\mathbf{w}}_t \text{ small} \\ \end{array}$$

- $f_t(\mathbf{x})$ is good $\rightarrow f_t$ has low training error
- Measuring error in weighted data?
 - Just weighted # of misclassified points

Weighted classification error

Learned classifier

Data point
(Foski was Oleat, —, oc=0.2)

Microtadcet!

Weight of correct 102
Weight of mistakes 005

Weighted classification error

Total weight of mistakes:

$$= \sum_{i=1}^{N} \alpha_i \prod_{j=1}^{N} (\hat{y}_i \pm \hat{y}_j)$$

Total weight of all points:

$$=\sum_{i=1}^{N}\alpha_{i}$$

Weighted error measures fraction of weight of mistakes:

- Best possible value is 0.0 - worstyle > Randon dusities > 0.5

AdaBoost: Formula for computing coefficient $\hat{\mathbf{w}}_t$ of classifier $\mathbf{f}_t(\mathbf{x})$

$$\hat{\mathbf{w}}_{t} = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_{t})}{weighted_error(f_{t})} \right)$$

				V
		weighted_error(f _i) on training data	$\frac{1 - weighted_error(f_t)}{weighted_error(f_t)}$	\hat{W}_{t}
$\log f(x) = \log dx$	Yes	0.01	1-0.01 = 99	$\frac{1}{2}$ h 99 = 2.3
Is $f_t(x)$ good?	No	6.5	1-0.5 = 1	0
		0.19	0.49 = 0.01	- 2.3
		Terible classifier, but	1-fr is answer	ij
30				

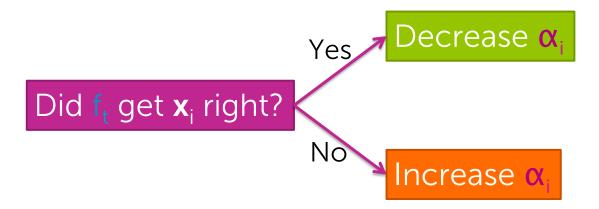
AdaBoost: learning ensemble

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
- → Compute coefficient ŵ_t
 - Recompute weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

AdaBoost: Updating weights α_i based on where classifier $f_t(x)$ makes mistakes



AdaBoost: Formula for updating weights α_i

$$\alpha_i \leftarrow \begin{cases} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \leftarrow \text{correct} \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \leftarrow \text{mistake} \end{cases}$$

	Yes_	
Did f_t get x_i right?	\langle	
	No	

	$\mathbf{f}_{t}(\mathbf{x}_{i}) = \mathbf{y}_{i}$?		Multiply α_i by	Implication
	Correct	7-3	e ²⁻³ = 0.1	Decreise importance of Xi, y:
7	Correct	0	e° =1	Keep importance the same
4	Mistake	2.3	$e^{2.3} = 9.98$	Increasing importance of xi, y:
	Mis take	0	e° = 1	Keep importante she same

AdaBoost: learning ensemble

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
 - Compute coefficient $\hat{\mathbf{w}}_{t}$
 - Recompute weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

$$\alpha_i \leftarrow \begin{cases} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \end{cases}$$

AdaBoost: Normalizing weights α_i

If \mathbf{x}_i often mistake, weight α_i gets very large

If \mathbf{x}_i often correct, weight α_i gets very small

Can cause numerical instability after many iterations

Normalize weights to add up to 1 after every iteration

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

AdaBoost: learning ensemble

• Start same weight for all points: $\alpha_i = 1/N$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

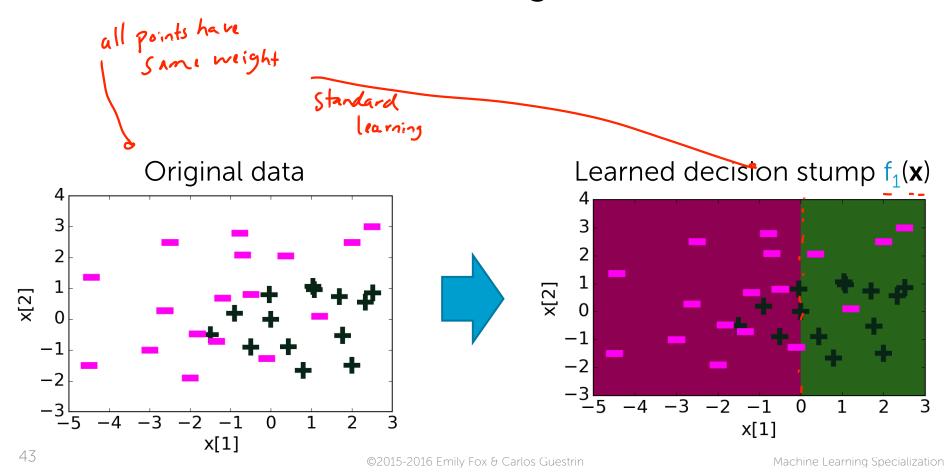
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
 - Compute coefficient $\hat{\mathbf{w}}_{t}$
 - Recompute weights α_i
 - Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

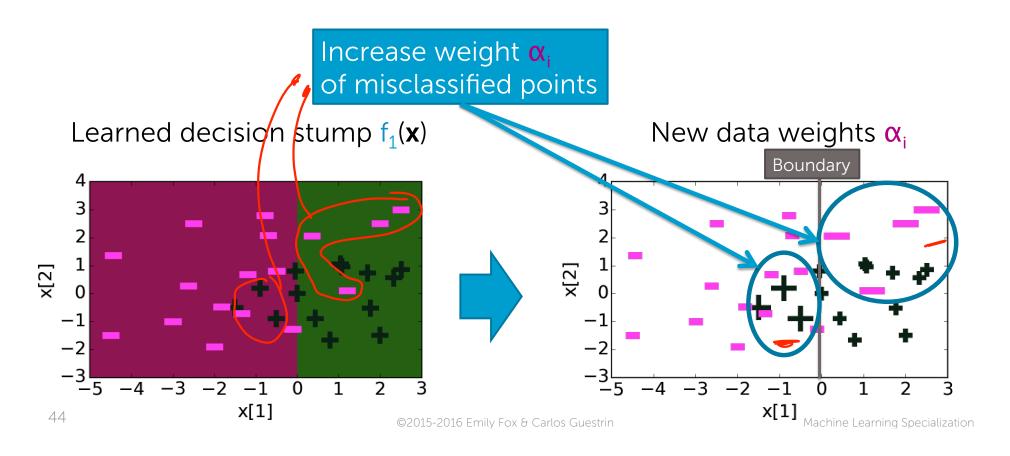
$$\alpha_{i} \leftarrow \begin{cases} \alpha_{i} e^{-\hat{W}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) = y_{i} \\ \alpha_{i} e^{\hat{W}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) \neq y_{i} \end{cases}$$

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

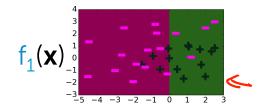
t=1: Just learn a classifier on original data

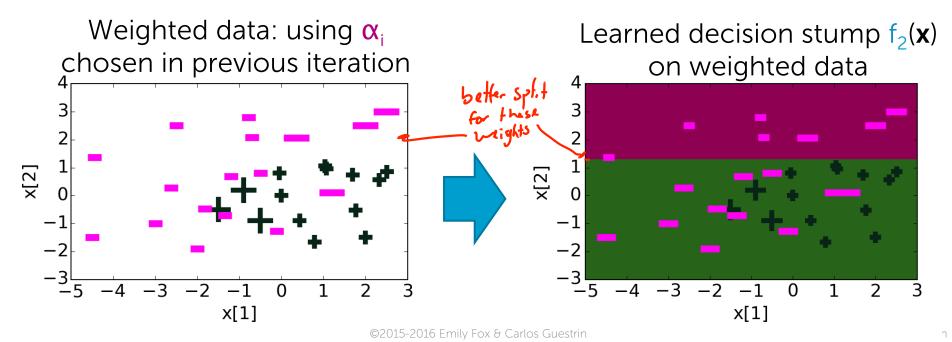


Updating weights α_i

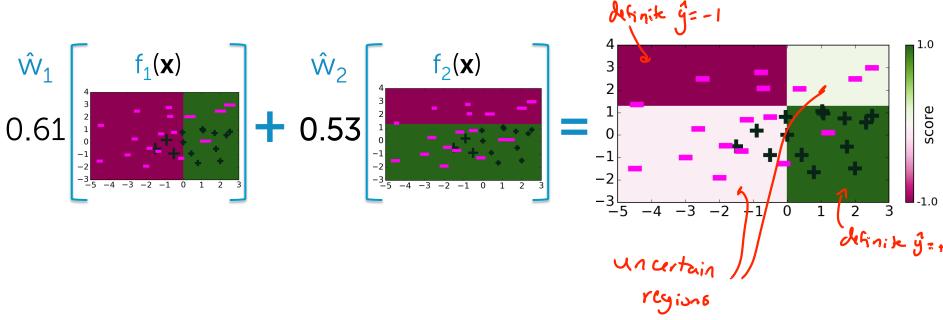


t=2: Learn classifier on weighted data





Ensemble becomes weighted sum of learned classifiers



46

Decision boundary of ensemble classifier after 30 iterations

AdaBoost summary

AdaBoost: learning ensemble

• Start same weight for all points: $\alpha_i = 1/N$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
 - Compute coefficient \hat{w}_t
 - Recompute weights α_i
 - Normalize weights <mark>α</mark>¡
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\alpha_{i} \leftarrow \begin{cases} \alpha_{i} e^{-\hat{W}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) = y_{i} \\ \alpha_{i} e^{\hat{W}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) \neq y_{i} \end{cases}$$

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

Boosted decision stumps

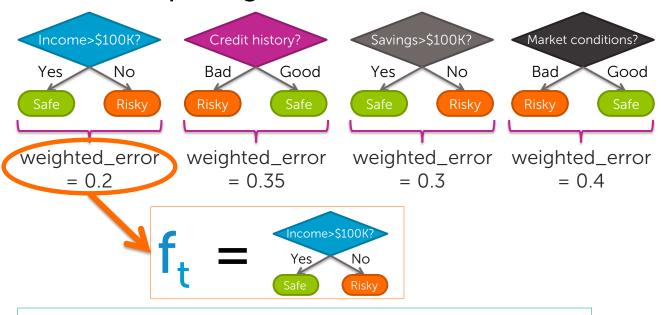
Boosted decision stumps

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$: pick decision stump with lowest weighted training error according to α_i
 - Compute coefficient ŵ,
 - Recompute weights α_i
 - Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Finding best next decision stump $f_t(x)$

Consider splitting on each feature:



$$\hat{\mathbf{W}}_{\mathsf{t}} = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right) = 0.69$$

Boosted decision stumps

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$: pick decision stump with lowest weighted training error according to α_i
 - Compute coefficient ŵ_t
 - Recompute weights α_i
 - Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Updating weights α_i

hts
$$\alpha_i$$

$$\alpha_i e^{-\hat{W}_t} = i \text{for}_{it} (\mathbf{Q}_i)^{\frac{0}{2}} y_i^{69} = \alpha_i / 2$$

$$\alpha_i e^{\hat{W}_t} = i \text{for}_{it} (\mathbf{Q}_i)^{\frac{0}{2}} y_i^{69} = 2 \alpha_i$$

Credit	Income	у	ŷ	Previous weight α	New weight α
Α	\$130K	Safe	Safe	0.5	0.5/2 = 0.25
В	\$80K	Risky	Risky	1.5	0.75
С	\$110K	Risky	Safe	1.5	2 * 1.5 = 3
А	\$110K	Safe	Safe	2	1
А	\$90K	Safe	Risky	1	2
В	\$120K	Safe	Safe	2.5	1.25
С	\$30K	Risky	Risky	3	1.5
С	\$60K	Risky	Risky	2	1
В	\$95K	Safe	Risky	0.5	1
А	\$60K	Safe	Risky	1	2
А	\$98K	Safe	Risky	0.5	1

55

Boosting convergence & overfitting

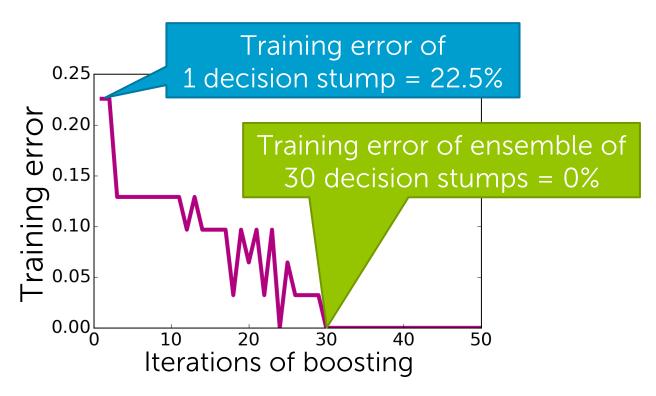
Boosting question revisited

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Yes! Schapire (1990)

Boosting

After some iterations, training error of boosting goes to zero!!!



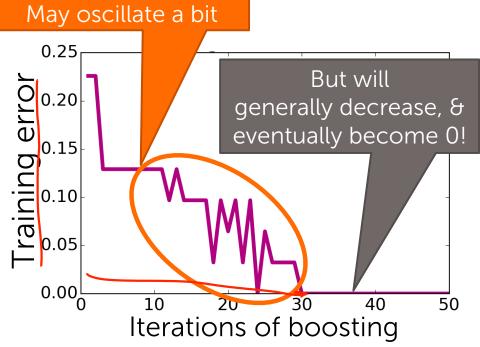
Boosted decision stumps on toy dataset

58

AdaBoost Theorem

Under some technical conditions...

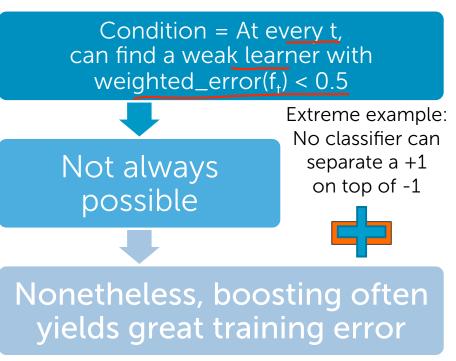
Training error of boosted classifier \rightarrow 0 as $T\rightarrow\infty$



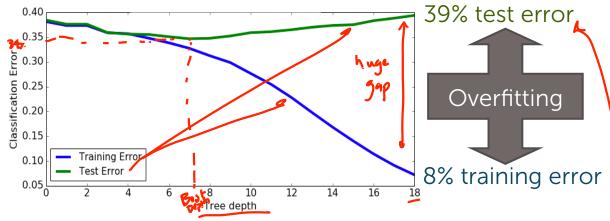
Condition of AdaBoost Theorem

Under some technical conditions...

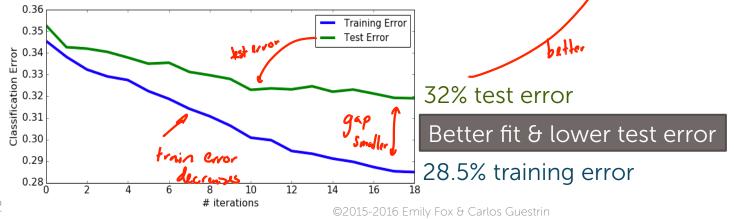
Training error of boosted classifier → 0 as T→∞



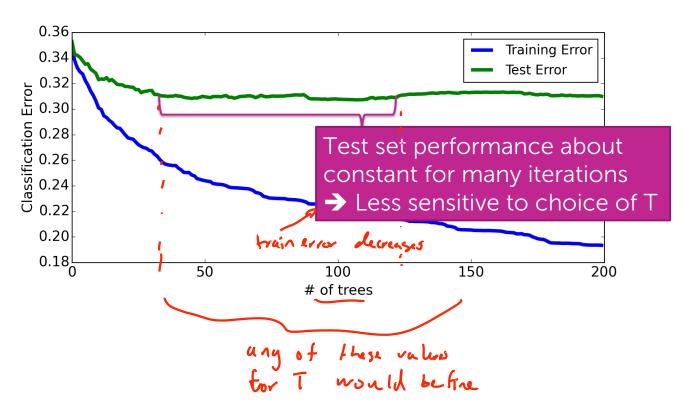
Decision trees on loan data



Boosted decision stumps on loan data

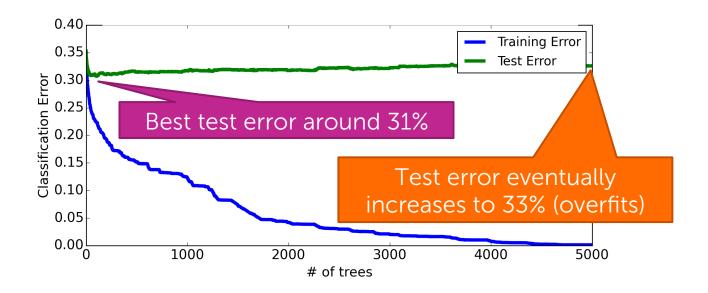


Boosting tends to be robust to overfitting

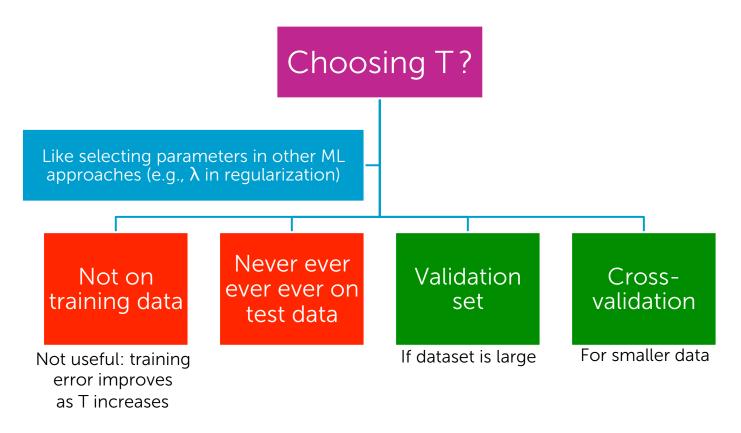


But boosting will eventually overfit, so must choose max number of components T

©2015-2016 Emily Fox & Carlos Guestrin



How do we decide when to stop boosting?



Summary of boosting

Variants of boosting and related algorithms

There are hundreds of variants of boosting, most important:

Gradient boosting

 Like AdaBoost, but useful beyond basic classification

Many other approaches to learn ensembles, most important:

Random forests

- Bagging: Pick random subsets of the data
 - Learn a tree in each subset
 - Average predictions
- Simpler than boosting & easier to parallelize
- Typically higher error than boosting for same number of trees (# iterations T)

Impact of boosting (spoiler alert... HUGE IMPACT)

Amongst most useful ML methods ever created

Extremely useful in computer vision

 Standard approach for face detection, for example

Used by **most winners** of ML competitions (Kaggle, KDD Cup,...)

 Malware classification, credit fraud detection, ads click through rate estimation, sales forecasting, ranking webpages for search, Higgs boson detection,...

Most deployed ML systems use model ensembles

 Coefficients chosen manually, with boosting, with bagging, or others

What you can do now...

- Identify notion ensemble classifiers
- Formalize ensembles as the weighted combination of simpler classifiers
- Outline the boosting framework sequentially learn classifiers on weighted data
- Describe the AdaBoost algorithm
 - Learn each classifier on weighted data
 - Compute coefficient of classifier
 - Recompute data weights
 - Normalize weights
- Implement AdaBoost to create an ensemble of decision stumps
- Discuss convergence properties of AdaBoost & how to pick the maximum number of iterations T