

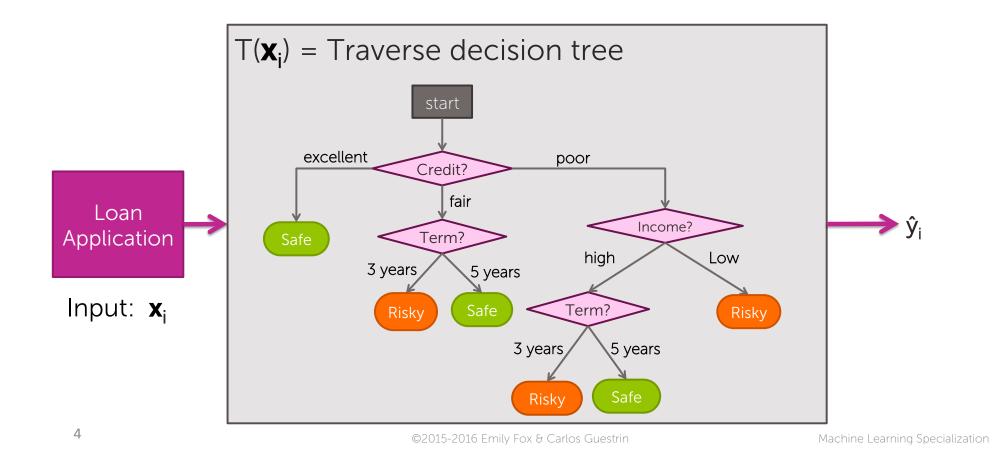
Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

©2015-2016 Emily Fox & Carlos Guestrir

Review of loan default prediction

©2015-2016 Emily Fox & Carlos Guestrin

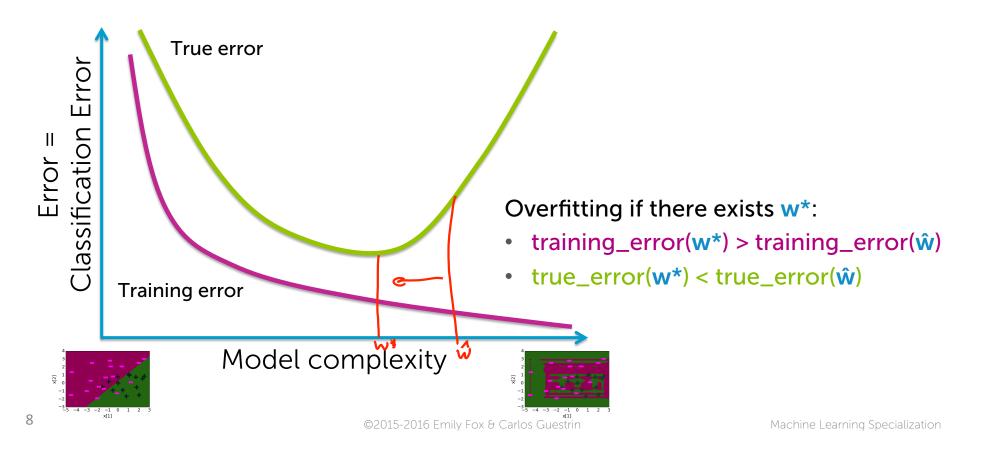
Decision tree review

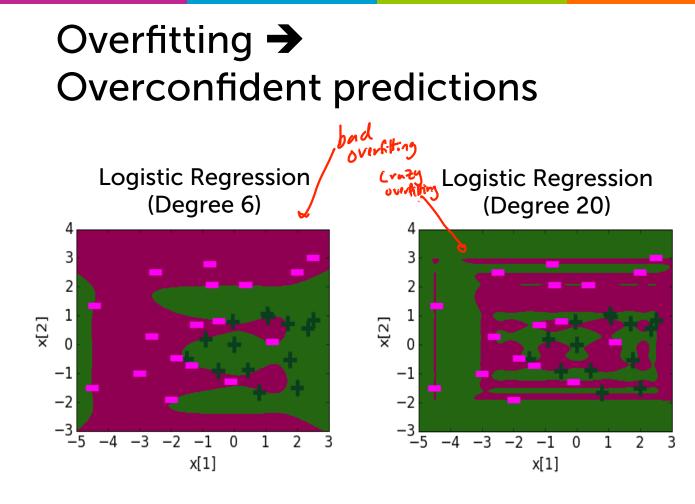


Overfitting review

©2015-2016 Emily Fox & Carlos Guestrin

Overfitting in logistic regression





©2015-2016 Emily Fox & Carlos Guestrin

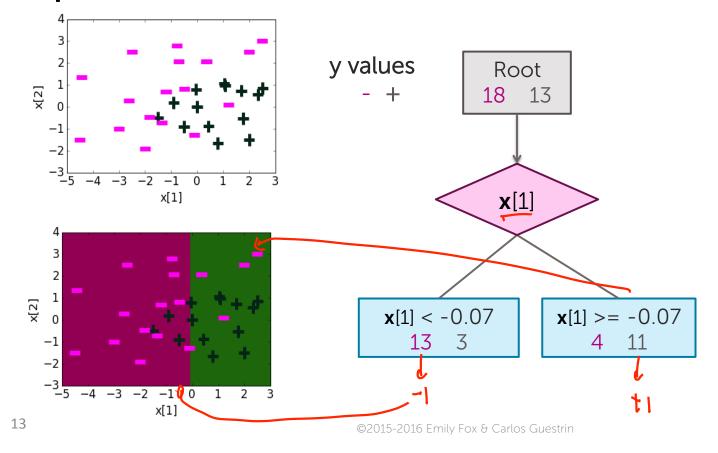
Machine Learning Specialization

9

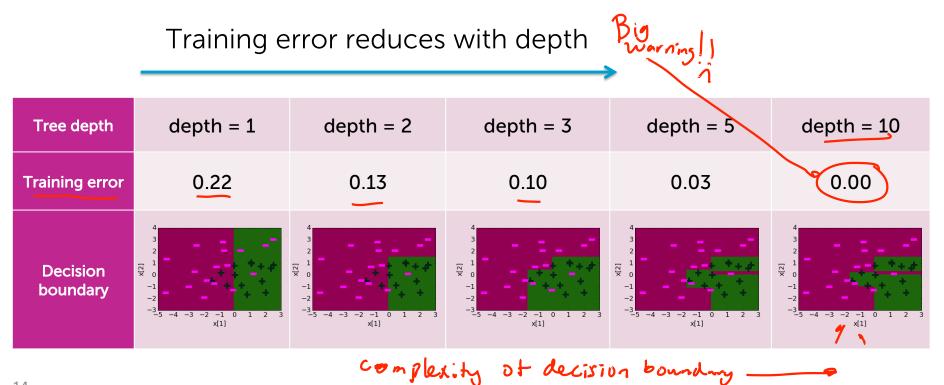
Overfitting in decision trees

©2015-2016 Emily Fox & Carlos Guestrin

Decision stump (Depth 1): Split on x[1]

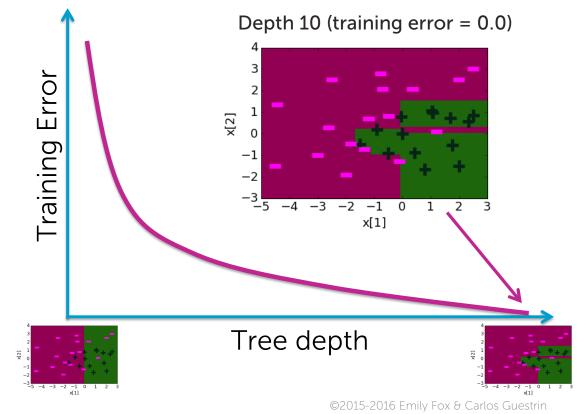


What happens when we increase depth?



©2015-2016 Emily Fox & Carlos Guestrin

Deeper trees \rightarrow lower training error

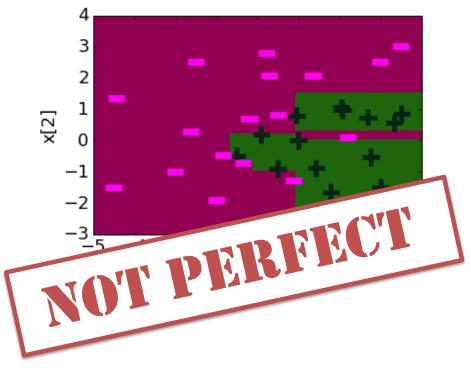


Machine Learning Specialization

16

Training error = 0: Is this model perfect?

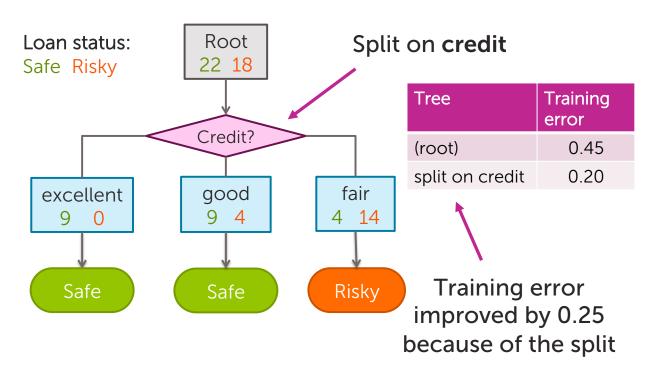
Depth 10 (training error = 0.0)



Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin

Why training error reduces with depth?



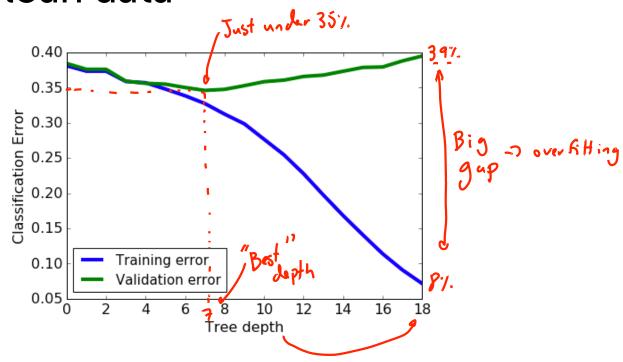
©2015-2016 Emily Fox & Carlos Guestrin

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature h_i(x):
 - 1. Split data of M according to feature h_i(x)
 - 2. Compute classification error split
- Chose feature h^{*}(x) with lowest classification error

By design, each split reduces training error

Decision trees overfitting on loan data



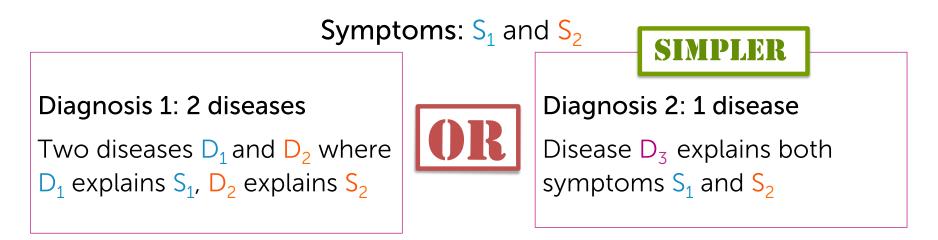
©2015-2016 Emily Fox & Carlos Guestrin

Principle of Occam's razor: Simpler trees are better

©2015-2016 Emily Fox & Carlos Guestrin

Principle of Occam's Razor

"Among competing hypotheses, the one with fewest assumptions should be selected", William of Occam, 13th Century



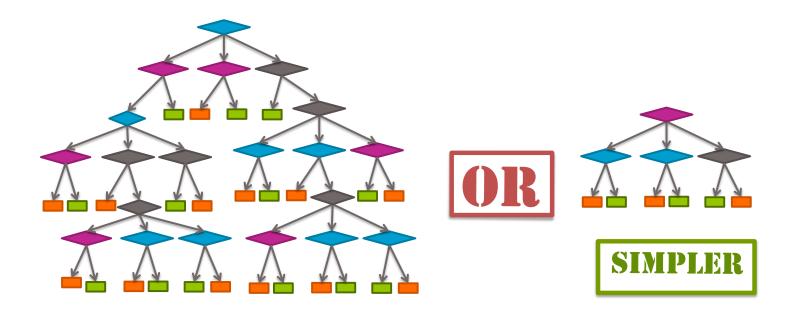
©2015-2016 Emily Fox & Carlos Guestrin

Occam's Razor for decision trees

When two trees have similar classification error on the validation set, pick the simpler one



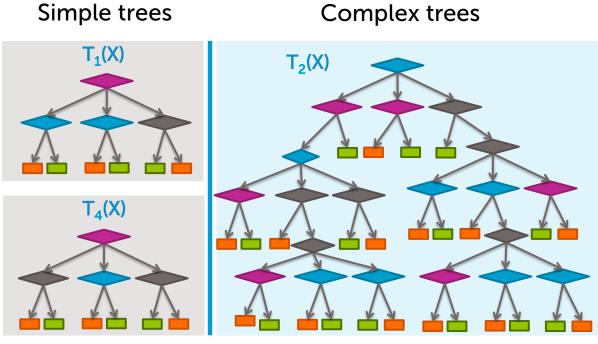
Which tree is simpler?



©2015-2016 Emily Fox & Carlos Guestrin

Modified tree learning problem

Find a "simple" decision tree with low classification error



©2015-2016 Emily Fox & Carlos Guestrin

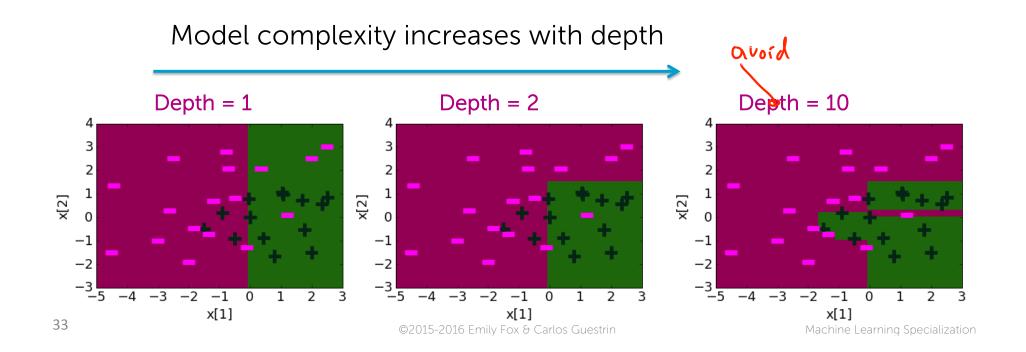
How do we pick simpler trees?

- 1. Early Stopping: Stop learning algorithm before tree become too complex
- 2. Pruning: Simplify tree after learning algorithm terminates

Early stopping for learning decision trees

©2015-2016 Emily Fox & Carlos Guestrin

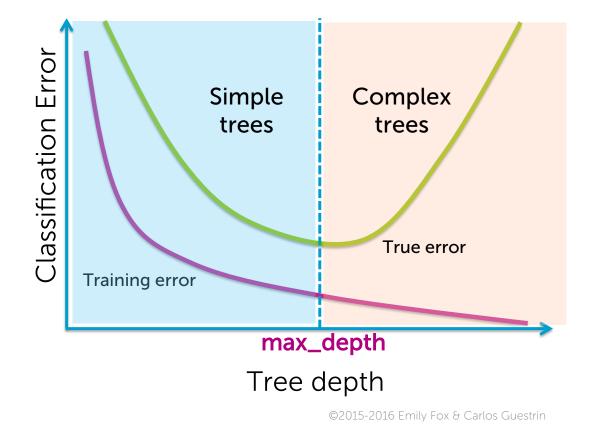
Deeper trees \rightarrow Increasing complexity

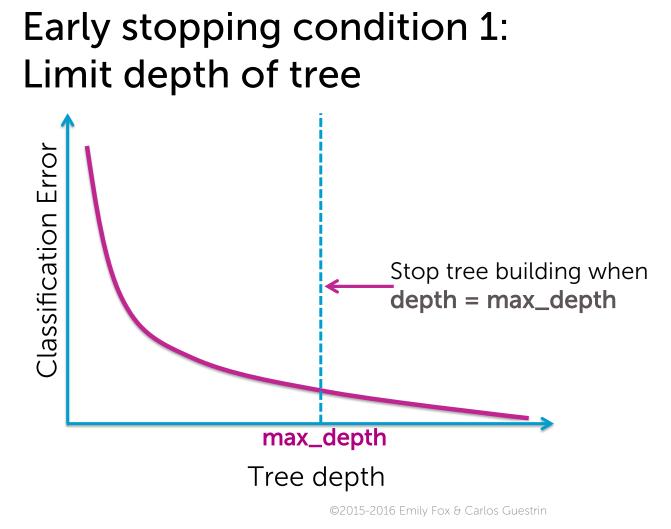


Early stopping condition 1: *Limit the depth of a tree*

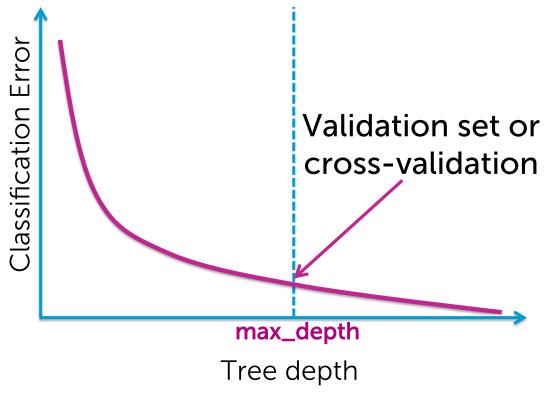
©2015-2016 Emily Fox & Carlos Guestrin

Restrict tree learning to shallow trees?





Picking value for max_depth???

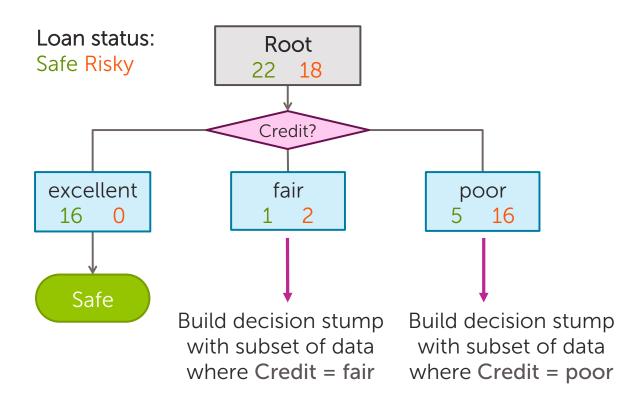


©2015-2016 Emily Fox & Carlos Guestrin

Early stopping condition 2: Use classification error to limit depth of tree

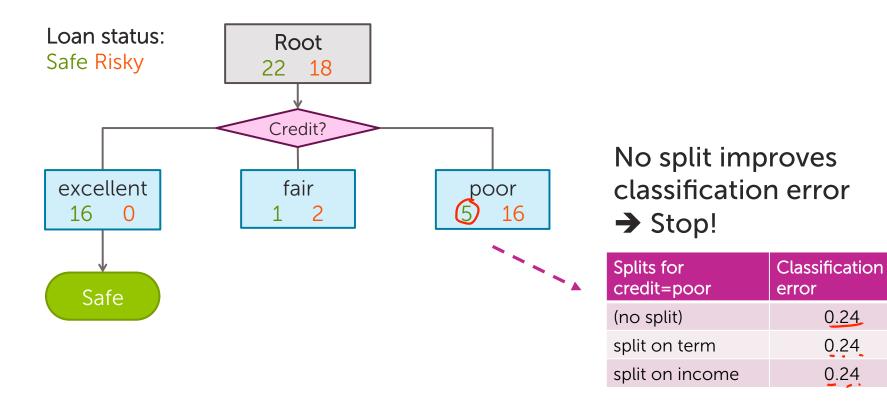
©2015-2016 Emily Fox & Carlos Guestrin

Decision tree recursion review



©2015-2016 Emily Fox & Carlos Guestrin

Split selection for credit=poor



©2015-2016 Emily Fox & Carlos Guestrin

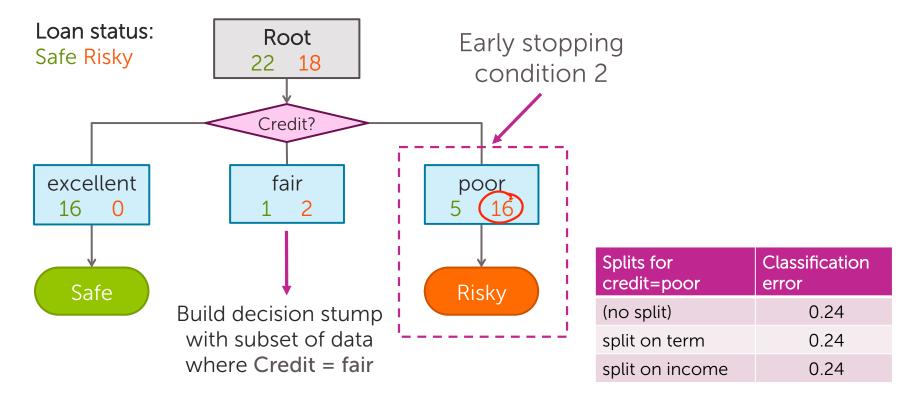
Machine Learning Specialization

0.24

0.24

0.24

Early stopping condition 2: No split improves classification error



©2015-2016 Emily Fox & Carlos Guestrin

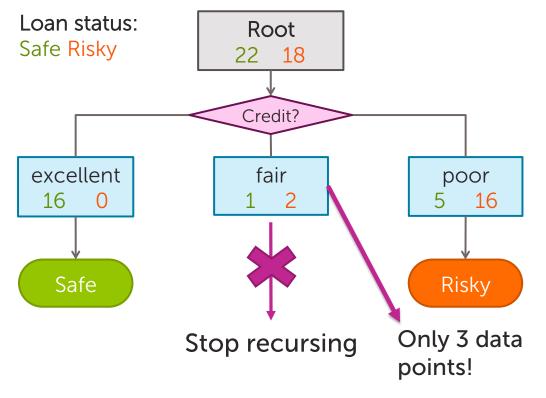
Practical notes about stopping when classification error doesn't decrease

- 1. Typically, add magic parameter **ε**
 - Stop if error doesn't decrease by more than $\boldsymbol{\epsilon}$
- 2. Some pitfalls to this rule (see pruning section)
- 3. Very useful in practice

Early stopping condition 3: Stop if number of data points contained in a node is too small

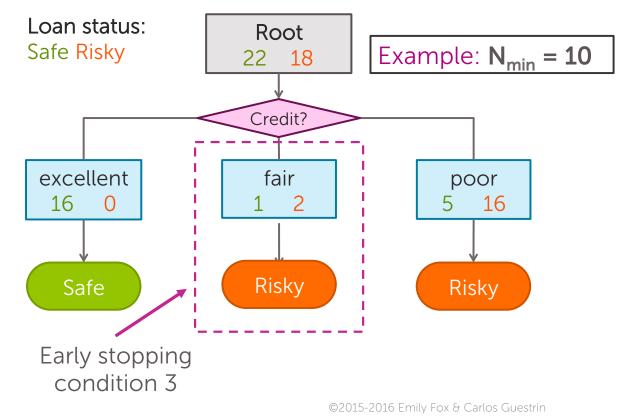
©2015-2016 Emily Fox & Carlos Guestrin

Can we trust nodes with very few points?



©2015-2016 Emily Fox & Carlos Guestrin

Early stopping condition 3: Stop when data points in a node $\leq N_{min}$



Machine Learning Specialization

48

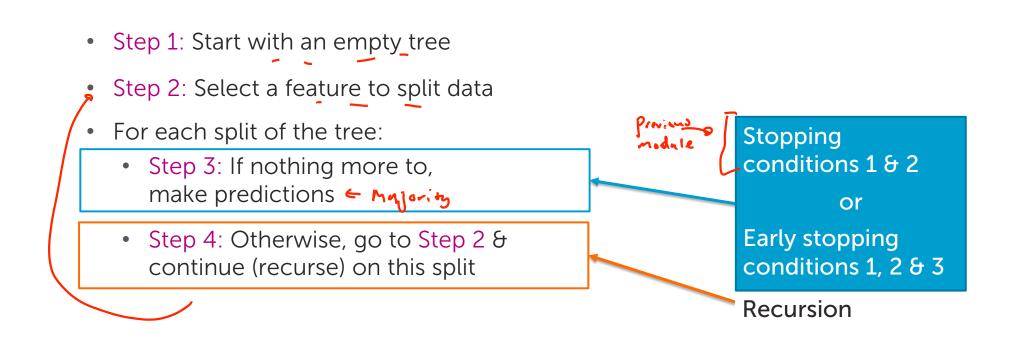
Summary of decision trees with early stopping

©2015-2016 Emily Fox & Carlos Guestrin

Early stopping: Summary

- 1. Limit tree depth: Stop splitting after a certain depth
- 2. Classification error: Do not consider any split that does not cause a sufficient decrease in classification error
- **3.** Minimum node "size": Do not split an intermediate node which contains too few data points

Greedy decision tree learning



Overfitting in Decision Trees: *Pruning*

©2015-2016 Emily Fox & Carlos Guestrin

Stopping condition summary

• Stopping condition:

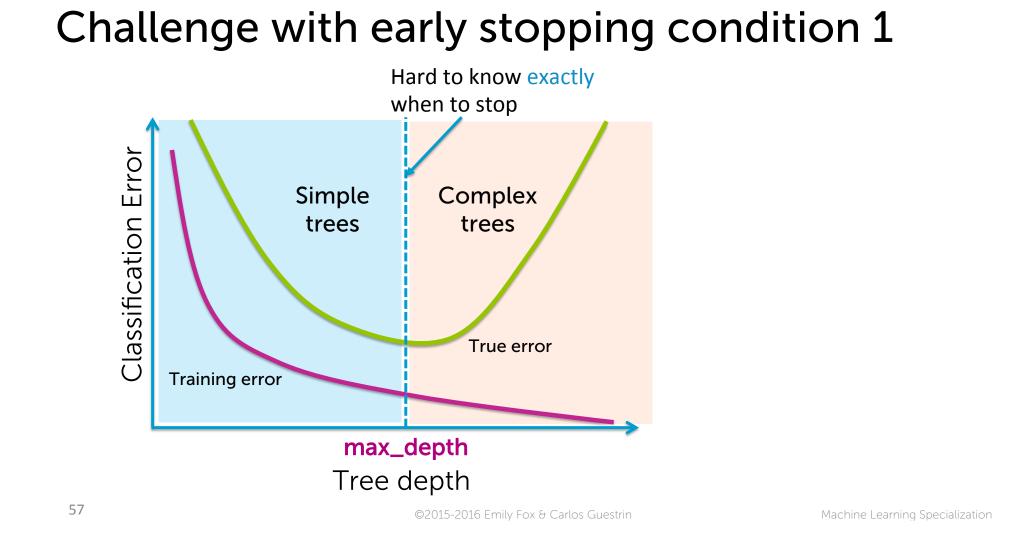
- 1. All examples have the same target value
- 2. No more features to split on

• Early stopping conditions:

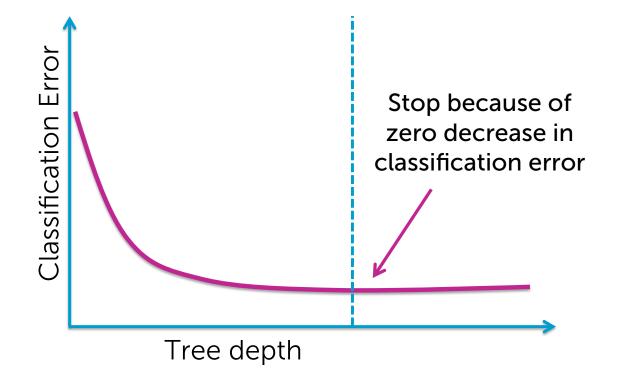
- 1. Limit tree depth
- 2. Do not consider splits that do not cause a sufficient decrease in classification error
- 3. Do not split an intermediate node which contains too few data points

Exploring some challenges with early stopping conditions

©2015-2016 Emily Fox & Carlos Guestrin



Is early stopping condition 2 a good idea?

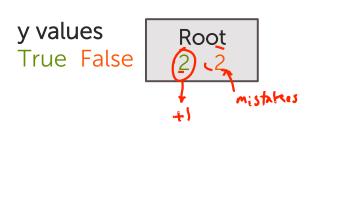


©2015-2016 Emily Fox & Carlos Guestrin

Early stopping condition 2:

Don't stop if error doesn't decrease???

y = x[1] x or x[2]			
x [1]	x [2]	У	
False	False	False	
False	Trye	True	
True	False	True	
Tŗue	True	False	





Tree	Classification error
(root)	0.5

©2015-2016 Emily Fox & Carlos Guestrin

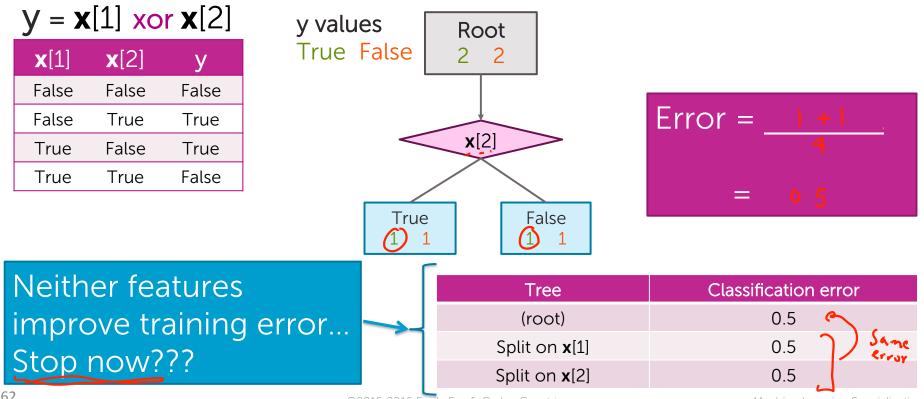
Consider split on x[1]

y = x[1] x or x[2]			
x [1]	x [2]	У	
False	False	False	
False	True	True	
True	False	True	
True	True	False	



©2015-2016 Emily Fox & Carlos Guestrin

Consider split on x[2]



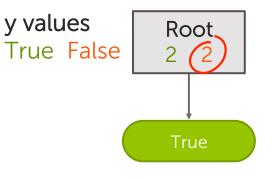
^{©2015-2016} Emily Fox & Carlos Guestrin

Machine Learning Specialization

62

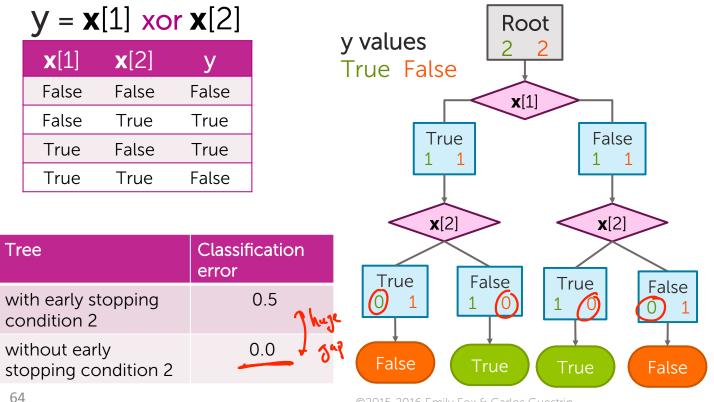
Final tree with early stopping condition 2

y = x[1] xor x[2]			
x [1]	x [2]	У	
False	False	False	
False	True	True	
True	False	True	
True	True	False	



Tree	Classification error
with early stopping condition 2	0.5

Without early stopping condition 2



Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin

Early stopping condition 2: Pros and Cons

- Pros:
 - A reasonable heuristic for early stopping to avoid useless splits
- Cons:
 - Too short sighted: We may miss out on "good" splits may occur right after "useless" splits

Tree pruning

©2015-2016 Emily Fox & Carlos Guestrin

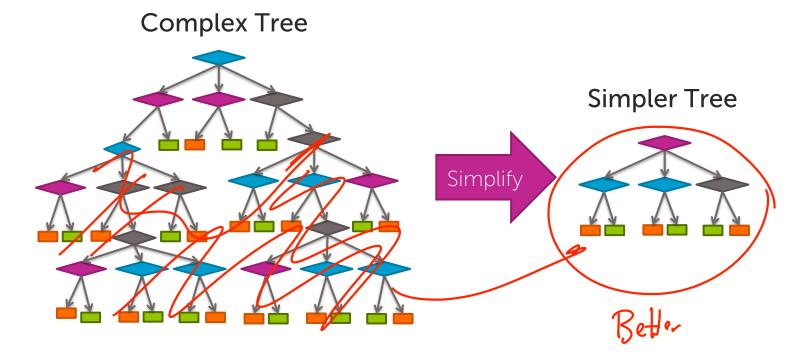
Two approaches to picking simpler trees

- 1. Early Stopping: Stop the learning algorithm before the tree becomes too complex
- 2. Pruning: Simplify the tree after the learning algorithm terminates

Complements early stopping

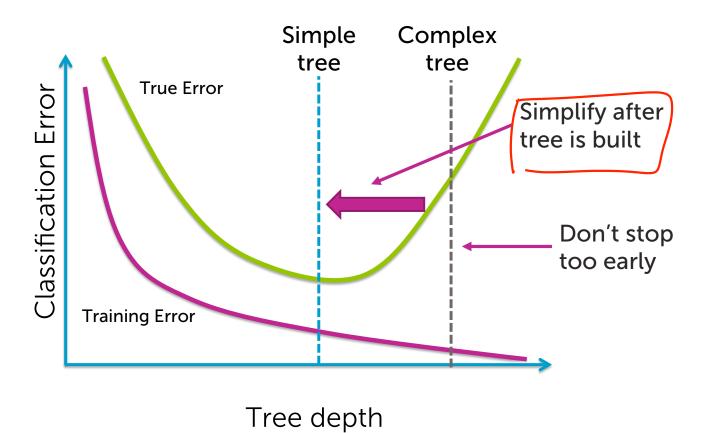
©2015-2016 Emily Fox & Carlos Guestrin

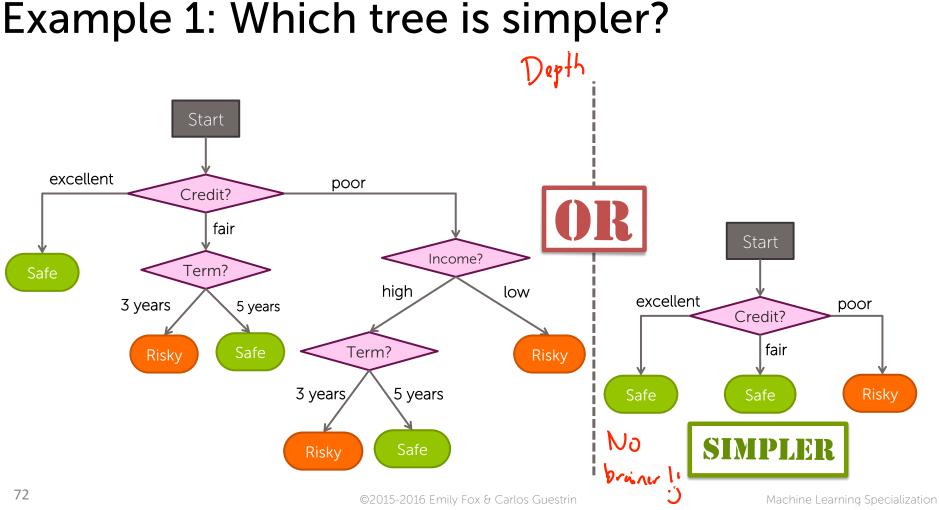
Pruning: Intuition Train a complex tree, simplify later



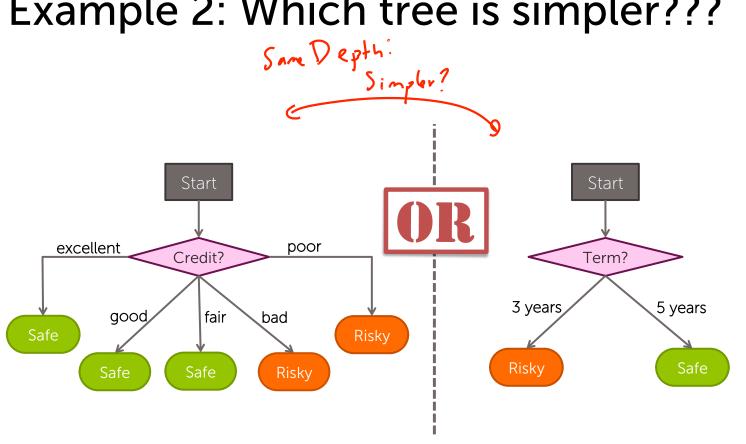
©2015-2016 Emily Fox & Carlos Guestrin

Pruning motivation





Example 1: Which tree is simpler?

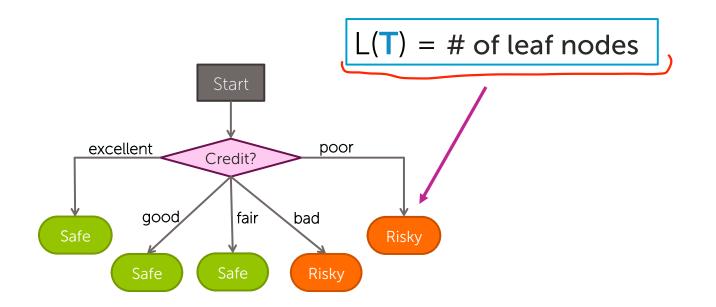


Example 2: Which tree is simpler???

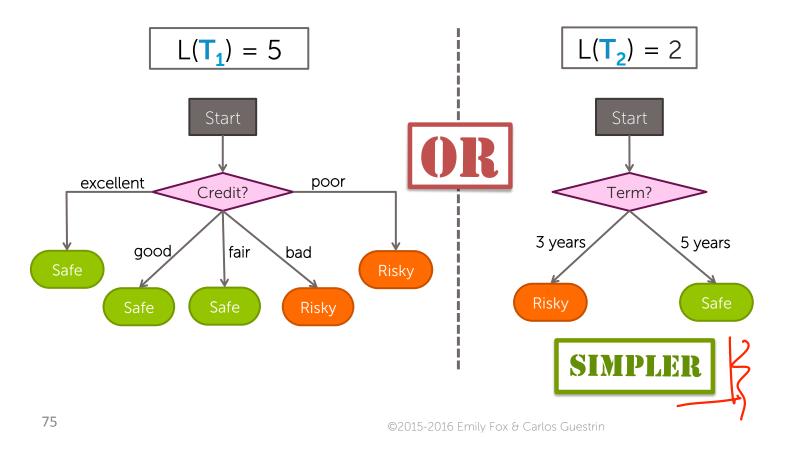
73

©2015-2016 Emily Fox & Carlos Guestrin

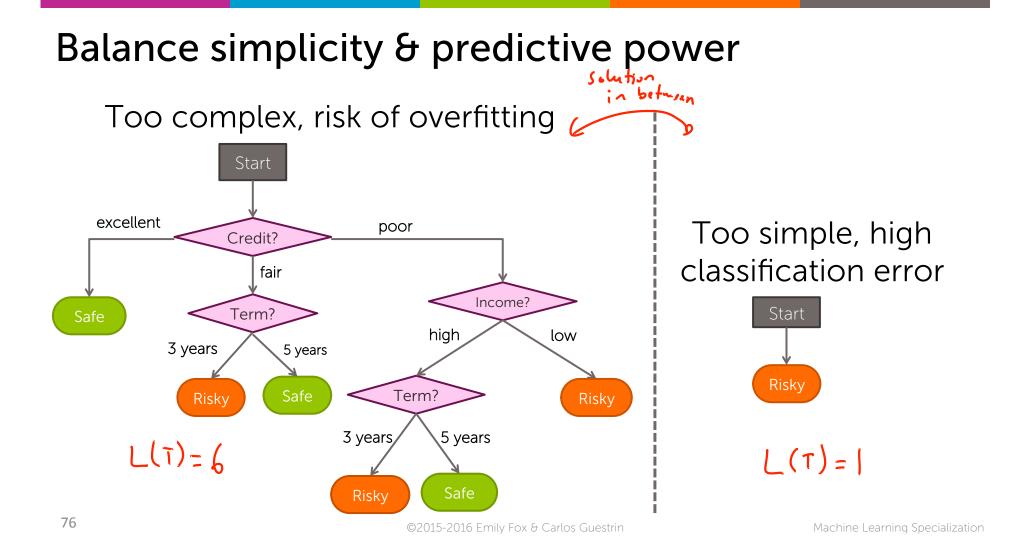
Simple measure of complexity of tree



Which tree has lower L(T)?



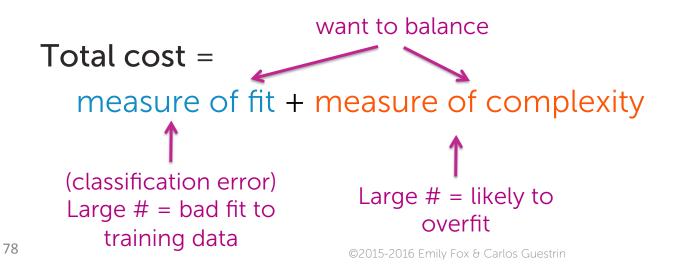
Machine Learning Specialization



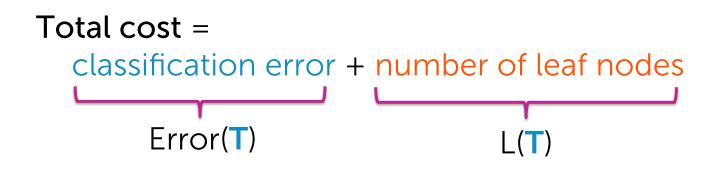
Desired total quality format

Want to balance:

- i. How well tree fits data
- ii. Complexity of tree



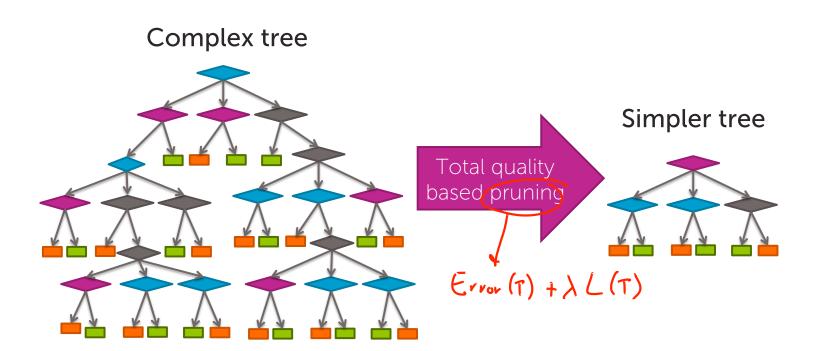
Consider specific total cost



Balancing fit and complexity

Total cost $C(T) = Error(T) + \lambda L(T)$ tuning parameter If $\lambda = 0$: Standard decision true larring If $\lambda = \infty$: ∞ panelly \rightarrow $\mathcal{G} = Majority class$ If λ in between: Balance fit & complexity

Use total cost to simplify trees



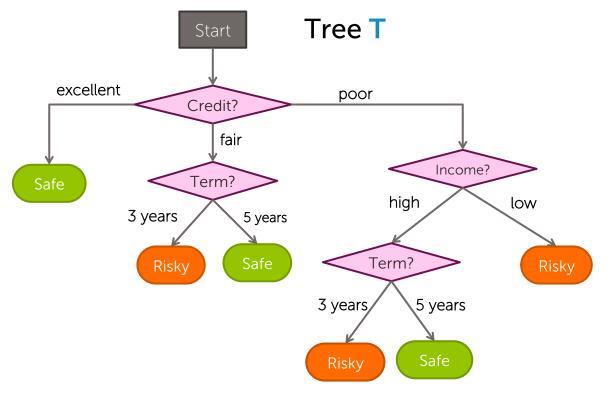
©2015-2016 Emily Fox & Carlos Guestrin



Tree pruning algorithm

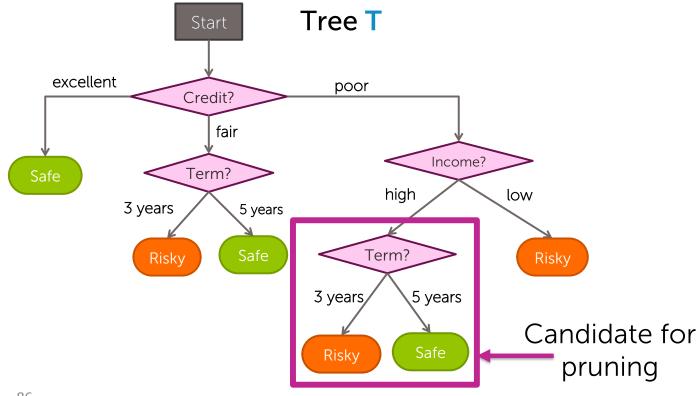
©2015-2016 Emily Fox & Carlos Guestrin

Pruning Intuition



©2015-2016 Emily Fox & Carlos Guestrin

Step 1: Consider a split

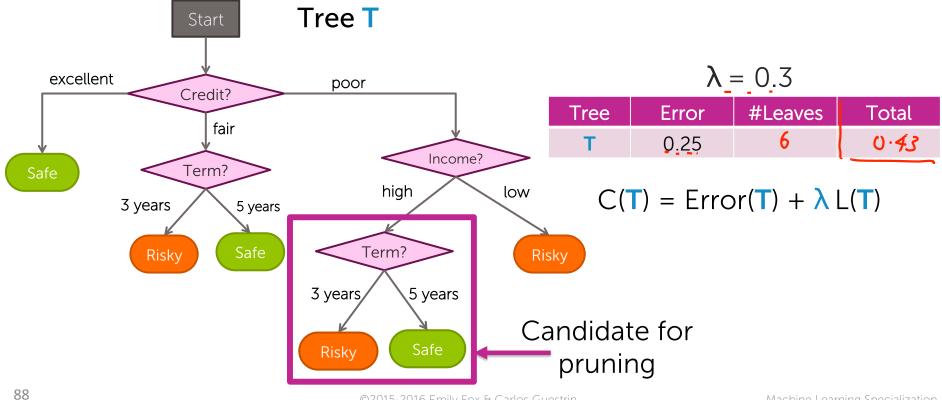


©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

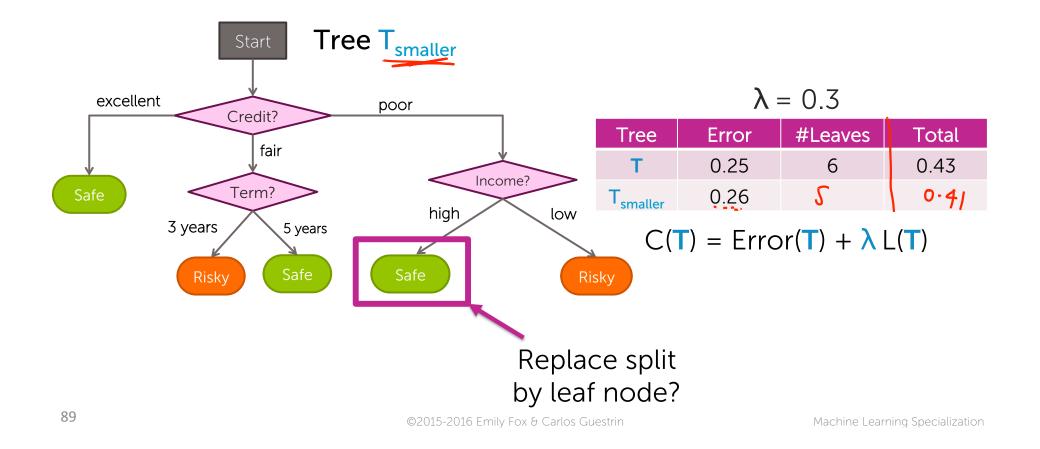
86

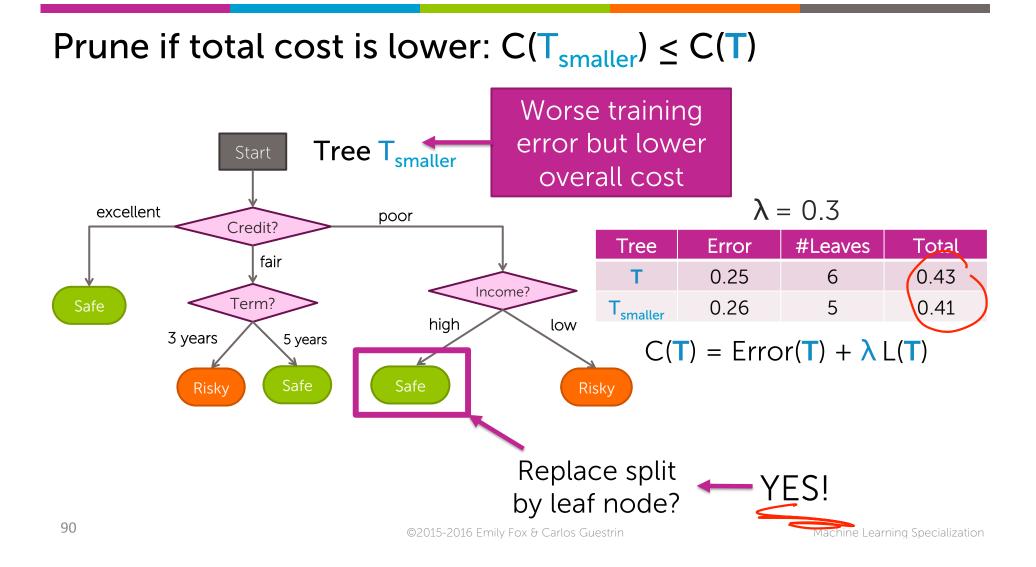
Step 2: Compute total cost C(T) of split



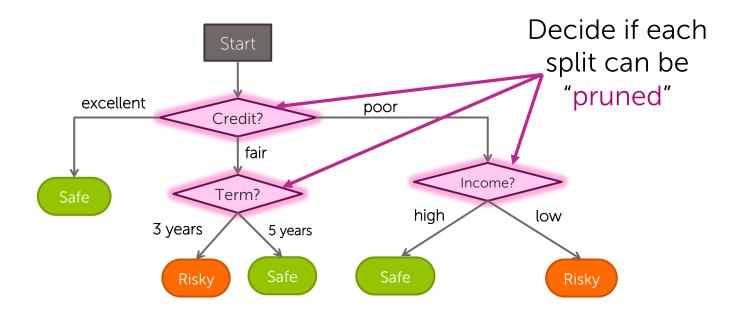
©2015-2016 Emily Fox & Carlos Guestrin

Step 2: "Undo" the splits on T_{smaller}





Step 5: Repeat Steps 1-4 for every split



©2015-2016 Emily Fox & Carlos Guestrin

Decision tree pruning algorithm

- Start at bottom of tree T and traverse up, apply prune_split to each decision node M
- prune_split(T,M):
 - 1. Compute total cost of tree T using $C(T) = Error(T) + \lambda L(T)$
 - Let T_{smaller} be tree after pruning subtree below M
 - 3. Compute total cost complexity of $T_{smaller}$ $C(T_{smaller}) = Error(T_{smaller}) + \lambda L(T_{smaller})$
 - 4. If $C(T_{smaller}) < C(T)$, prune to $T_{smaller}$

Summary of overfitting in decision trees

©2015-2016 Emily Fox & Carlos Guestrin

What you can do now...

- Identify when overfitting in decision trees
- Prevent overfitting with early stopping
 - Limit tree depth
 - Do not consider splits that do not reduce classification error
 - Do not split intermediate nodes with only few points
- Prevent overfitting by pruning complex trees
 - Use a total cost formula that balances classification error and tree complexity
 - Use total cost to merge potentially complex trees into simpler ones

Thank you to Dr. Krishna Sridhar

Dr. Krishna Sridhar Staff Data Scientist, Dato, Inc.

96

©2015-2016 Emily Fox & Carlos Guestrin