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Review of loan default prediction 
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Safe 
✓	

Risky 
✘	

Risky 
 ✘	

Intelligent loan application  
review system 

Loan  
Applications 
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Decision tree review 

T(xi) = Traverse decision tree 
 
 
 
 
 
 

Loan 
Application 

Input:  xi 

ŷi	

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	



Machine Learning Specialization 

Overfitting review 
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Overfitting in logistic regression 
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Overfitting if there exists w*: 

•  training_error(w*) > training_error(ŵ) 

•  true_error(w*) < true_error(ŵ) 

True error 

Training error 
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Overfitting è  
Overconfident predictions  
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Logistic Regression 
(Degree 6) 

Logistic Regression 
(Degree 20) 
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Overfitting in decision trees 
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Decision stump (Depth 1):  
Split on x[1] 

©2015-2016 Emily Fox & Carlos Guestrin 

Root 
18    13 

x[1] < -0.07 
13    3 

x[1] >= -0.07 
4    11 

x[1] 

y values  
-  + 
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Tree depth depth = 1 depth = 2 depth = 3 depth = 5 depth = 10 

Training error 0.22 0.13 0.10 0.03 0.00 

Decision 
boundary 
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Training error reduces with depth 

What happens when we increase depth? 
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Deeper trees è lower training error 
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Tree depth 
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Depth 10 (training error = 0.0) 
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Training error = 0: Is this model perfect? 
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Depth 10 (training error = 0.0) 

NOT PERFECT 
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Why training error reduces with depth? 
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Root 
22  18 

excellent 
9    0 

good 
9   4 

 

fair 
4   14 

Loan status:  
Safe  Risky 

Credit? 

Tree Training 
error 

(root) 0.45 

split on credit 0.20 

Safe Safe Risky Training error 
improved by 0.25 

because of the split 

Split on credit 
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Feature split selection algorithm 
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•  Given a subset of data M (a node in a tree) 
 

•  For each feature hi(x): 

1.  Split data of M according to feature hi(x)  
 

2. Compute classification error split 
 

•  Chose feature h*(x) with lowest 
classification error 

By design, each split 
reduces training error 
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Decision trees overfitting  
on loan data  
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Principle of Occam’s razor:  
Simpler trees are better 
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Principle of Occam’s Razor 
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“Among competing hypotheses, the one with 
fewest assumptions should be selected”,  
William of Occam, 13th Century 

OR 
 
Diagnosis 1: 2 diseases 

Two diseases D1 and D2 where 
D1 explains S1, D2 explains S2  
 

 
Diagnosis 2: 1 disease 

Disease D3  explains both 
symptoms S1 and S2  
 

Symptoms: S1 and S2 SIMPLER 
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Occam’s Razor for decision trees 
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When two trees have similar classification error 
on the validation set, pick the simpler one 

Complexity Train 
error 

Validation 
error 

Simple  0.23 0.24 

Moderate  0.12 0.15 

Complex  0.07 0.15 

Super complex  0 0.18 Overfit 

Same validation 
error 



Machine Learning Specialization 27	

Which tree is simpler?  
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OR 
SIMPLER 
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Modified tree learning problem 
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T1(X) T2(X) 

T4(X) 

Find a “simple” decision tree with low classification error 

Complex trees Simple trees 
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How do we pick simpler trees? 
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1.  Early Stopping: Stop learning algorithm 
before tree become too complex 

2. Pruning: Simplify tree after  
learning algorithm terminates  
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Early stopping for  
learning decision trees 
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Deeper trees è  
Increasing complexity 
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Model complexity increases with depth 

               Depth = 1                                Depth = 2                                  Depth = 10 
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Early stopping condition 1:  
Limit the depth of a tree 
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Restrict tree learning to shallow trees? 
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Complex 
trees 

True error 

Training error 

Simple 
trees 

Tree depth 

max_depth	
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Early stopping condition 1: 
Limit depth of tree 
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Stop tree building when 
depth = max_depth 

max_depth	

Tree depth 
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Picking value for max_depth??? 
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Validation set or 
cross-validation 

max_depth	

Tree depth 
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Early stopping condition 2:  
Use classification error to  
limit depth of tree 
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Decision tree recursion review 
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Loan status:  
Safe Risky 

Credit? 

Safe 

Root 
     22    18 

excellent 
16     0 

fair 
1     2 

 

poor 
5     16 

Build decision stump 
with subset of data 

where Credit = poor 

Build decision stump 
with subset of data 
where Credit = fair 
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Split selection for credit=poor 
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No split improves 
classification error 
è Stop! 

Splits for 
credit=poor 

Classification  
error 

(no split)  0.45 

split on term  0.24 

split on income  0.24 

Credit? 

Safe 

Root 
     22    18 

excellent 
16     0 

fair 
1     2 

 

poor 
5     16 

Loan status:  
Safe Risky 

Splits for 
credit=poor 

Classification  
error 

(no split)  0.24 
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Early stopping condition 2:  
No split improves classification error 
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Credit? 

Safe Risky 

Early stopping 
condition 2 

Root 
     22    18 

excellent 
16     0 

fair 
1     2 

 

poor 
5     16 

Splits for 
credit=poor 

Classification  
error 

(no split)  0.24 

split on term  0.24 

split on income  0.24 

Build decision stump 
with subset of data 
where Credit = fair 

Loan status:  
Safe Risky 
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Practical notes about stopping when 
classification error doesn’t decrease 

1.  Typically, add magic parameter ε  
-  Stop if error doesn’t decrease by more than ε

2.  Some pitfalls to this rule (see pruning section) 

3.  Very useful in practice 
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Early stopping condition 3:  
Stop if number of data points  
contained in a node is too small 
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Can we trust nodes with very few points? 
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Root 
     22    18 

excellent 
16     0 

fair 
1     2 

 

poor 
5     16 

Loan status:  
Safe Risky 

Credit? 

Safe 

Stop recursing Only 3 data 
points!  

Risky 
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Early stopping condition 3: 
Stop when data points in a node <= Nmin 
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Root 
     22    18 

excellent 
16     0 

fair 
1     2 

 

poor 
5     16 

Credit? 

Safe Risky 

Example: Nmin = 10  

Risky 

Early stopping 
condition 3 

Loan status:  
Safe Risky 
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Summary of decision trees  
with early stopping 

©2015-2016 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 50	

Early stopping: Summary 
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1.  Limit tree depth: Stop splitting after a 
certain depth 

2.  Classification error: Do not consider any 
split that does not cause a sufficient 
decrease in classification error 

3.  Minimum node “size”: Do not split an 
intermediate node which contains  
too few data points 
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Recursion 

Stopping 
conditions 1 & 2 
 

or 
 

Early stopping 
conditions 1, 2 & 3 

Greedy decision tree learning 
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•  Step 1: Start with an empty tree 
 

•  Step 2: Select a feature to split data 
 

•  For each split of the tree: 

•  Step 3: If nothing more to,           
make predictions 
 

•  Step 4: Otherwise, go to Step 2 & 
continue (recurse) on this split 
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Overfitting in Decision Trees:  
Pruning 
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OPTIONAL 
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Stopping condition summary 

•  Stopping condition: 
1.  All examples have the same target value 

2.  No more features to split on 

•  Early stopping conditions: 
1.  Limit tree depth 

2.  Do not consider splits that do not cause a 
sufficient decrease in classification error 

3.  Do not split an intermediate node which 
contains too few data points 
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Exploring some challenges  
with early stopping conditions 
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Challenge with early stopping condition 1 
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Complex 
trees 

True error 

Training error 

Simple 
trees 

Tree depth 
max_depth	

Hard	to	know	exactly	
when	to	stop 
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Is early stopping condition 2 a good idea? 
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Tree depth 
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Stop because of 
zero decrease in 

classification error 
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Early stopping condition 2:  
Don’t stop if error doesn’t decrease??? 
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y values  
True  False 

Root 
2    2 

Error =            . 
                
         = 

Tree Classification error 

(root) 0.5   

x[1] x[2] y 
False False False 

False True True 

True False True 

True True False 

y = x[1] xor x[2] 
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Consider split on x[1]  
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y values  
True  False 

Root 
2    2 

Error =            . 
                
         = 

Tree Classification error 

(root) 0.5 

Split on x[1] 0.5 

True 
1     1 

False 
1     1 

x[1] 

x[1] x[2] y 
False False False 

False True True 

True False True 

True True False 

y = x[1] xor x[2] 
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Consider split on x[2]  
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y values  
True  False 

Root 
2    2 

Error =            . 
                
         = 

Tree Classification error 

(root) 0.5 

Split on x[1] 0.5 

Split on x[2] 0.5 

True 
1     1 

False 
1     1 

x[2] 

Neither features 
improve training error…  
Stop now??? 

x[1] x[2] y 
False False False 

False True True 

True False True 

True True False 

y = x[1] xor x[2] 
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Final tree with early stopping condition 2 
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y values  
True  False 

Root 
2    2 

True 

x[1] x[2] y 
False False False 

False True True 

True False True 

True True False 

y = x[1] xor x[2] 

Tree Classification  
error 

with early stopping 
condition 2 

 0.5 
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Without early stopping condition 2 
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y values  
True  False 

Root 
2    2 

True 
1     1 

False 
1     1 

x[1] 

True 
0     1 

x[2] 

True 
1     0 

False 
1     0 

x[2] 

False 
0     1 

True False False True 

Tree Classification  
error 

with early stopping 
condition 2 

 0.5 

without early 
stopping condition 2 

0.0 

x[1] x[2] y 
False False False 

False True True 

True False True 

True True False 

y = x[1] xor x[2] 
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Early stopping condition 2: Pros and Cons 

•  Pros: 
-  A reasonable heuristic for early stopping to 

avoid useless splits 

 

•  Cons: 
-  Too short sighted: We may miss out on “good” 

splits may occur right after “useless” splits 
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Tree pruning 
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Two approaches to picking simpler trees 
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1.  Early Stopping: Stop the learning 
algorithm before the tree becomes 
too complex 

2.  Pruning: Simplify the tree after the 
learning algorithm terminates  

Complements early stopping 
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Pruning: Intuition 
Train a complex tree, simplify later 
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Complex Tree 

Simplify 

Simpler Tree 
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Pruning motivation 
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Training Error 

Tree depth 

Don’t stop 
too early 

Complex 
tree 

Simplify after  
tree is built 

Simple 
tree 
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Example 1: Which tree is simpler? 
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OR 
Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Term? 

Risky Safe 

Risky 

excellent	 poor	

5 years	
low	high	

5 years	3 years	

Credit? 

Start 

Safe Safe 

excellent	 poor	

Risky 

fair	

SIMPLER 
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Example 2: Which tree is simpler??? 
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OR 
Credit? 

Start 

Safe 

Risky 

excellent	 poor	

bad	

Safe Safe 

Risky 
good	 fair	

Term? 

Start 

3 years	 5 years	

Risky Safe 
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Simple measure of complexity of tree 
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Credit? 

Start 

Safe 

Risky 

excellent	 poor	

bad	

Safe Safe 

Risky 
good	 fair	

L(T) = # of leaf nodes 
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Which tree has lower L(T)? 
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OR 
Credit? 

Start 

Safe 

Risky 

excellent	 poor	

bad	

Safe Safe 

Risky 
good	 fair	

Term? 

Start 

3 years	 5 years	

Risky Safe 

L(T1) = 5 L(T2) = 2 

SIMPLER 
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Balance simplicity & predictive power 

Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Term? 

Risky Safe 

Risky 

excellent	 poor	

5 years	
low	high	

5 years	3 years	

Risky 

Start 

Too complex, risk of overfitting 

Too simple, high 
classification error 
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Want to balance: 

i.  How well tree fits data 

ii.  Complexity of tree 

 

Total cost = 

 measure of fit + measure of complexity 
               

©2015-2016 Emily Fox & Carlos Guestrin 

(classification error) 
Large # = bad fit to 

training data 

Large # = likely to 
overfit 

want to balance 

Desired total quality format 
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Consider specific total cost 

Total cost = 
 classification error + number of leaf nodes 
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Error(T) L(T)  
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Balancing fit and complexity 

Total cost C(T) = Error(T) + λ L(T)  

   

©2015-2016 Emily Fox & Carlos Guestrin 

tuning parameter 
If λ=0: 

 

If λ=∞: 	
 

If λ in between:  
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Use total cost to simplify trees 
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Total quality 
based pruning 

Complex tree 

Simpler tree 
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Tree pruning algorithm 
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Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Risky 

excellent	 poor	

5 years	
low	high	

Pruning Intuition 

Tree T 

Term? 

Risky Safe 

5 years	3 years	
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Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Risky 

excellent	 poor	

5 years	
low	high	

Term? 

Risky Safe 

5 years	3 years	

Step 1: Consider a split 

Tree T 

Candidate for 
pruning 
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Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Risky 

excellent	 poor	

5 years	
low	high	

Step 2: Compute total cost C(T) of split 

C(T) = Error(T) + λ L(T)  

Tree Error #Leaves Total 

T 0.25 

λ = 0.3 

Tree T 

Term? 

Risky Safe 

5 years	3 years	

Candidate for 
pruning 
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Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Safe Risky 

excellent	 poor	

5 years	
low	high	

Step 2: “Undo” the splits on Tsmaller 

Replace split 
by leaf node? 

Tree Tsmaller
 

C(T) = Error(T) + λ L(T)  

Tree Error #Leaves Total 

T 0.25 6 0.43 

Tsmaller 0.26 

λ = 0.3 
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Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Safe Risky 

excellent	 poor	

5 years	
low	high	

Prune if total cost is lower: C(Tsmaller) ≤ C(T)  

Replace split 
by leaf node? 

Tree Tsmaller
 

C(T) = Error(T) + λ L(T)  

Tree Error #Leaves Total 

T 0.25 6 0.43 

Tsmaller 0.26 5 0.41 

λ = 0.3 

Worse training 
error but lower 

overall cost 

YES! 
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Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Safe Risky 

excellent	 poor	

5 years	
low	high	

Step 5: Repeat Steps 1-4 for every split 

Decide if each 
split can be 

“pruned” 
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Decision tree pruning algorithm 
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•  Start at bottom of tree T and traverse up,  
apply prune_split to each decision node M 

•  prune_split(T,M): 

1.  Compute total cost of tree T using   
C(T) = Error(T) + λ L(T) 

2.  Let Tsmaller be tree after pruning subtree 
below M 

3.  Compute total cost complexity of Tsmaller  
C(Tsmaller) = Error(Tsmaller) + λ L(Tsmaller) 

4.  If C(Tsmaller) < C(T), prune to Tsmaller 
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Summary of overfitting in  
decision trees 
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•  Identify when overfitting in decision trees 

•  Prevent overfitting with early stopping 

-  Limit tree depth 

-  Do not consider splits that do not reduce 
classification error 

-  Do not split intermediate nodes with only 
few points 

•  Prevent overfitting by pruning complex trees 

-  Use a total cost formula that balances 
classification error and tree complexity 

-  Use total cost to merge potentially complex 
trees into simpler ones 

©2015-2016 Emily Fox & Carlos Guestrin 

What you can do now… 
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Thank you to Dr. Krishna Sridhar  

Dr. Krishna Sridhar 

Staff Data Scientist, Dato, Inc. 
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