

Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

©2015-2016 Emily Fox & Carlos Guestrir

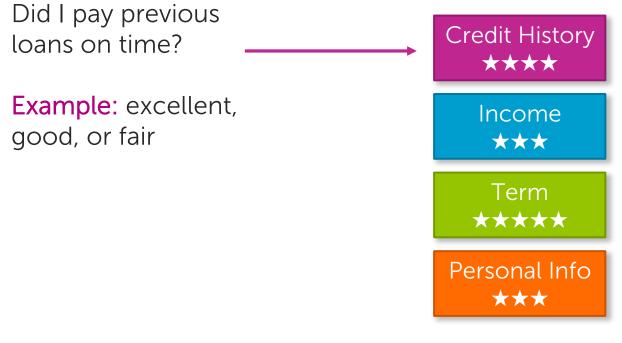
Predicting potential loan defaults

©2015-2016 Emily Fox & Carlos Guestrin

What makes a loan risky?

©2015-2016 Emily Fox & Carlos Guestrin

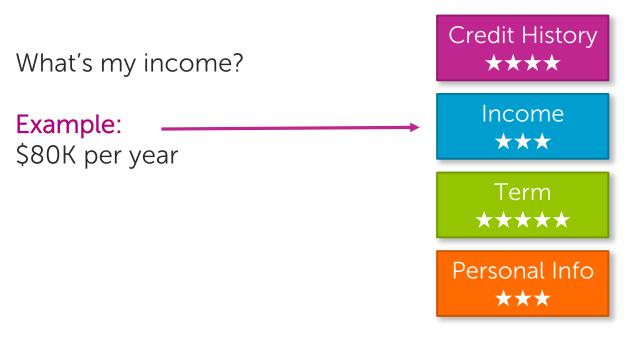
Credit history explained



©2015-2016 Emily Fox & Carlos Guestrin

Machine I

Income

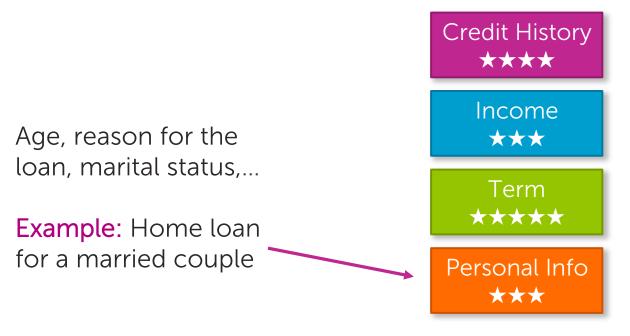


©2015-2016 Emily Fox & Carlos Guestrin

Loan terms

©2015-2016 Emily Fox & Carlos Guestrin

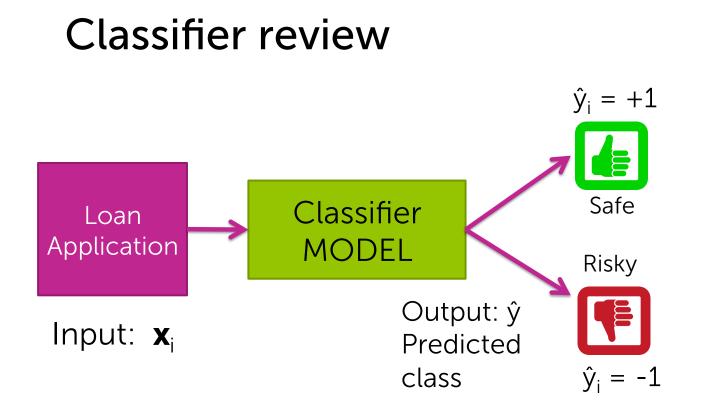
Personal information



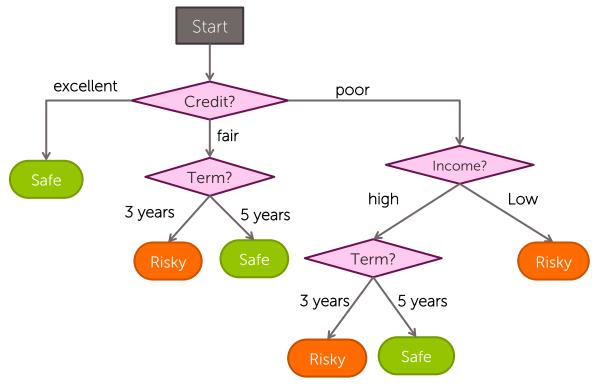
©2015-2016 Emily Fox & Carlos Guestrin

Intelligent application

©2015-2016 Emily Fox & Carlos Guestrin



This module ... decision trees

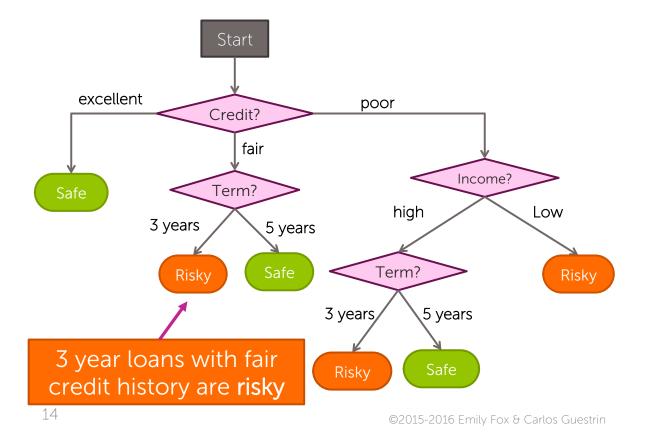


©2015-2016 Emily Fox & Carlos Guestrin

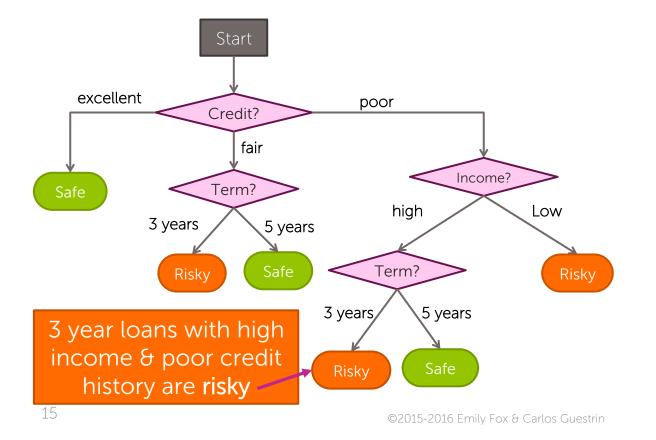
Decision trees: Intuition

©2015-2016 Emily Fox & Carlos Guestrin

What does a decision tree represent?

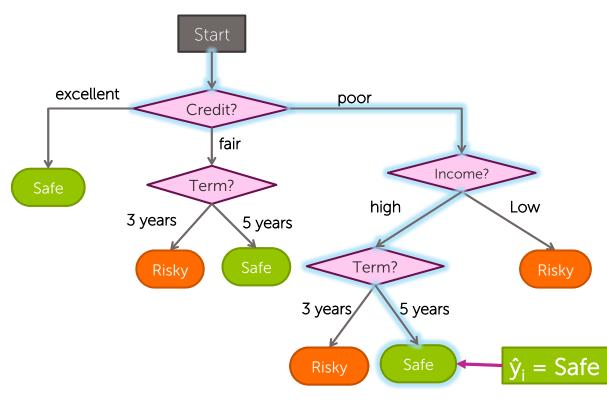


What does a decision tree represent?



Scoring a loan application

 $\mathbf{x}_{i} =$ (Credit = poor, Income = high, Term = 5 years)

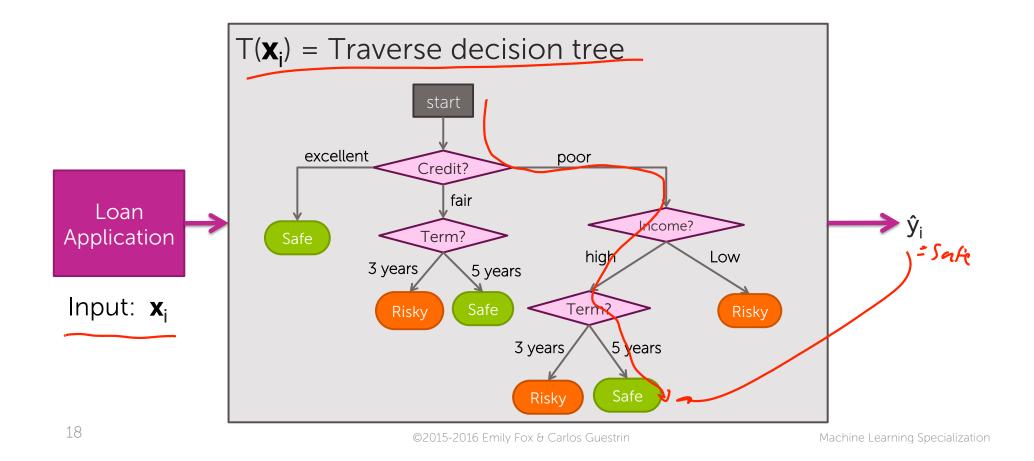


©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

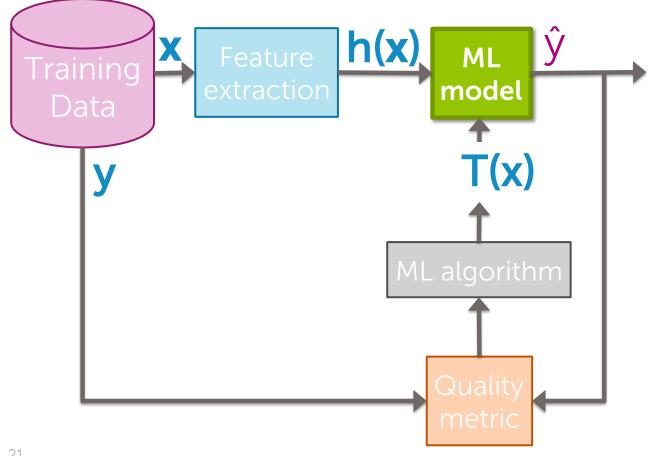
16

Decision tree model



Decision tree learning task

©2015-2016 Emily Fox & Carlos Guestrin



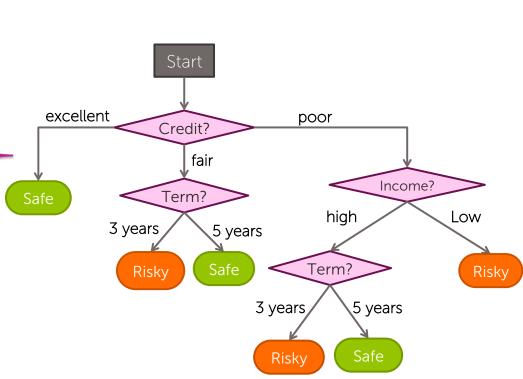
Machine Learning Specialization

21

©2015-2016 Emily Fox & Carlos Guestrin

Learn decision tree from data?

K.(X)	らっとう	$h_3(x)$	Lorg
Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

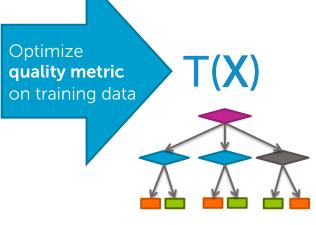


©2015-2016 Emily Fox & Carlos Guestrin

Decision tree learning problem

Training data: N observations (\mathbf{x}_i, y_i)

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe



Quality metric: Classification error

• Error measures fraction of mistakes

Error = <u># incorrect predictions</u> # examples

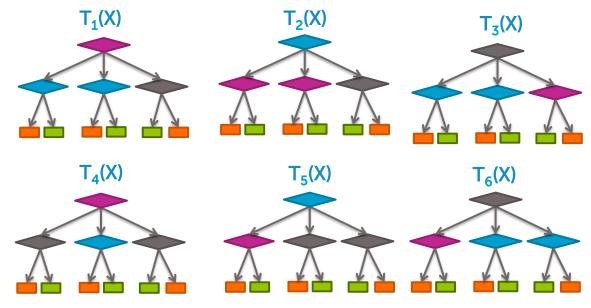
- Best possible value : 0.0
- Worst possible value: 1.0

Find the tree with lowest classification error

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard! (NP-hard problem)



©2015-2016 Emily Fox & Carlos Guestrin

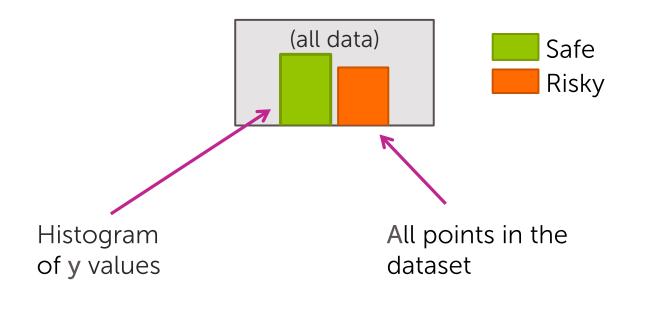
Simple (greedy) algorithm finds "good" tree

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

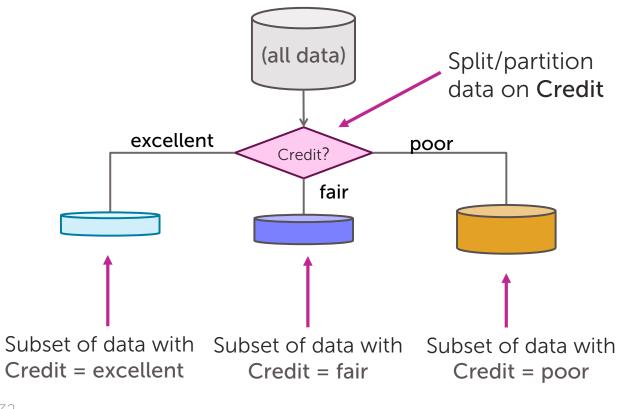
Greedy decision tree learning: Algorithm outline

©2015-2016 Emily Fox & Carlos Guestrin

Step 1: Start with an empty tree



Step 2: Split on a feature

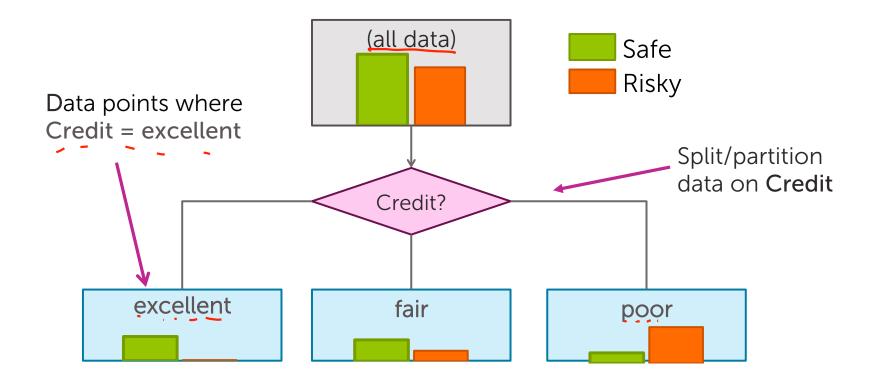


Machine Learning Specialization

32

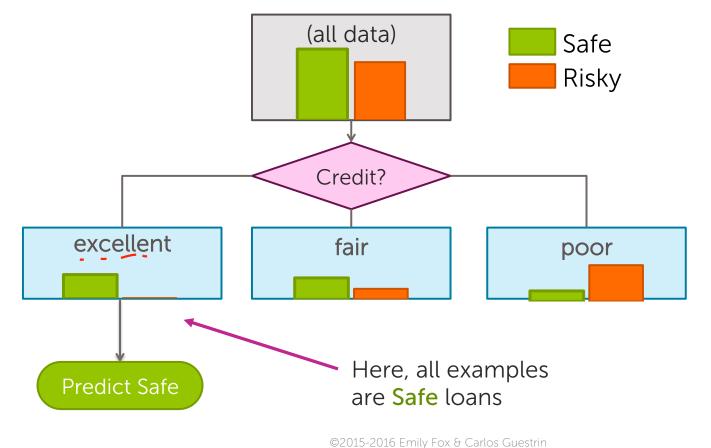
©2015-2016 Emily Fox & Carlos Guestrin

Feature split explained

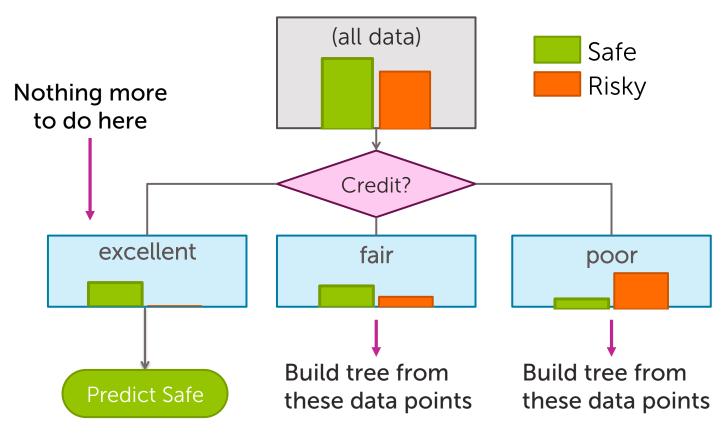


©2015-2016 Emily Fox & Carlos Guestrin

Step 3: Making predictions

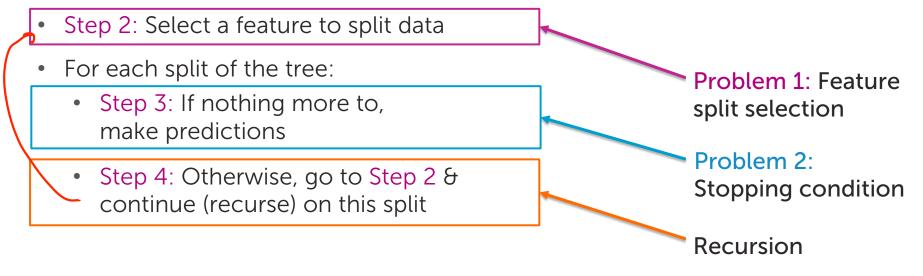


Step 4: Recursion



©2015-2016 Emily Fox & Carlos Guestrin

Greedy decision tree learning



Feature split learning

Decision stump learning

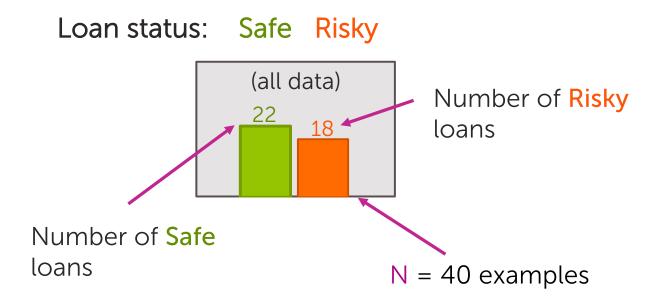
©2015-2016 Emily Fox & Carlos Guestrin

Start with the data

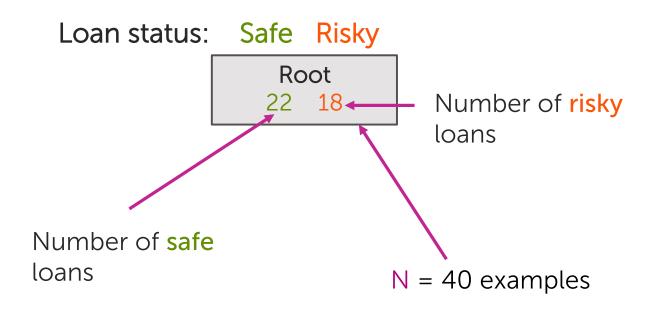
Assume N = 40, 3 features

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Start with all the data

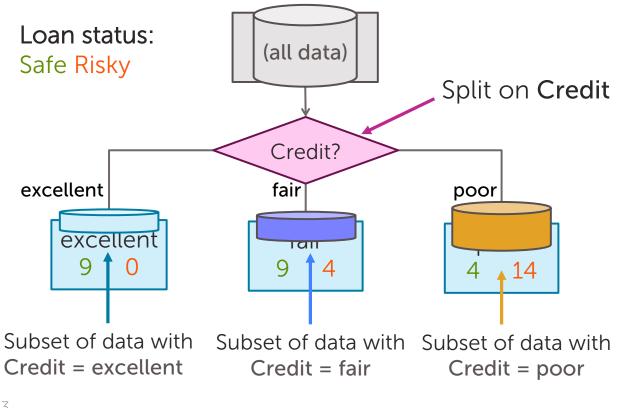


Compact visual notation: Root node



©2015-2016 Emily Fox & Carlos Guestrin

Decision stump: Single level tree

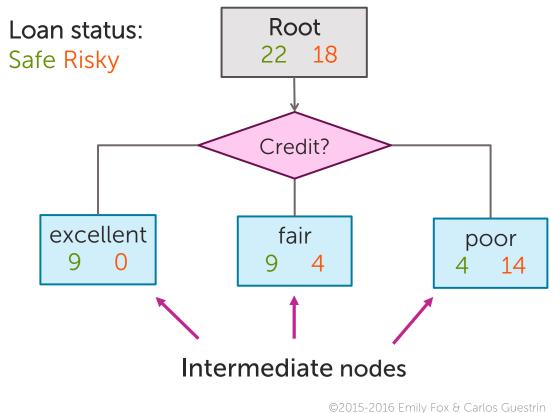


Machine Learning Specialization

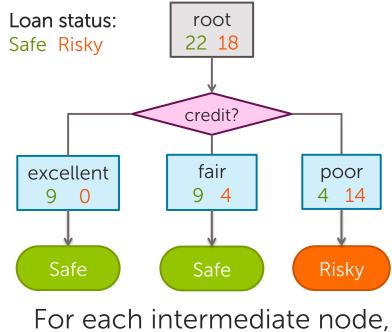
43

©2015-2016 Emily Fox & Carlos Guestrin

Visual Notation: Intermediate nodes



Making predictions with a decision stump



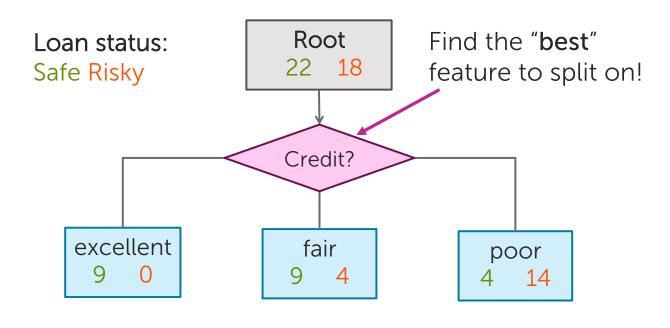
set $\hat{\mathbf{y}} = \mathbf{majority value}$

©2015-2016 Emily Fox & Carlos Guestrin

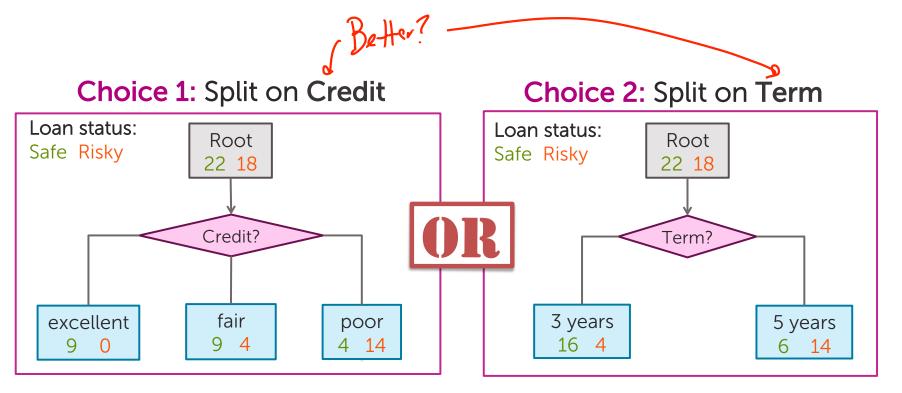
Selecting best feature to split on

©2015-2016 Emily Fox & Carlos Guestrin

How do we learn a decision stump?

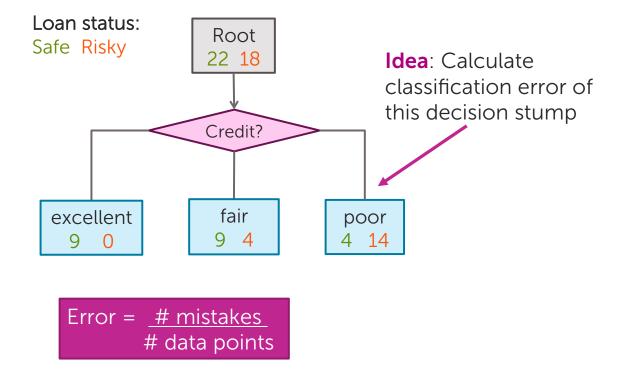


How do we select the best feature?



©2015-2016 Emily Fox & Carlos Guestrin

How do we measure effectiveness of a split?

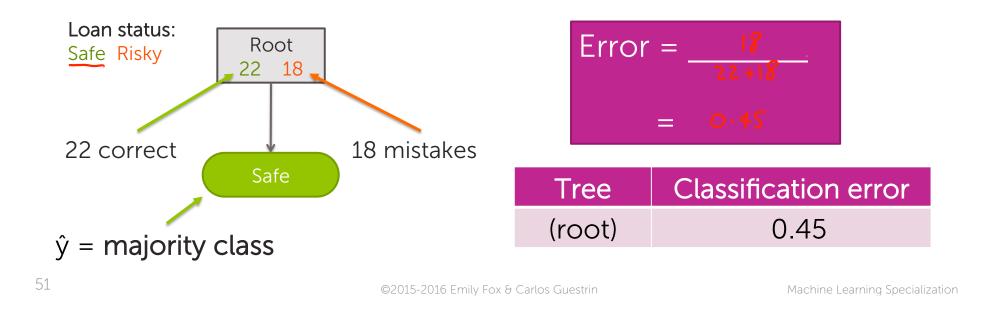


Machine Learning Specialization

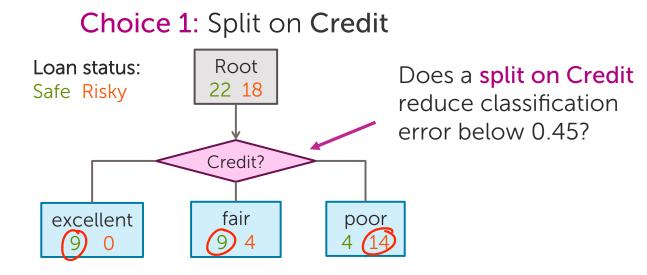
©2015-2016 Emily Fox & Carlos Guestrin

Calculating classification error

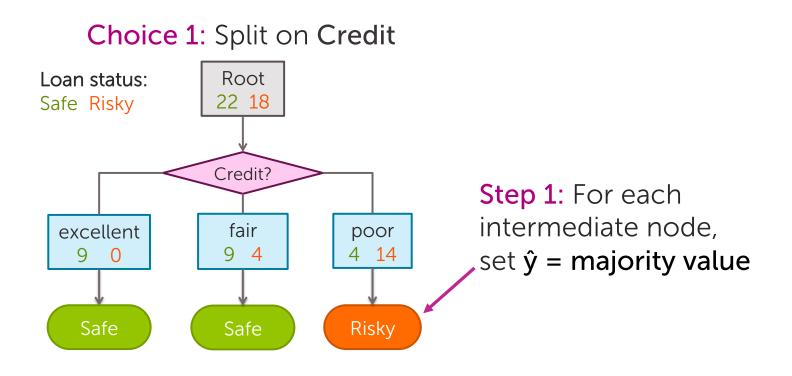
- Step 1: ŷ = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ for this data



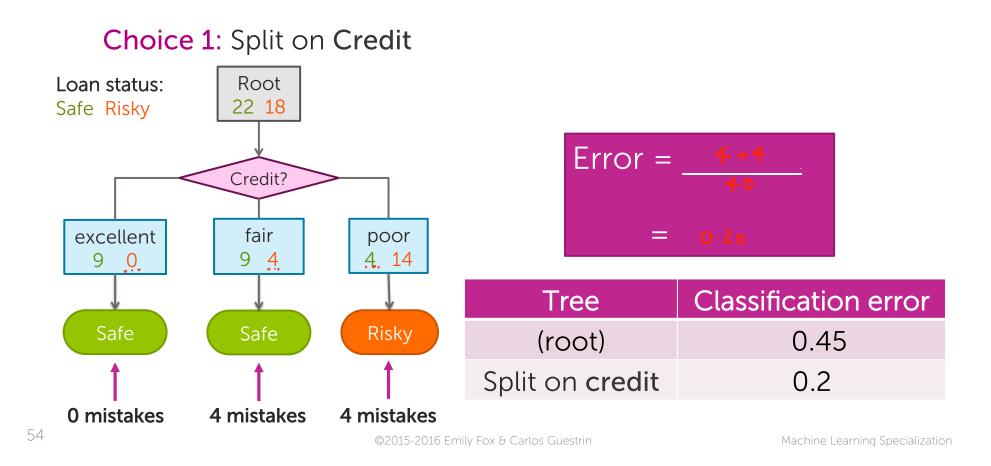
Choice 1: Split on credit history?



How good is the split on **Credit**?

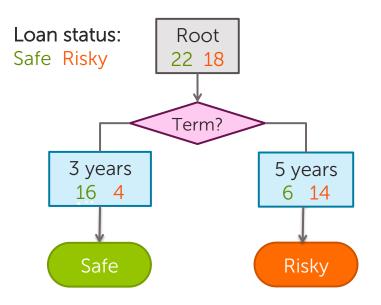


Split on Credit: Classification error



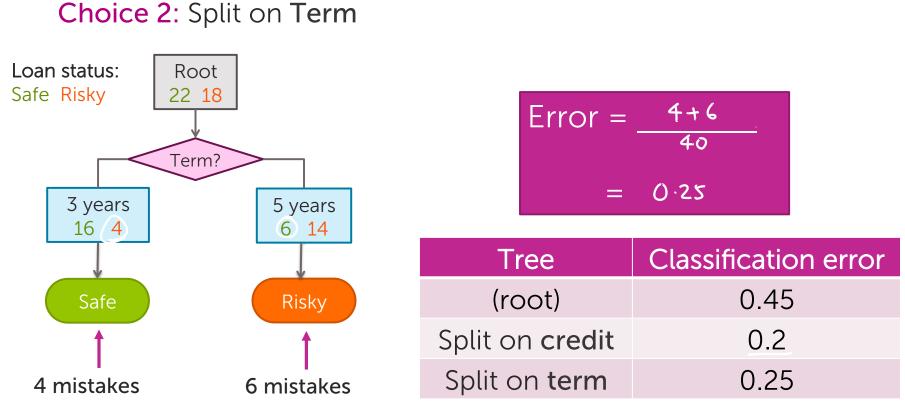
Choice 2: Split on Term?

Choice 2: Split on Term



©2015-2016 Emily Fox & Carlos Guestrin

Evaluating the split on Term

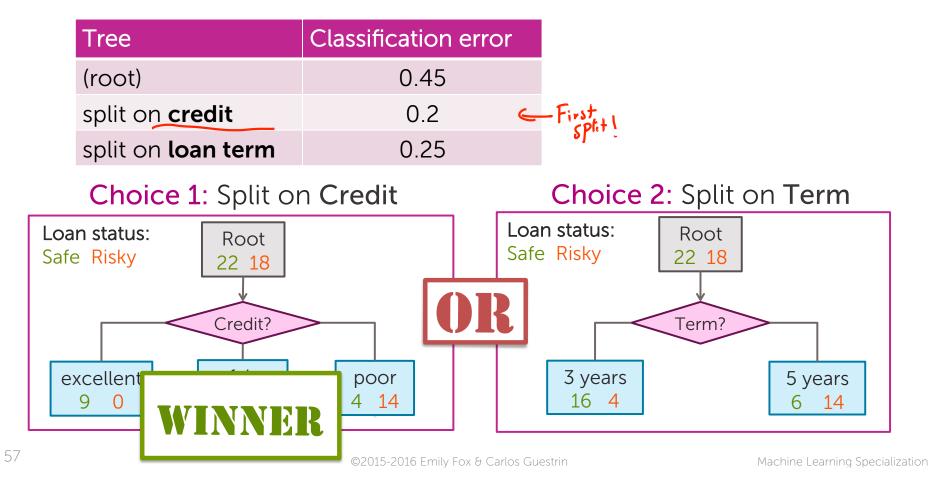


©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

56

Choice 1 vs Choice 2



Feature split selection algorithm

- Given a subset of data <u>M</u> (a node in a tree)
- For each feature $h_i(\mathbf{x})$: $\boldsymbol{\epsilon}$ credit, two, income
 - 1. Split data of M according to feature h_i(x)
 - 2. Compute classification error split
- Chose feature http://withlowest.classification.error

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

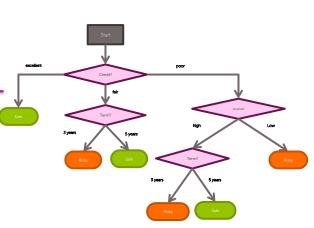
Decision Tree Learning: Recursion & Stopping conditions

©2015-2016 Emily Fox & Carlos Guestrin

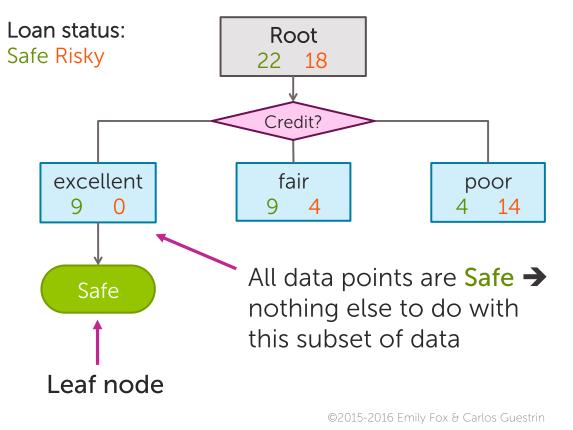
Learn decision tree from data?

٦

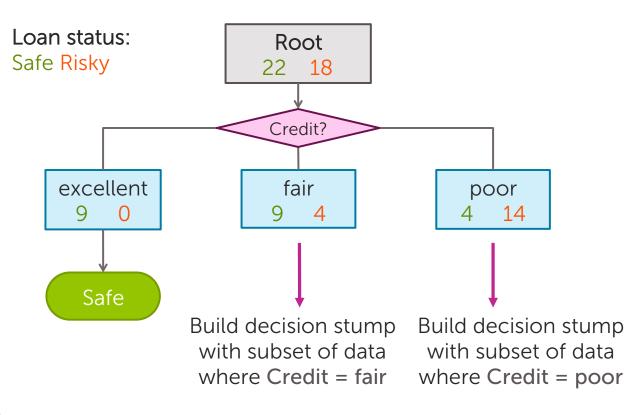
				. I
Credit	Term	Income	У	
excellent	3 yrs	high	safe	
fair	5 yrs	low	risky	
fair	3 yrs	high	safe	
poor	5 yrs	high	risky	
excellent	3 yrs	low	risky	
fair	5 yrs	low	safe	
poor	3 yrs	high	risky	
poor	5 yrs	low	safe	
fair	3 yrs	high	safe	



We've learned a decision stump, what next?

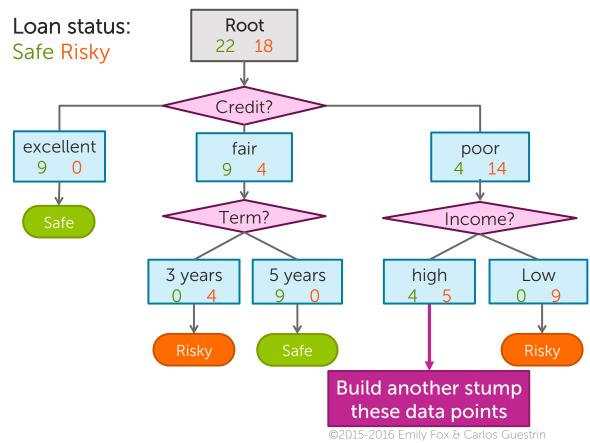


Tree learning = Recursive stump learning

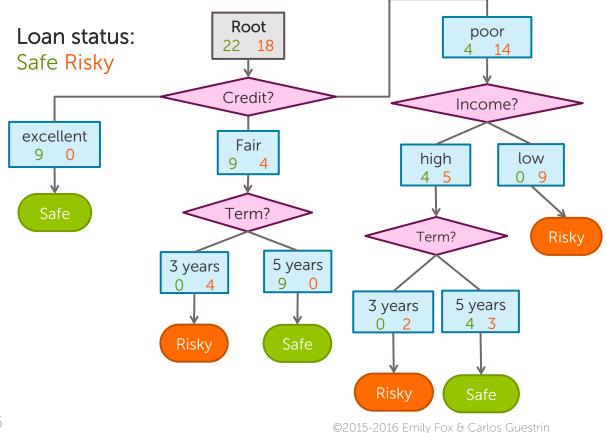


©2015-2016 Emily Fox & Carlos Guestrin

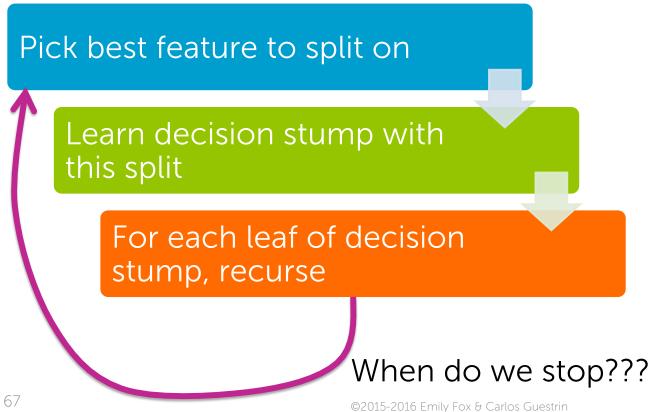
Second level



Final decision tree



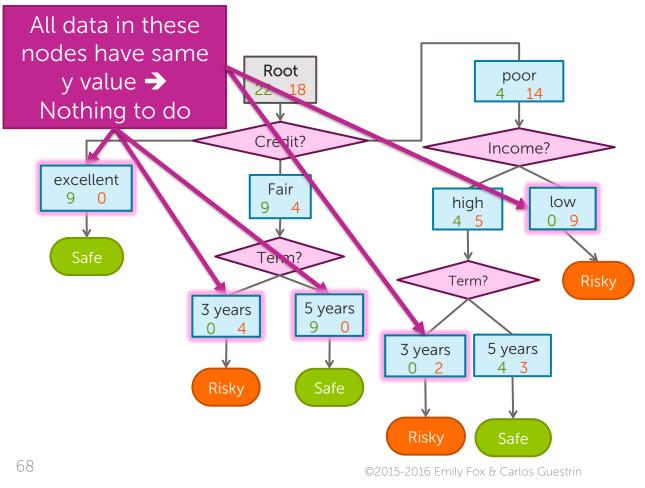
Simple greedy decision tree learning



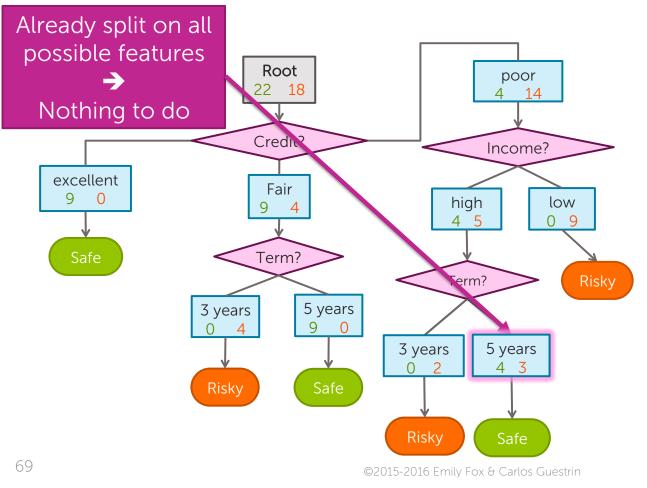
Machine Learning Specialization

67

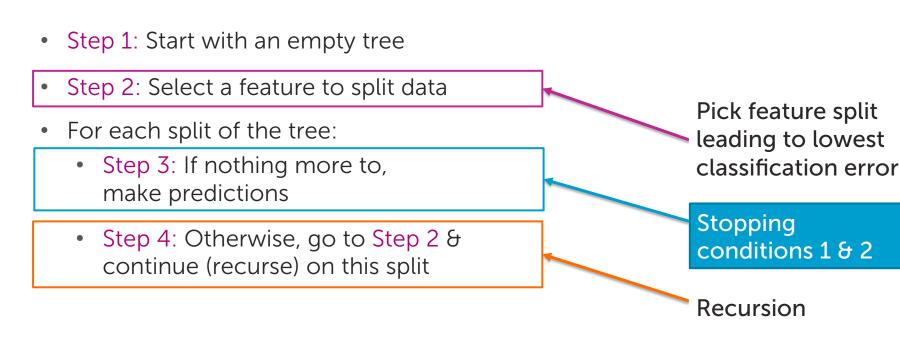
Stopping condition 1: All data agrees on y



Stopping condition 2: Already split on all features

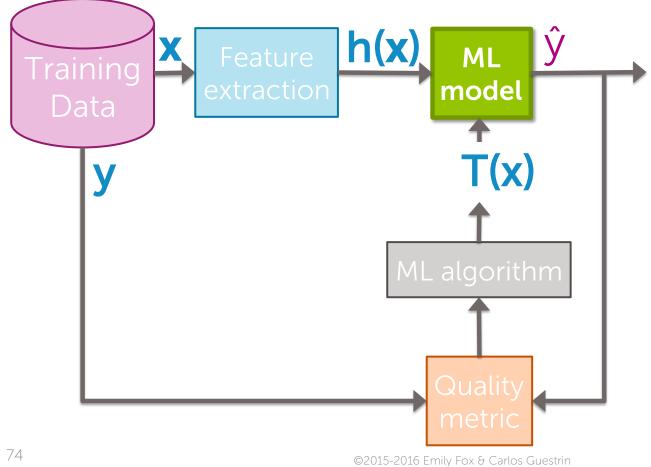


Greedy decision tree learning

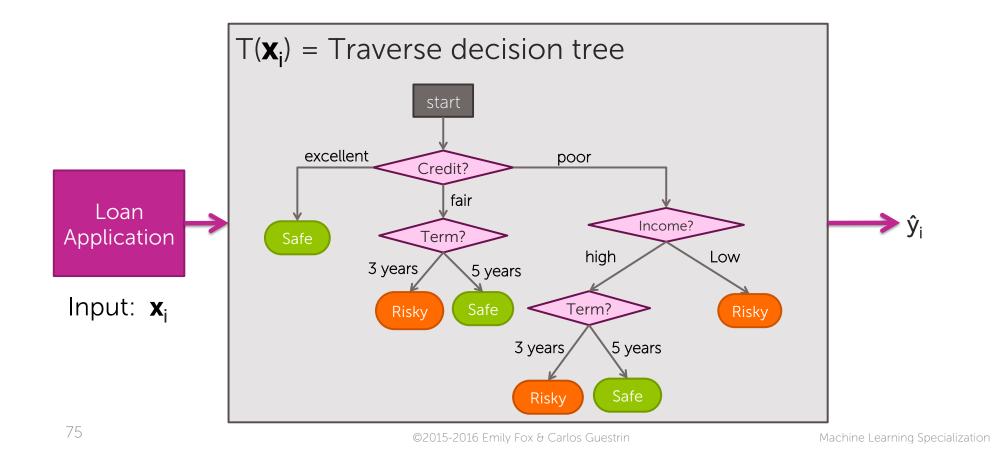


Predictions with decision trees

©2015-2016 Emily Fox & Carlos Guestrin

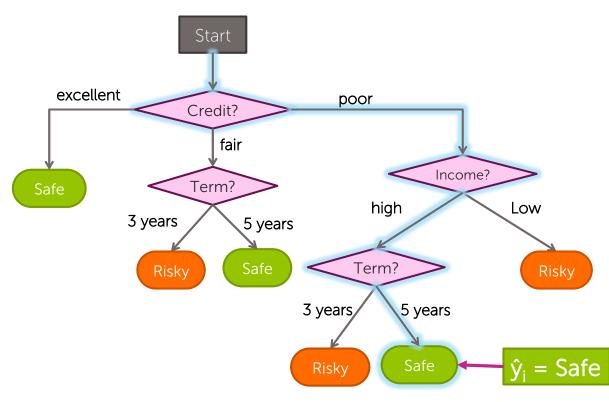


Decision tree model



Traversing a decision tree

 $\mathbf{x}_{i} =$ (Credit = poor, Income = high, Term = 5 years)



©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

76

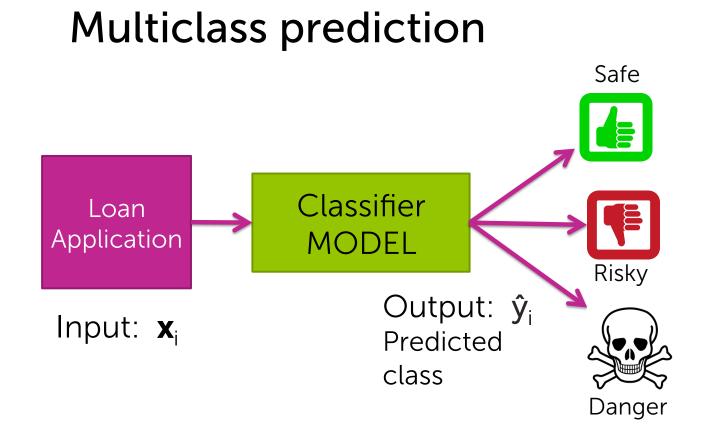
Decision tree prediction algorithm

predict(tree_node, input)

- If current tree_node is a leaf:
 - return majority class of data points in leaf
- else:
 - next_note = child node of tree_node whose feature value agrees with input
 - o return predict(next_note, input)

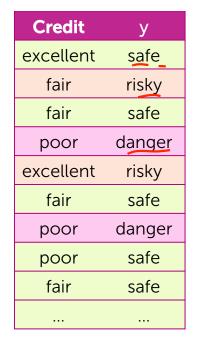
Multiclass classification & predicting probabilities

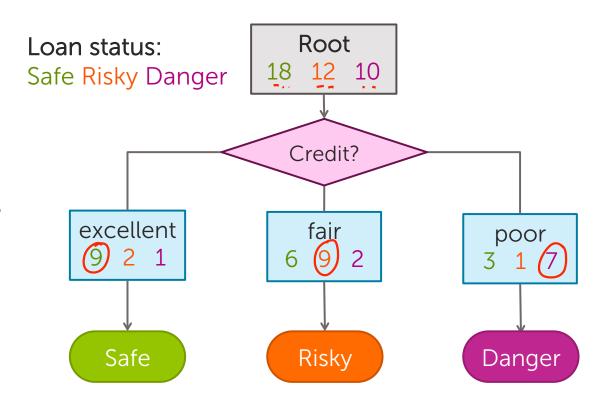
©2015-2016 Emily Fox & Carlos Guestrin



Multiclass decision stump

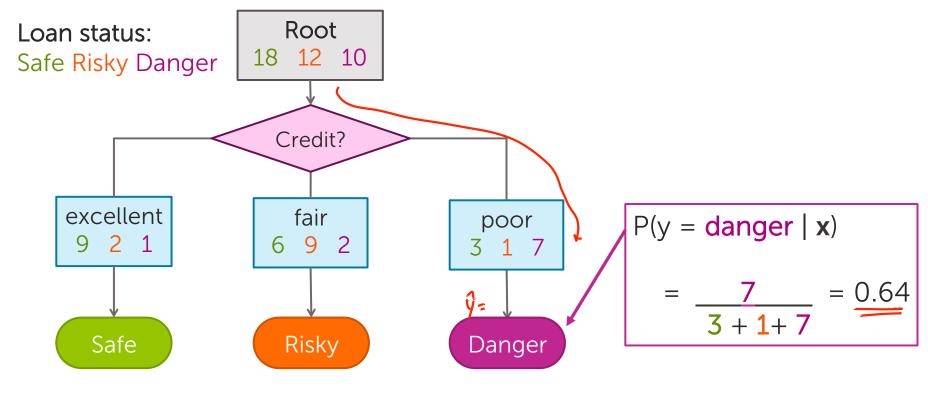
N = 40, 1 feature, 3 classes





©2015-2016 Emily Fox & Carlos Guestrin

Predicting probabilities with decision trees



©2015-2016 Emily Fox & Carlos Guestrin

Decision tree learning: *Real valued features*

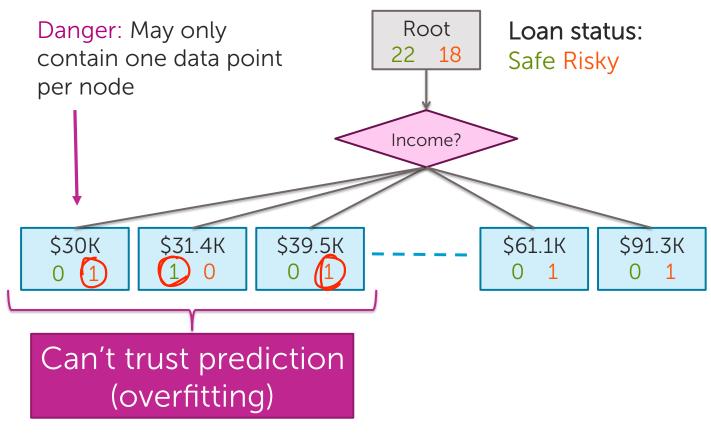
©2015-2016 Emily Fox & Carlos Guestrin

How do we use real values inputs?

Income	Credit	Term	У
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

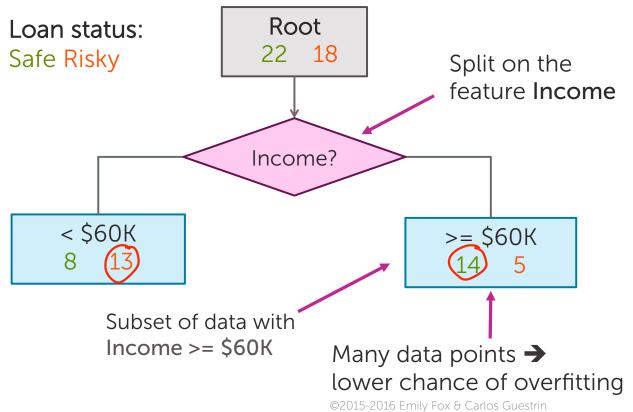
©2015-2016 Emily Fox & Carlos Guestrin

Split on each numeric value?



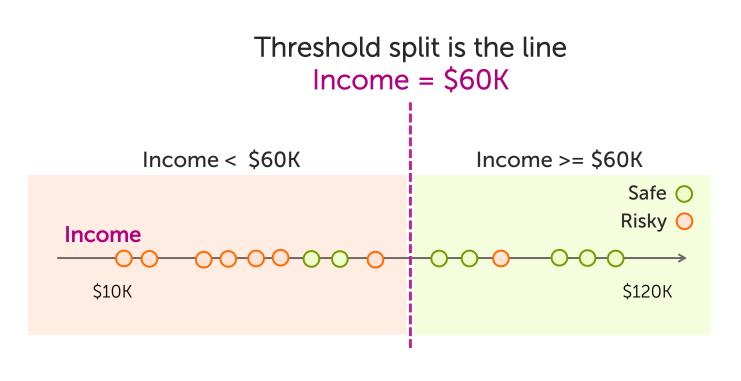
©2015-2016 Emily Fox & Carlos Guestrin

Alternative: Threshold split

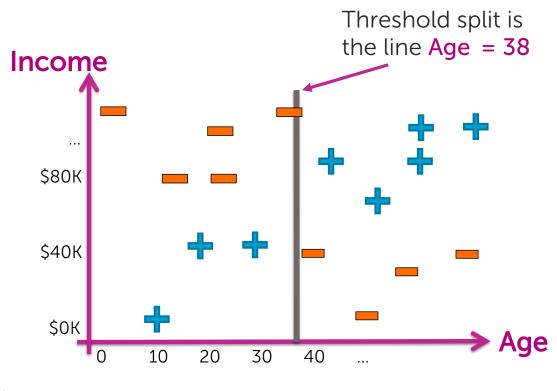


Machine Learning Specialization

Threshold splits in 1-D



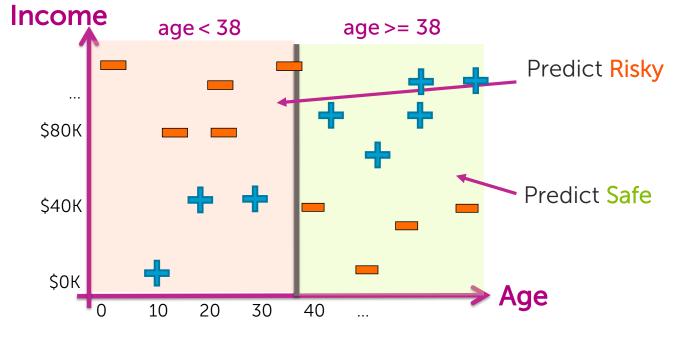
Visualizing the threshold split



91

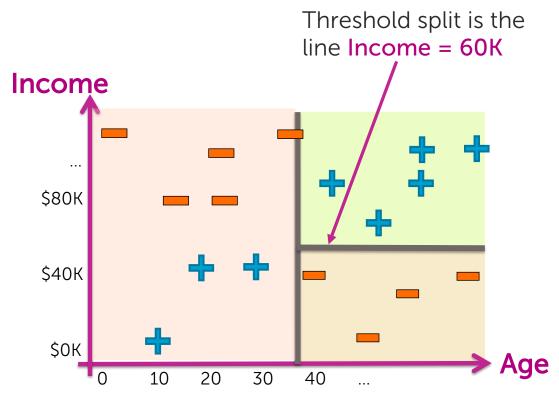
©2015-2016 Emily Fox & Carlos Guestrin

Split on Age >= 38



©2015-2016 Emily Fox & Carlos Guestrin

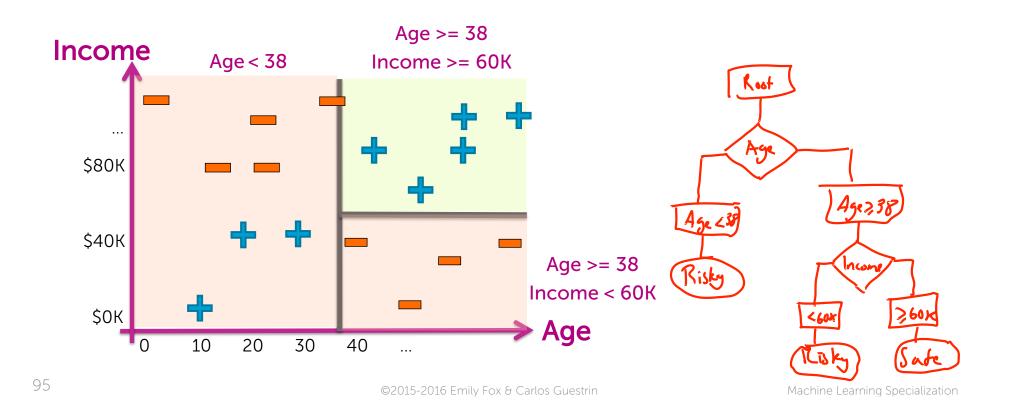
Depth 2: Split on Income >= \$60K



Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin

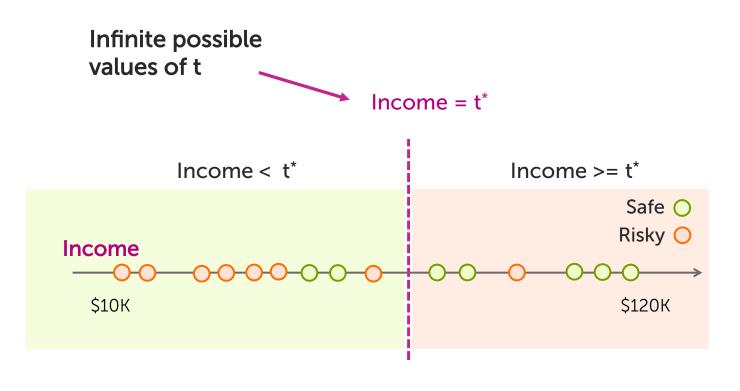
Each split partitions the 2-D space



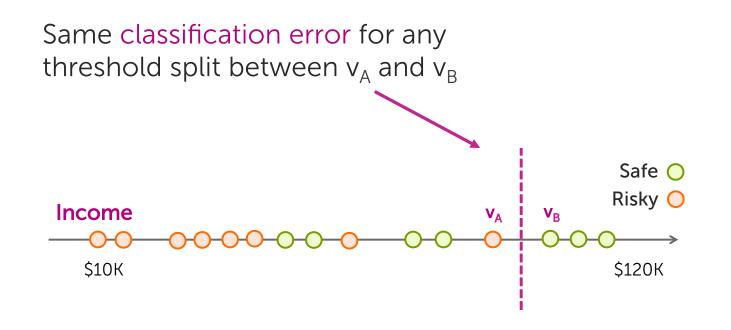
Finding the best threshold split

©2015-2016 Emily Fox & Carlos Guestrin

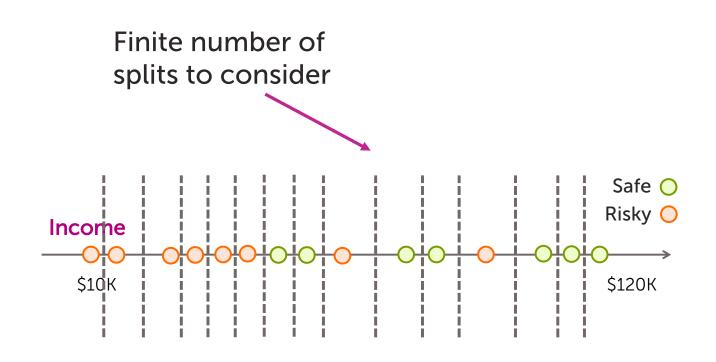
Finding the best threshold split



Consider a threshold between points



Only need to consider mid-points



Threshold split selection algorithm

Step 1: Sort the values of a feature h_i(x) :

Let $\{v_1, v_2, v_3, \dots v_N\}$ denote sorted values

• Step 2:

- Consider split $t_i = (v_i + v_{i+1}) / 2$
- Compute classification error for treshold split h_i(x) >= t_i

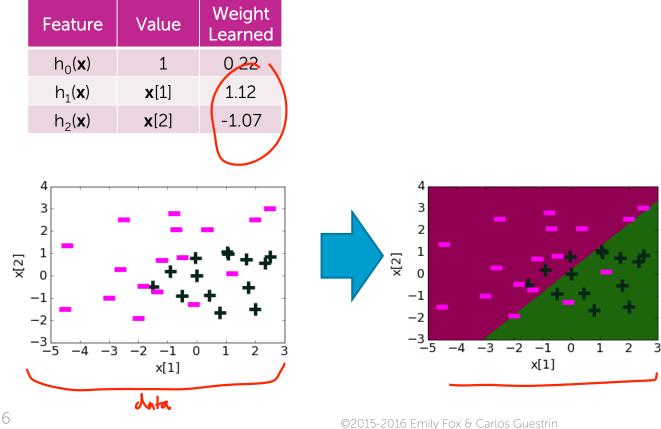
- Chose the t with the lowest classification error

Income

Decision trees vs logistic regression: Example

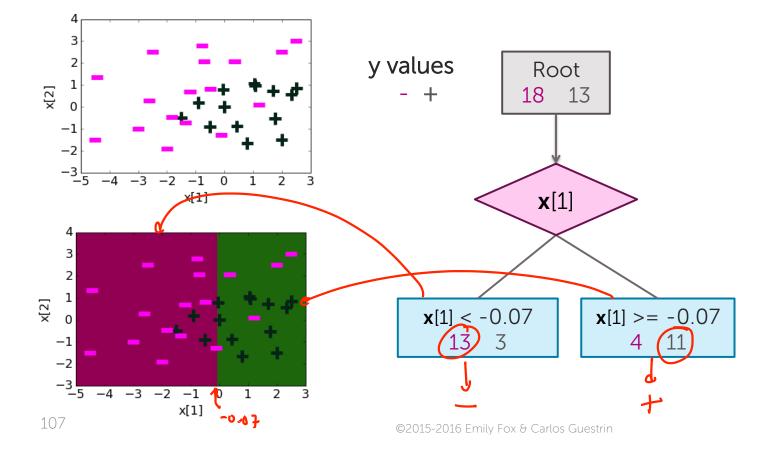
©2015-2016 Emily Fox & Carlos Guestrin

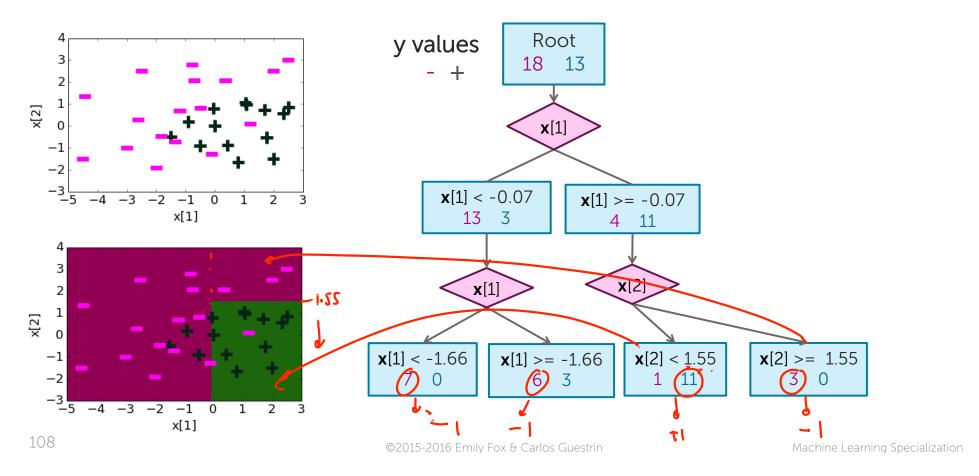
Logistic regression



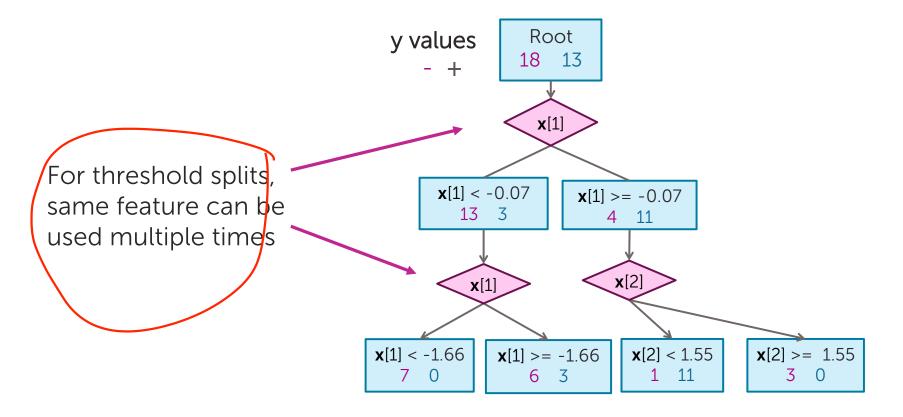
Machine Learning Specialization

106

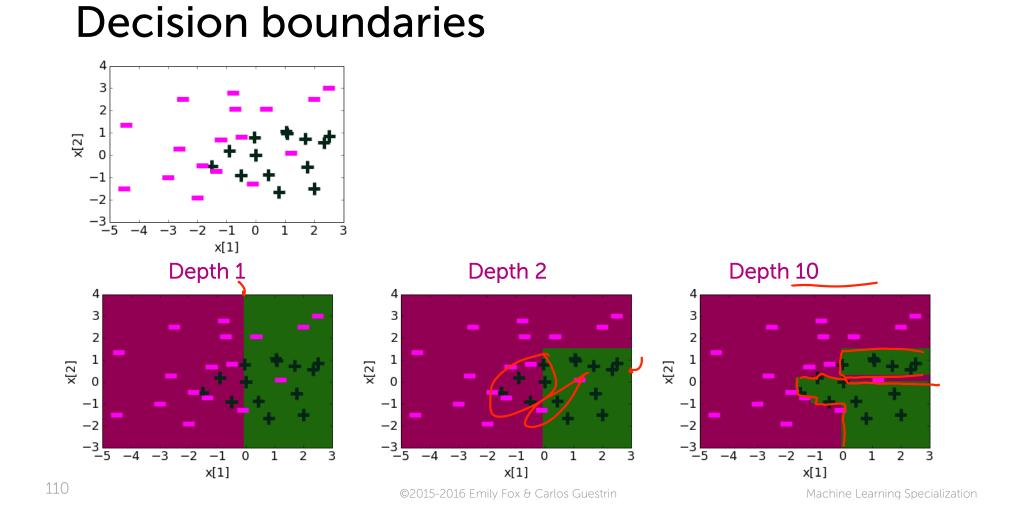




Threshold split caveat



©2015-2016 Emily Fox & Carlos Guestrin

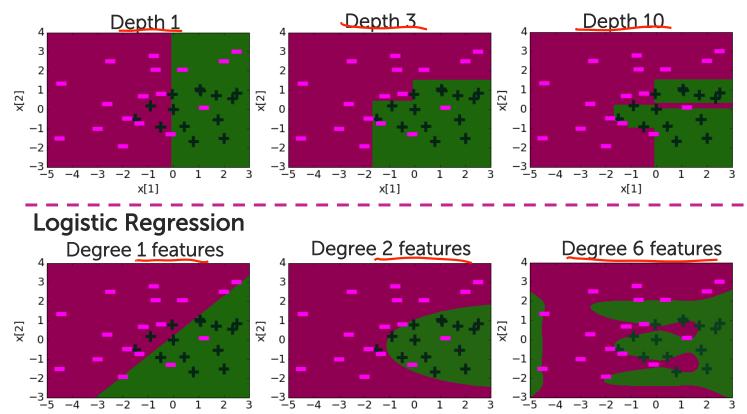


Comparing decision boundaries

Decision Tree

x[1]

111



x[1] ©2015-2016 Emily Fox & Carlos Guestrin

x[1]

Summary of decision trees

©2015-2016 Emily Fox & Carlos Guestrin

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions
 - Probability predictions
 - Multiclass classification

Thank you to Dr. Krishna Sridhar

Dr. Krishna Sridhar Staff Data Scientist, Dato, Inc.

115

©2015-2016 Emily Fox & Carlos Guestrin