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What makes a loan risky? 
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I want a to buy 
a new house! Credit  

★★★★	

Income 
★★★	

Term 
★★★★★	

Personal Info 
★★★	

Loan  
Application 
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Credit history explained 
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Credit History  
★★★★	

Income 
★★★	

Term 
★★★★★	

Personal Info 
★★★	

Did I pay previous 
loans on time? 
 
Example: excellent, 
good, or fair 
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Income 
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Credit History  
★★★★	

Income 
★★★	

Term 
★★★★★	

Personal Info 
★★★	

What’s my income? 
 
Example:  
$80K per year 
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Loan terms 
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Credit History  
★★★★	

Income 
★★★	

Term 
★★★★★	

Personal Info 
★★★	

How soon do I need to 
pay the loan? 
 
Example: 3 years,     
5 years,… 
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Personal information 
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Credit History  
★★★★	

Income 
★★★	

Term 
★★★★★	

Personal Info 
★★★	

Age, reason for the 
loan, marital status,… 
 
Example: Home loan 
for a married couple 
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Intelligent application 
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Safe 
✓	

Risky 
✘	

Risky 
 ✘	

Intelligent loan application  
review system 

Loan  
Applications 
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Classifier review 
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Loan 
Application 

Classifier 
MODEL 

Input:  xi 

Output: ŷ  
Predicted  
class 

Safe 

ŷi = +1 	

Risky 

ŷi = -1 	
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This module ... decision trees 
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Start 

Credit? 

Safe 

excellent	

Income? 

poor	

Term? 

Risky Safe 

fair	

5 years	3 years	

Risky 

Low	

Term? 

Risky Safe 

high	

5 years	3 years	
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Decision trees: Intuition 
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What does a decision tree represent? 
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3 year loans with fair 
credit history are risky 

Credit? 

Term? 

Risky 

Start 

fair	

3 years	

Safe 

Safe 

Income? 

Term? 

Risky Safe 

Risky 

excellent	 poor	

5 years	
Low	high	

5 years	3 years	
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What does a decision tree represent? 
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3 year loans with high 
income & poor credit 

history are risky 

Credit? 

Income? 

Term? 

Risky 

Start 

poor	

high	
Safe 

excellent	

Term? 

Risky Safe 

fair	

5 years	3 years	

Risky 

Low	

Safe 

5 years	3 years	
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Scoring a loan application 
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xi = (Credit = poor, Income = high, Term = 5 years) 

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

Start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

Start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	

ŷi = Safe	
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Decision tree model 

T(xi) = Traverse decision tree 
 
 
 
 
 
 

Loan 
Application 

Input:  xi 

ŷi	

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	
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Decision tree learning task 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y 

h(x) 

T(x) 

x ŷ 
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Learn decision tree from data? 
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Credit Term Income y 

excellent 3 yrs high safe 

fair 5 yrs low risky 

fair 3 yrs high safe 

poor 5 yrs high risky 

excellent 3 yrs low risky 

fair 5 yrs low safe 

poor 3 yrs high risky 

poor 5 yrs low safe 

fair 3 yrs high safe 

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

Start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	
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Decision tree learning problem 
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Optimize  
quality metric  
on training data 

Training data: N observations (xi,yi) 

Credit Term Income y 

excellent 3 yrs high safe 

fair 5 yrs low risky 

fair 3 yrs high safe 

poor 5 yrs high risky 

excellent 3 yrs low risky 

fair 5 yrs low safe 

poor 3 yrs high risky 

poor 5 yrs low safe 

fair 3 yrs high safe 

T(X) 
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Quality metric: Classification error 

•  Error measures fraction of mistakes 

- Best possible value : 0.0  

- Worst possible value: 1.0 
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Error =   # incorrect predictions  
                          # examples 
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Find the tree with lowest classification error 
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Credit Term Income y 

excellent 3 yrs high safe 

fair 5 yrs low risky 

fair 3 yrs high safe 

poor 5 yrs high risky 

excellent 3 yrs low risky 

fair 5 yrs low safe 

poor 3 yrs high risky 

poor 5 yrs low safe 

fair 3 yrs high safe 

T(X) 
Minimize  
classification error  
on training data 
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How do we find the best tree? 
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Exponentially large number of possible 
trees makes decision tree learning hard!
(NP-hard problem) 

T1(X) T2(X) T3(X) 

T4(X) T5(X) T6(X) 
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Simple (greedy) algorithm finds “good” tree 
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Credit Term Income y 

excellent 3 yrs high safe 

fair 5 yrs low risky 

fair 3 yrs high safe 

poor 5 yrs high risky 

excellent 3 yrs low risky 

fair 5 yrs low safe 

poor 3 yrs high risky 

poor 5 yrs low safe 

fair 3 yrs high safe 

T(X) 
Approximately  
minimize  
classification error  
on training data 
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Greedy decision tree learning:  
 Algorithm outline 
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(all data) 

Step 1: Start with an empty tree 
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All points in the 
dataset 

Histogram 
of y values 

Safe 
Risky 
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Step 2: Split on a feature 
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(all data) 

Credit? 

Subset of data with 
Credit = excellent 

excellent 

Subset of data with 
Credit = poor 

poor 

Subset of data with 
Credit = fair 

fair 

Split/partition 
data on Credit 
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(all data) 

Feature split explained 
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excellent 
 

fair poor 

Data points where  
Credit = excellent 

Credit? 

Safe 
Risky 

Split/partition 
data on Credit 
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(all data) 

Step 3: Making predictions 
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excellent 
 

fair poor 

Credit? 

Predict Safe 

Safe 
Risky 

Here, all examples 
are Safe loans 
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Step 4: Recursion 
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(all data) 

excellent 
 

fair poor 

Credit? 

Build tree from 
these data points 

Build tree from 
these data points 

Safe 
Risky Nothing more 

to do here 

Predict Safe 
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Problem 1: Feature 
split selection 

Recursion 

Problem 2: 
Stopping condition 

Greedy decision tree learning 
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•  Step 1: Start with an empty tree 
 

•  Step 2: Select a feature to split data 
 

•  For each split of the tree: 

•  Step 3: If nothing more to,           
make predictions 
 

•  Step 4: Otherwise, go to Step 2 & 
continue (recurse) on this split 
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Feature split learning 

    =  
Decision stump learning 
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Start with the data 
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Assume N = 40, 3 features 

Credit Term Income y 

excellent 3 yrs high safe 

fair 5 yrs low risky 

fair 3 yrs high safe 

poor 5 yrs high risky 

excellent 3 yrs low risky 

fair 5 yrs low safe 

poor 3 yrs high risky 

poor 5 yrs low safe 

fair 3 yrs high safe 
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(all data) 

Start with all the data 
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Loan status:    Safe   Risky 

N = 40 examples 

Number of Safe 
loans 

22 
Number of Risky 
loans 18 
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Root 
22    18 

Compact visual notation: Root node 
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Loan status:    Safe   Risky 

N = 40 examples 

Number of safe 
loans 

Number of risky 
loans 
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Decision stump: Single level tree 
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Root 
     22    18 

excellent 
9     0 

fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Split on Credit 

Subset of data with 
Credit = excellent 

Subset of data with 
Credit = fair 

Subset of data with 
Credit = poor 

excellent fair poor 

(all data) 
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Visual Notation: Intermediate nodes 
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Root 
     22    18 

excellent 
9     0 

fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Intermediate nodes 
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Making predictions with  
a decision stump 
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root 
22  18 

excellent 
9    0 

fair 
9   4 

 

poor 
4   14 

Loan status:  
Safe  Risky 

credit? 

For each intermediate node, 
set ŷ = majority value 

Safe Safe Risky 
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Selecting best feature to split on 
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How do we learn a decision stump? 
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Root 
     22    18 

excellent 
9     0 

fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Find the “best” 
feature to split on! 
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How do we select the best feature? 
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Root 
22  18 

excellent 
9    0 

fair 
9   4 

 

poor 
4   14 

Loan status:  
Safe  Risky 

Credit? 

Choice 1: Split on Credit 

Root 
22  18 

3 years 
16   4 

5 years 
6    14 

Loan status:  
Safe  Risky 

Term? 

Choice 2: Split on Term 

OR 
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How do we measure  
effectiveness of a split? 
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Error =   # mistakes  
             # data points 

Root 
22  18 

poor 
4   14 

Loan status:  
Safe  Risky 

Credit? 

excellent 
9    0 

fair 
9   4 

 

Idea: Calculate 
classification error of 
this decision stump 
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Calculating classification error 
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•  Step 1: ŷ = class of majority of data in node 

•  Step 2: Calculate classification error of 
predicting ŷ for this data 

Root 
22    18 

Loan status:  
Safe  Risky Error =            . 

                
         = 

18 mistakes 22 correct 

ŷ = majority class 

Safe 
Tree Classification error 

(root)   0.45 
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Choice 1: Split on credit history? 
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Does a split on Credit 
reduce classification 
error below 0.45? 

Root 
22  18 

excellent 
9    0 

fair 
9   4 

 

poor 
4   14 

Loan status:  
Safe  Risky 

Credit? 

Choice 1: Split on Credit 
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How good is the split on Credit? 
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Root 
22  18 

excellent 
9    0 

fair 
9   4 

 

poor 
4   14 

Loan status:  
Safe  Risky 

Credit? 

Choice 1: Split on Credit 

Step 1: For each 
intermediate node, 
set ŷ = majority value 

Safe Safe Risky 
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Split on Credit: Classification error 

©2015-2016 Emily Fox & Carlos Guestrin 

Root 
22  18 

excellent 
9    0 

fair 
9   4 

 

poor 
4   14 

Loan status:  
Safe  Risky 

Credit? 

0 mistakes 4 mistakes 4 mistakes 

Safe Safe Risky 

Choice 1: Split on Credit 

Error =            . 
                
         = 

Tree Classification error 

(root)   0.45 

Split on credit 0.2 
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Choice 2: Split on Term? 
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Root 
22  18 

3 years 
16   4 

5 years 
6   14 

Loan status:  
Safe  Risky 

Term? 

Safe Risky 

Choice 2: Split on Term 
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Evaluating the split on Term 
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Root 
22  18 

3 years 
16   4 

5 years 
6   14 

Loan status:  
Safe  Risky 

Term? 

4 mistakes 6 mistakes 

Safe Risky 

Error =            . 
                
         = 

Tree Classification error 

(root) 0.45 

Split on credit 0.2 

Split on term 0.25 

Choice 2: Split on Term 
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Root 
22  18 

excellent 
9    0 

fair 
8   4 

 

poor 
4   14 

Loan status:  
Safe  Risky 

Root 
22  18 

3 years 
16   4 

5 years 
6    14 

Loan status:  
Safe  Risky 

OR Credit? Term? 

Tree Classification error 

(root) 0.45 

split on credit 0.2 

split on loan term 0.25 

WINNER 

Choice 1 vs Choice 2 

Choice 2: Split on Term Choice 1: Split on Credit 
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Feature split selection algorithm 
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•  Given a subset of data M (a node in a tree) 
 

•  For each feature hi(x): 

1.  Split data of M according to feature hi(x)  
 

2. Compute classification error split 
 

•  Chose feature h*(x) with lowest 
classification error 
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Pick feature split 
leading to lowest 
classification error 

Greedy decision tree learning 
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•  Step 1: Start with an empty tree 
 

•  Step 2: Select a feature to split data 
 

•  For each split of the tree: 

•  Step 3: If nothing more to,           
make predictions 
 

•  Step 4: Otherwise, go to Step 2 & 
continue (recurse) on this split 



Machine Learning Specialization 

Decision Tree Learning:  
Recursion & Stopping conditions 
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Learn decision tree from data? 
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Credit Term Income y 

excellent 3 yrs high safe 

fair 5 yrs low risky 

fair 3 yrs high safe 

poor 5 yrs high risky 

excellent 3 yrs low risky 

fair 5 yrs low safe 

poor 3 yrs high risky 

poor 5 yrs low safe 

fair 3 yrs high safe 

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

Start 

excellent	 poor	

fair	

5 years	3 years	

Low	high	

5 years	3 years	
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We’ve learned a decision stump, what next? 
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Root 
     22    18 

excellent 
9     0 

fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Safe All data points are Safe è 
nothing else to do with 
this subset of data 

Leaf node 
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Tree learning = Recursive stump learning 
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Root 
     22    18 

excellent 
9     0 

fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Safe 
Build decision stump 
with subset of data 

where Credit = poor 

Build decision stump 
with subset of data 
where Credit = fair 
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Second level 

©2015-2016 Emily Fox & Carlos Guestrin 

Root 
22    18 

Loan status:  
Safe Risky 

Credit? 

excellent 
9     0 

fair 
9     4 

 

poor 
4     14 

Safe 

3 years 
0     4 

5 years 
9     0 

Term? 

Risky Safe 

Build another stump 
these data points 

high 
4     5 

Low 
0     9 

Income? 

Risky 
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Final decision tree 
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Root 
22    18 

excellent 
9     0 

Fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Safe 

5 years 
9     0 

3 years 
0     4 

Term? 

Risky Safe 

low 
0   9 

high 
4   5 

Income? 

5 years 
4   3 

3 years 
0    2 

Term? 

Risky Safe 

Risky 
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Simple greedy decision tree learning 

Pick best feature to split on 

Learn decision stump with 
this split 

For each leaf of decision 
stump, recurse 
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When do we stop??? 
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Stopping condition 1: All data agrees on y 
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Root 
22    18 

excellent 
9     0 

Fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Safe 

5 years 
9     0 

3 years 
0     4 

Term? 

Risky Safe 

low 
0   9 

high 
4   5 

Income? 

5 years 
4   3 

Term? 

Risky Safe 

Risky 

3 years 
0    2 

3 years 
0    2 

All data in these 
nodes have same  

y value è  
Nothing to do 

excellent 
9     0 

5 years 
9     0 

3 years 
0     4 

low 
0   9 



Machine Learning Specialization 69 

Stopping condition 2: Already split on all features 
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Root 
22    18 

excellent 
9     0 

Fair 
9     4 

 

poor 
4     14 

Loan status:  
Safe Risky 

Credit? 

Safe 

5 years 
9     0 

3 years 
0     4 

Term? 

Risky Safe 

low 
0   9 

high 
4   5 

Income? 

5 years 
4   3 

Term? 

Risky Safe 

Risky 

3 years 
0    2 

Already split on all 
possible features 

è  
Nothing to do 

5 years 
4   3 
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Recursion 

Stopping 
conditions 1 & 2 

Greedy decision tree learning 
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•  Step 1: Start with an empty tree 
 

•  Step 2: Select a feature to split data 
 

•  For each split of the tree: 

•  Step 3: If nothing more to,           
make predictions 
 

•  Step 4: Otherwise, go to Step 2 & 
continue (recurse) on this split 

Pick feature split 
leading to lowest 
classification error 
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Predictions with decision trees 

©2015-2016 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 74 ©2015-2016 Emily Fox & Carlos Guestrin 

Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y 

h(x) 

T(x) 

x ŷ 
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Decision tree model 

T(xi) = Traverse decision tree 
 
 
 
 
 
 

Loan 
Application 

Input:  xi 

ŷi	

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	
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Traversing a decision tree 
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xi = (Credit = poor, Income = high, Term = 5 years) 

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

Start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	

Credit? 

Safe Term? 

Risky Safe 

Income? 

Term? 

Risky Safe 

Risky 

Start 

excellent	 poor	

fair	

5 years	3 years	
Low	high	

5 years	3 years	

ŷi = Safe	
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Decision tree prediction algorithm 
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predict(tree_node, input) 

•  If current tree_node is a leaf: 

o  return majority class of  
data points in leaf 

•  else: 

o  next_note = child node of 
tree_node whose feature value 
agrees with input 

o  return predict(next_note, input) 
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Multiclass classification &  
predicting probabilities 

©2015-2016 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 79 

Multiclass prediction 
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Loan 
Application 

Classifier 
MODEL 

Input:  xi 
Output:  ŷi  
Predicted  
class 

Safe 

Risky 

Danger 
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Multiclass decision stump 
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Credit y 

excellent safe 

fair risky 

fair safe 

poor danger 

excellent risky 

fair safe 

poor danger 

poor safe 

fair safe 

… … 

N = 40,  
1 feature,  
3 classes Root 

18   12   10 
Loan status:  
Safe Risky Danger 

excellent 
9   2   1 

fair 
6   9   2 

 

poor 
3   1   7 

Credit? 

Safe Risky Danger 
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Predicting probabilities with  
decision trees 

©2015-2016 Emily Fox & Carlos Guestrin 

Root 
18   12   10 

excellent 
9   2   1 

fair 
6   9   2 

 

poor 
3   1   7 

Loan status:  
Safe Risky Danger 

Credit? 

Safe Risky Danger 

P(y = danger | x)  
 
    =        7         = 0.64 
          3 + 1+ 7 
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Decision tree learning:  
Real valued features 
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How do we use real values inputs? 
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Income Credit Term y 

$105 K excellent 3 yrs Safe 

$112 K good 5 yrs Risky 

$73 K fair 3 yrs Safe 

$69 K excellent 5 yrs Safe 

$217 K excellent 3 yrs Risky 

$120 K good 5 yrs Safe 

$64 K fair 3 yrs Risky 

$340 K excellent 5 yrs Safe 

$60 K good 3 yrs Risky 
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Split on each numeric value? 
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Root 
22    18 

 

$30K 
0    1 

$39.5K 
0    1 

$31.4K 
1    0 

Income? 

Loan status:  
Safe Risky 	

$61.1K 
0    1 

$91.3K 
0    1 

Danger: May only 
contain one data point 
per node  

Can’t trust prediction  
(overfitting) 
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Alternative: Threshold split 
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Root 
     22    18 

Loan status:  
Safe Risky Split on the 

feature Income 

< $60K 
8     13 

>= $60K 
14     5 

Income?  

Subset of data with 
Income >= $60K Many data points è  

lower chance of overfitting 
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Income <  $60K Income >= $60K 

Threshold splits in 1-D 
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Safe 

Risky 
Income 

$120K $10K 

Threshold split is the line 
Income = $60K 
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Visualizing the threshold split 
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0 10 20 30 40 … 

    $0K 

$40K 

$80K 

… 

Age 

Income 

Threshold split is 
the line Age  = 38 
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Split on Age >= 38 
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Age 

Income age >= 38 age < 38 

Predict Safe 

Predict Risky 

0 10 20 30 40 … 

    $0K 

$40K 

$80K 

… 
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Depth 2: Split on Income >= $60K 
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Age 

Income 

0 10 20 30 40 … 

    $0K 

$40K 

$80K 

… 

Threshold split is the 
line Income = 60K 
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Each split partitions the 2-D space 
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Age 

Age >= 38 

Income >= 60K Age < 38 

Age >= 38 

Income < 60K 

Income 

0 10 20 30 40 … 

    $0K 

$40K 

$80K 

… 
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Finding the best threshold split 
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OPTIONAL 
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Finding the best threshold split 
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Income = t* 

Infinite possible 
values of t 

Income <  t* Income >= t* 

Safe 

Risky 
Income 

$120K $10K 
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Consider a threshold between points 
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Safe 

Risky 
Income 

$120K $10K 

vA vB 

Same classification error for any 
threshold split between vA and vB 
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Only need to consider mid-points 
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Safe 

Risky 
Income 

$120K $10K 

Finite number of 
splits to consider 
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Threshold split selection algorithm  
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•  Step 1: Sort the values of a feature hj(x) :  

                  Let {v1, v2, v3, … vN} denote sorted values 

•  Step 2:  

- For i = 1 … N-1  

• Consider split ti  = (vi + vi+1) / 2 

• Compute classification error for treshold 
split hj(x) >= ti 

- Chose the t*
 with the lowest classification error 
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Decision trees vs logistic regression: 
Example 
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Logistic regression 
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Feature Value 
Weight 
Learned 

h0(x)   1 0.22 

h1(x) x[1] 1.12 

h2(x) x[2] -1.07 
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Depth 1: Split on x[1] 

©2015-2016 Emily Fox & Carlos Guestrin 

Root 
18    13 

x[1] >= -0.07 
4    11 

x[1] < -0.07 
13    3 

x[1] 

y values  
-  + 
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Depth 2 
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Root 
18    13 

x[1] < -0.07 
13    3 

x[1] >= -0.07 
4    11 

x[1] 

x[1] < -1.66 
7    0 

x[1] >= -1.66 
6    3 

x[1] 

x[2] < 1.55 
1    11 

x[2] >=  1.55  
3    0 

x[2] 

y values  
-  + 
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Threshold split caveat 
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For threshold splits, 
same feature can be 
used multiple times 

Root 
18    13 

x[1] < -0.07 
13    3 

x[1] >= -0.07 
4    11 

x[1] < -1.66 
7    0 

x[1] >= -1.66 
6    3 

x[2] < 1.55 
1    11 

x[2] >=  1.55  
3    0 

x[1] 

x[1] x[2] 

y values  
-  + 
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Decision boundaries 
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                Depth 1                                      Depth 2                               Depth 10 
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Comparing decision boundaries 
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Logistic Regression 

Decision Tree 

Degree 2 features Degree 1 features 

Depth 3 Depth 1 Depth 10 

Degree 6 features 
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Summary of decision trees 
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What you can do now 
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•  Define a decision tree classifier 

•  Interpret the output of a decision trees 

•  Learn a decision tree classifier using 
greedy algorithm 

•  Traverse a decision tree to make 
predictions 
- Majority class predictions 

- Probability predictions 

- Multiclass classification 
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Thank you to Dr. Krishna Sridhar  

Dr. Krishna Sridhar 

Staff Data Scientist, Dato, Inc. 
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