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Training and evaluating

a classifier




Training a classifier = Learning the coefficients
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Classification error

Learned classifier

Test example Correct 0

Mistakes V)

Hide label
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Classification error & accuracy

* Error measures fraction of mistakes
error = _ ¥ Mishky

TO"D\‘ Number o+ dlbﬂfo:eb

— Best possible value is 0.0

« Often, measure accuracy
— Fraction of correct predictions

accuracy= # Gmet
—ﬁ’&‘ Numbe, O*A‘\Aro‘nb

— Best possible value is 1.0
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Overfitting in regression:

review




Flexibility of high-order polynomials
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Error

Overfitting in regression
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Overfitting in classification




Decision boundary example

Hawesome 1.0

#awful = #Score(x) = 1.0 #awesome - 1.5 #awful

#avyful

N

X[E]

x[1] =?¢awé'some
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x[2]

16

Learned decision boundary
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Note: we are not

Quadratic features (in 2d) oo

terms for simplicity
Coefficient
Feature Value
learned
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Note: we are not

Degree 6 features (in 2d)  reanozes

terms for simplicity
Coefficient
Feature | Value
learned

ho(X) 1 21.6 o
hoo Coefficient values
o) x[2] getting large
hs(x) (x[1])2 Score(x) <
ha)  (x[2])2 D 4=-]
s (x[1)3 - -
he®)  (x[2])3 - -
00 (XL - ey 8
g  (x[2]) - By F
ho(x)  (x[1])5 - + *
hox)  (x[2])° -14.2 =252 32 -1 0 1 2 3
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Note: we are not

Degree 20 features (in 2d) raroces

terms for simplicity

19

Feature | Value Coefficient
learned
h

1 87
x[1] 51
x[2] 787 Often, overfitting associated with
- = very large estimated coefficients
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Overfitting in classification

A

'

Error =
Classification Error

Overfitting if there exists w*:
 training_error(w*) > training_error(w)

@  true_error(w*) < true_error(w)

Ne

\
: n —
Model compleX|ty o
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Overfitting in classifiers =

Overconfident predictions




Logistic regression model

w'h(x;)
- 0O
0.0 T
9 v L
0.0 22510

Ply=+1|x,w) = sigmoid(wh(x.))
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The subtle (hegative) consequence of
overfitting in logistic regression

Overfitting =» Large coefficient values

"h(x,) is very positive (or very negative)

=>» sigmoid( 'h(x)) goes to 1 (or to O)

Model becomes extremely
overconfident of predictions
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Effect of coefficients on
logistic regression model

Input x: #awesome=2, #awful=1

W 0 W 0
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Learned probabilities

ho(x) 1 0.23
h,(x) x[1] 1.12 l 4
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Quadratic features: Learned probabilities

Feature Value SIS !
learned
(‘

hy(X) 1 1.68
h, (x) x[1] 1.39
h,(x) x[2] -0.58 btk 4
h3(x) (x[1])2 -0.17 A; to 3
h,4(%) (x[2))2 -0.96 s X
Ve
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Overfitting =
Overconfident predictions

Degree 6: Learned probabilities Degree 20: Learned probabilities

Tiny uncertainty regions
->
Overfitting &
overconfident about it!!!

We are sure we are right,
when we are surely wrong! ®
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Overfitting in logistic regression:

Another perspective

orTIONAL




Linearly-separable data

S("‘- (x)< O
|
|
(|

Data are linearly separable if:
s b * There exist coefficients w such that:

aL o= ++ St ra For all positive training data

+ als Stoel) = STh&) >0
- For all negative training data
Note 1: If you are using D features, linear Scm x) = wT h&) <O

separability happens in a D-dimensional space

Note 2: If you have enough features, data are

(almost) always linearly separable trainiﬂg_error( ) =0

33
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Effect of linear separability
on coefficients . . .isscki-o

_ IS HawRlz 0

10 § aweduvme

Data are linearly separable with

‘% W,=1.0 and w,=-1.5

Iy :

%3 Data also linearly separable with
2 W,;=10 and Ww,=-15

v

Data also linearly separable with
W,=10° and W,=-1.5x10°

4
x[1l]=#awesome
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Maximum likelihood estimation (MLE)
prefers most certain model =

Coefficients go to infinity for linearly-separable data!!!

= __|Data is linearly separable with
s. W,;=1.0 and Ww,=-1.5
Iy s :
3 lec Data also linearly separable with
2 = 044 Tw,=10 and w,=-15
. L5 !
0 RS Data also linearly separable with
0 S e =1 W,=10° and W, =-1.5x10°?
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Overfitting in logistic regression is “twice as bad”

Learning tries
to find decision

If data are
linearly

boundary that separable

separates data

Lf Overly | L(Coefﬁcients\
complex go to
~ boundary infinity!

g J

Wy=-1.5x10°
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Penalizing large coefficients

to mitigate overfitting




39

I3(y=+1|x,v‘il) =

Quality
metric
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Desired total cost format

Want to balance:
. How well function fits data
li. Magnitude of coefficients

want to balance

Total quality =/ N

measure of fit - measure of magnitude
1 of coefficients

(data likelihood) T
large # = good fit to

large # = overfit
training data
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Maximum likelihood estimation (MLE):
Measure of fit = Data likelihood

 Choose coefficients w that maximize likelihood:

N
HP(yZ | Xiaw)
1=1

» Typically, we use the log of likelihood function
(simplifies math and has better convergence properties)

N
(W) = lnHP(yi | X, W)
i=1
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Measure of magnitude of
logistic regression coefficients

What summary # is indicative of
size of logistic regression coefficients?

- Sum of squares (L, norm)

lup? = Wiawh swaae x W ~
?M«l:zt |

- Sum of absolute value (LW
Iwll, = Ywel +1wi] $lwg) ¢ & lwpy

S far $olwdon

r)‘ COQ‘G(“'H_,
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Consider specific total cost

A
w

Total quality =
measure of fit - measure of magnitude

of coefficients
1 ] |

! i

£(w) wil,
I\
\o:) d o \ Lo Yenalb
\'\\u,\i\\took
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Consider resulting objective

What if w selected to minimize

2
£(w) - >\||W||2
/‘ ~N tuning parameter = balance of fit and magnitude
If A=0

o Tduis g QW) D Shdad (wnpenalraed) MLE S0 lution

If A=oo:
L~9 MY Q(w) - oo “W”i —) Or\lb Cove abont prroliting W larg (otfcents = W=2o

If A in between:
BO\\MLL, A,v\"u "\'}' 6\9‘“"5'}' s"" WO";}“'(" 0"):' Fhe wo‘ﬁ'um\-s
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Consider resulting objective

What if w selected to minimize

£(w) - ?\||W||§

~N tuning parameter = balance of fit and magnitude

: Pick using:
L2 regUla ”Zed * Validation set (for large datasets)

lOgiStiC reg ression » Cross-validation (for smaller datasets)
(see regression course)
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Bias-variance tradeoff

Large A:
high bias, low variance
(e.9., W =0 for A=ee) In essence, A
controls model
Small A: complexity

low bias, high variance

(e.g., maximum likelihood (MLE) fit of
high-order polynomial for A=0)
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Visualizing effect of regularization

on logistic regression




Degree 20 features, A=0

Feature Value Coefficient
learned

1
x(1]
x[2]

8.7
5.1
78.7

_2*10-6
-0.15
_2*10-8
0.03

x[2]

Coefficients range

from -3170 to 3803

-3

5 -4 -3 -2 -1 0 1 2 3

x[1]
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Degree 20 features,
effect of regularization penalty A

Vo |-
oyt s
Regularization A=0 A =0.00001 A =0.001 A=1 A=10
RElE e -3170 to 3803 -8.04 to 12.14 -0.70 to 1.25 -0.13t0 0.57 -0.05 to 0.22

coefficients

4 4 4 4
3 3 3 3
2 2 2 2
Decision 1 — — —
0 X 0 ] < 0
boundary o o o o
=2 =7 =2 =2
=3 =3 =3 =3
-5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3 - - 3 -2 -1 0 1 2 3
x{1] x[(1] x[1] x[(1]

Nar
§ Mbl’“l
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Coefficient path

Posihut — ( bést | this
-— o — disappointed — awesome - review
5| |
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Degree 20 features:
regularization reduces “overconfidence”

- A= 000001 _— -

Range of -3170 to 3803 -8.04 to 12.14 -0.70 to 1.25 -0.13 to 0.57
coefficients

[ =
=)
e
=)
e
=)
e
=)

+1|x)

Learned
probabilities

Ply=
P(y=+1|x)
x[2]
P(y=+1|x)
P(y=+1|x)

o
=)

B54-3-—2-10 1 2 3

o
=]

25 4-3-—2-10 1 2 3
x[1] x[1]

o

=]
o
=]

hiH Vu ,
:’v:? Cafsihat 9 mbmal Wvirhiyhy

r
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Finding best L, regularized
linear classifier with

gradient ascent




57

Ply=+1|x,W) =
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Gradient ascent

| Algorithm:

.| While not converged

\—\v\/
need. e Jﬂu(:«nl- oF

/ VGJ\«\Q.-;';,A lgb lilal llood_’

-6 -4 =2 0 2 4
weight for 'awesome’

weight for "awful’

59
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Gradient of L, regularized log-likelihood

Total quality =

measure of fit - measure of magnitude

of coefficients
1 ] |

J

i —
f(w)\ Mlwll:
Total ol(w) }\aHWH%
derivative ~ Ow,; oW
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Derivative of (log-)likelihood

Sum over Feature
data points value

Difference between truth and prediction
\ |
[ |
=3 i) (Ul = +1] = Ply = +1 | x5, w))

Derivative of L, penalty

OWIB _ 9 [rvetitosstini] = 20
8Wj 0wy
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Understanding contribution of
L, regularization

Term from L, penalty

x
Ol(W) 2w, \

8wj

w;>0 <o

.
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weight for 'awful’

Summary of gradient ascent
for logistic regression with
L, Reqgularization

000: INit W(’l)_=o (or randomly, or smartly), t=1
| while not converged:

N

partial[j] = Zhj(xi)(]l[yi = +1] - P(y = +1 | Xi,wm))

w; D & wj(t-) +—r] (_partial[j]._— 2N w,)

J. .
- 1
t&Et+1 ﬁi A QW) 0nly Chenge [
2 U
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Sparse logistic regression

with L, regularization




Recall sparsity (many W;=0)
gives efficiency and interpretability
Efficiency:

- If size(w) = 100B, each prediction is expensive
- If wisparse|, computation only depends on # of non-zeros

\many Zeros
Y; — Slg’fl E thj (Xz)
w ;j #0

Interpretability:
- Which features are relevant for prediction?
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Sparse logistic regression

Total quality =
measure of fit - measure of magnitude

of coefficients

\ ) | J
I I

£(w) Wil =lwgl+...+|wp
\

Leads to
1" . sparse
logistic regression solutions!
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L, reqularized logistic regression

Just like L2 regularization, solution is
governed by a continuous parameter A

£(w) - >\||W||1

tuning parameter =
balance of fit and sparsity

If A=0:
Ne f't)ul«r‘-'b\hm - Shedad WMLE Soldion

If A=oo:

all W¢15A+ 195 6N "7K"\V?}o-’}dn —a l;t)':o

\ If A in between:

SF““‘- s&u&’ivqs . S6ﬂ\£_ l:l':) ‘_t'o f N’\o Q,“!/ l:)“ = 0
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Regularization path — L, penalty

— best — this
._‘2\ — disappointed — awesome review ||
<; \ — hate — )
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e P
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y— Y
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ot wt Aty execty 200 1
—4 Cotbhicints b | ‘J 1
0 100 200 300 A 400 500 600
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Regularization path — L; penalty

3

G — | best — this
by — disappointed — awesome review|
<; \ — hate :
7)) 1\ ¢;(gc-|"j 2(/0
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-q—) ;\' Ltcw)
U -1 2y |
J— — |
\_ I
q) =2 / ]
8 374 isappived _

N

~% 100 200 300 }\ 400 500 600
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Summary of overfitting in

logistic regression




What you can do now...

/6

|dentify when overfitting is happening
Relate large learned coefficients to overfitting

Describe the impact of overfitting on decision
boundaries and predicted probabilities of linear
classifiers

Motivate the form of L, regularized logistic
regression quality metric

Describe what happens to estimated
coefficients as tuning parameter A is varied

Interpret coefficient path plot

Estimate L, regularized logistic regression
coefficients using gradient ascent

Describe the use of L, regularization to obtain
sparse logistic regression solutions
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