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Training and evaluating  
a classifier  
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Training a classifier = Learning the coefficients 
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Data 

(x,y) 
(Sentence1,     ) 
(Sentence2,     ) 

… 

Training 
set 

Validation 
set 

Learn 
classifier 

Evaluate?  

Word Coefficient 

good   1.0 

awesome   1.7 

bad -1.0 

awful  -3.3 

…  … 
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Test example 
 
 

Classification error 
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(Sushi was great,      ) 

Learned classifier 

Hide label 

Correct 

Mistakes Sushi was great	

ŷ = 

Correct! 
0 
0 

1 

1 (Food was OK,      ) Food was OK	
Mistake! 
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Classification error & accuracy 

•  Error measures fraction of mistakes 

- Best possible value is 0.0  

•  Often, measure accuracy 
- Fraction of correct predictions 

- Best possible value is 1.0 
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error =                            . 
 

accuracy=                            . 
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Overfitting in regression:  
review 
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Flexibility of high-order polynomials 
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Overfitting in regression 

©2015-2016 Emily Fox & Carlos Guestrin 
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Overfitting if there exists w*: 

•  training_error(w*) > training_error(ŵ) 

•  true_error(w*) < true_error(ŵ) 
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Overfitting in classification 
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Decision boundary example 
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x[1]=#awesome 

X
[2

]=
#

aw
fu

l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) > 0 

Score(x) < 0 

Word Coefficient 

#awesome   1.0 

#awful  -1.5 
Score(x) = 1.0 #awesome – 1.5 #awful 
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Learned decision boundary 
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Feature Value 
Coefficient 

learned 

h0(x)   1 

h1(x) x[1] 

h2(x) x[2] 
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Quadratic features (in 2d) 
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Note: we are not 
including cross 
terms for simplicity 

Feature Value 
Coefficient 

 learned 

h0(x)   1 

h1(x) x[1] 

h2(x) x[2] 

h3(x) (x[1])2 

h4(x) (x[2])2 



Machine Learning Specialization 18 

Degree 6 features (in 2d) 
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Note: we are not 
including cross 
terms for simplicity 

Feature Value 
Coefficient 

 learned 

h0(x)   1 21.6 

h1(x) x[1] 5.3 

h2(x) x[2] -42.7 

h3(x) (x[1])2 -15.9 

h4(x) (x[2])2 -48.6 

h5(x) (x[1])3 -11.0 

h6(x) (x[2])3 67.0 

h7(x) (x[1])4 1.5 

h8(x) (x[2])4 48.0 

h9(x) (x[1])5 4.4 

h10(x) (x[2])5 -14.2 

h11(x) (x[1])6 0.8 

h12(x) (x[2])6 -8.6 

Score(x) < 0 

Coefficient values  
getting large 
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Degree 20 features (in 2d) 
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Note: we are not 
including cross 
terms for simplicity 

Feature Value 
Coefficient 

 learned 

h0(x)   1 8.7 

h1(x) x[1] 5.1 

h2(x) x[2] 78.7 

… … … 

h11(x) (x[1])6 -7.5 

h12(x) (x[2])6 3803 

h13(x) (x[1])7 21.1 

h14(x) (x[2])7 -2406 

… … … 

h37(x) (x[1])19 -2*10-6 

h38(x) (x[2])19 -0.15 

h39(x) (x[1])20 -2*10-8 

h40(x) (x[2])20 0.03 

Often, overfitting associated with 
very large estimated coefficients ŵ  
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Overfitting in classification 
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Overfitting if there exists w*: 

•  training_error(w*) > training_error(ŵ) 

•  true_error(w*) < true_error(ŵ) 
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Overfitting in classifiers è  
Overconfident predictions 
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Logistic regression model 
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-∞	 +∞	

wTh(xi)	

0.0	 1.0	

0.0	

0.5	

P(y=+1|xi,w) = sigmoid(wTh(xi))	
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The subtle (negative) consequence of 
overfitting in logistic regression 
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Overfitting è Large coefficient values 

ŵTh(xi) is very positive (or very negative) 
è sigmoid(ŵTh(xi)) goes to 1 (or to 0) 

Model becomes extremely 
overconfident of predictions 
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Effect of coefficients on  
logistic regression model 
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w0 0 

w#awesome +1 

w#awful -1 

w0 0 

w#awesome +6 

w#awful -6 

w0 0 

w#awesome +2 

w#awful -2 

1

1
+

e�
w

>
h
(x

)

#awesome - #awful 

1

1
+
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>
h
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)
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1
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>
h
(x

)

#awesome - #awful 

Input x: #awesome=2, #awful=1 
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Learned probabilities 
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Feature Value 
Coefficient 

 learned 

h0(x)   1 0.23 

h1(x) x[1] 1.12 

h2(x) x[2] -1.07 

P (y = +1 | x,w) =
1

1 + e�w

>h(x)
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Quadratic features: Learned probabilities 
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P (y = +1 | x,w) =
1

1 + e�w

>h(x)

Feature Value 
Coefficient 

 learned 

h0(x)   1 1.68 

h1(x) x[1] 1.39 

h2(x) x[2] -0.58 

h3(x) (x[1])2 -0.17 

h4(x) (x[2])2 -0.96 
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Overfitting è  
Overconfident predictions  
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Degree 6: Learned probabilities Degree 20: Learned probabilities 

Tiny uncertainty regions 
è 

Overfitting &  
overconfident about it!!! 

 

We are sure we are right,  
when we are surely wrong! L 
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Overfitting in logistic regression: 
Another perspective 
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OPTIONAL 
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Linearly-separable data 

Data are linearly separable if: 
•  There exist coefficients ŵ such that: 

- For all positive training data 

 
- For all negative training data 

©2015-2016 Emily Fox & Carlos Guestrin 

Note 1: If you are using D features, linear  
separability happens in a D-dimensional space 
 

Note 2: If you have enough features, data are  
(almost) always linearly separable training_error(ŵ) = 0 
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Effect of linear separability  
on coefficients 
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x[1]=#awesome 

X
[2

]=
#

aw
fu

l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) > 0 

Score(x) < 0 Data are linearly separable with  
ŵ1=1.0 and ŵ2=-1.5 

Data also linearly separable with  
ŵ1=10 and ŵ2=-15 

Data also linearly separable with  
ŵ1=109 and ŵ2=-1.5x109 
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Effect of linear separability  
on weights 
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Data is linearly separable with  
ŵ1=1.0 and ŵ2=-1.5 

Data also linearly separable with  
ŵ1=10 and ŵ2=-15 

Data also linearly separable with  
ŵ1=109 and ŵ2=-1.5x109 

x[1]= 2  
x[2]= 1 	X

[2
]=

#
aw

fu
l 

x[1]=#awesome 
1 2 3 4 … 0 

0 

1 

2 

3 

4 

… 

P(y=+1|xi, ŵ)	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Maximum likelihood estimation (MLE)  
prefers most certain model è	
Coefficients go to infinity for linearly-separable data!!! 
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Overfitting in logistic regression is “twice as bad” 

Learning tries 
to find decision 
boundary that 
separates data 

Overly 
complex 
boundary 

If data are 
linearly 

separable 

Coefficients 
go to 

infinity! 

©2015-2016 Emily Fox & Carlos Guestrin 

ŵ1=109 
ŵ2=-1.5x109 
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Penalizing large coefficients  
to mitigate overfitting 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y ŵ 

h(x) x 

P(y=+1|x,ŵ) =         1       . 	
 

⌃ 

1 + e-ŵ h(x)	
T	
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Desired total cost format 

Want to balance: 

i.  How well function fits data 

ii.  Magnitude of coefficients 

 

Total quality = 

 measure of fit - measure of magnitude  
                 of coefficients 

©2015 Emily Fox & Carlos Guestrin 

(data likelihood) 
large # = good fit to 

training data 
large # = overfit 

want to balance 
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Maximum likelihood estimation (MLE): 
Measure of fit = Data likelihood 

•  Choose coefficients w that maximize likelihood: 

 
 

•  Typically, we use the log of likelihood function  
(simplifies math and has better convergence properties) 

 

©2015-2016 Emily Fox & Carlos Guestrin 

`(w) =
NY

i=1

P (yi | xi,w)

`(w) = ln
NY

i=1

P (yi | xi,w)
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What summary # is indicative of  
size of logistic regression coefficients? 
 

-  Sum of squares (L2 norm) 

-  Sum of absolute value (L1 norm) 

©2015 Emily Fox & Carlos Guestrin 

Measure of magnitude of 
logistic regression coefficients 
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Consider specific total cost 

 

 

 
Total quality = 

 measure of fit - measure of magnitude  
           of coefficients 
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ℓ(w) (w) ||w||2 
 

 

2	
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Consider resulting objective 

What if ŵ selected to minimize 

 

 

If λ=0: 

 

If λ=∞: 	
 

If λ in between:  

 

  ℓ(w) -   ||w||2  (w) -   ||w||2  

 tuning parameter = balance of fit and magnitude 

©2015 Emily Fox & Carlos Guestrin 

λ 

 

2	
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Consider resulting objective 

What if ŵ selected to minimize 
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L2 regularized  
logistic regression  

2	
  ℓ(w) -   ||w||2  (w) -   ||w||2  

 tuning parameter = balance of fit and magnitude 

λ 

 

Pick λ using: 
•  Validation set (for large datasets) 

•  Cross-validation (for smaller datasets) 

(see regression course)  
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Bias-variance tradeoff 

Large λ: 

 high bias, low variance 

 (e.g., ŵ =0 for λ=∞)  

 

Small λ: 

  low bias, high variance 

 (e.g., maximum likelihood (MLE) fit of 
  high-order polynomial for λ=0) 

©2015 Emily Fox & Carlos Guestrin 

In essence, λ 
controls model 

complexity  
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Visualizing effect of regularization  
on logistic regression 
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Degree 20 features, λ=0 
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Feature Value 
Coefficient 

learned 

h0(x)   1 8.7 

h1(x) x[1] 5.1 

h2(x) x[2] 78.7 

… … … 

h11(x) (x[1])6 -7.5 

h12(x) (x[2])6 3803 

h13(x) (x[1])7 21.1 

h14(x) (x[2])7 -2406 

… … … 

h37(x) (x[1])19 -2*10-6 

h38(x) (x[2])19 -0.15 

h39(x) (x[1])20 -2*10-8 

h40(x) (x[2])20 0.03 

Coefficients range  
from -3170 to 3803   
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Regularization λ = 0 λ = 0.00001 λ = 0.001 λ = 1 λ = 10 

Range of 
coefficients 

-3170 to 3803 -8.04 to 12.14 -0.70 to 1.25 -0.13 to 0.57 -0.05 to 0.22 

Decision 
boundary 

Degree 20 features,  
effect of regularization penalty λ 
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Coefficient path 
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λ 

c
o

e
ffi
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 ŵ
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Regularization λ = 0 λ = 0.00001 λ = 0.001 λ = 1 

Range of 
coefficients 

-3170 to 3803 -8.04 to 12.14 -0.70 to 1.25 -0.13 to 0.57 

Learned 
probabilities 

Degree 20 features:  
regularization reduces “overconfidence” 

©2015-2016 Emily Fox & Carlos Guestrin 
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Finding best L2 regularized  
linear classifier with  
gradient ascent 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y ŵ 

h(x) x 

P(y=+1|x,ŵ) =         1       . 	
 

⌃ 

1 + e-ŵ h(x)	
T	
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Gradient ascent 
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Algorithm: 
 
while not converged 

 w(t+1) ß w(t) + η   ℓ(w(t))  

  Δ 
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Gradient of L2 regularized log-likelihood 

 

 

 

Total quality = 
 measure of fit - measure of magnitude  
           of coefficients 
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ℓ(w) (w) λ ||w||2 
 

 

2	

Total  
derivative =	

@||w||22
@wj

=λ 	-	
@`(w)

@wj
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Derivative of (log-)likelihood 
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@`(w)

@wj
=

NX

i=1

hj(xi)
⇣
1[yi = +1]� P (y = +1 | xi,w)

⌘
Difference between truth and prediction 

@`(w)

@wj
=

NX

i=1

hj(xi)
⇣
1[yi = +1]� P (y = +1 | xi,w)

⌘

Sum over  
data points 

@`(w)

@wj
=

NX

i=1

hj(xi)
⇣
1[yi = +1]� P (y = +1 | xi,w)

⌘

Feature 
value 

Derivative of L2 penalty 

@||w||22
@wj

=

@`(w)

@wj
=



Machine Learning Specialization 64 

Understanding contribution of  
L2 regularization 
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- 2 λ wj	 Impact on wj 	

wj > 0	

wj < 0	

Term from L2 penalty 

@`(w)

@wj
� 2�wj
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Summary of gradient ascent 
for logistic regression with  
L2 Regularization 
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init w(1)=0 (or randomly, or smartly), t=1 

while not converged:  
  for j=0,…,D 

 partial[j] = 
 

 wj
(t+1) ß wj

(t) + η (partial[j] – 2λ wj
(t)) 

     t ß t + 1 

 

NX

i=1

hj(xi)
⇣
1[yi = +1]� P (y = +1 | xi,w

(t))
⌘
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Sparse logistic regression  
with L1 regularization 
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Efficiency:  
-  If size(w) = 100B, each prediction is expensive 

-  If ŵ sparse , computation only depends on # of non-zeros 

Interpretability:   
-  Which features are relevant for prediction? 

Recall sparsity (many ŵj=0) 
gives efficiency and interpretability 

©2015 Emily Fox & Carlos Guestrin 

many zeros 

ŷi = sign

0

@
X

ŵj 6=0

ŵjhj(xi)

1

A
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Sparse logistic regression 

 

 

 
Total quality = 

 measure of fit - measure of magnitude  
           of coefficients 
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ℓ(w) (w) ||w||1=|w0|+…+|wD| 

L1 regularized  
logistic regression 

Leads to 
sparse 

solutions! 
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L1 regularized logistic regression 

Just like L2 regularization, solution is 
governed by a continuous parameter λ 

 
 
 
If λ=0: 
 
If λ=∞: 	
 
If λ in between:  
 

  ℓ(w) - λ||w||1  (w) - λ||w||1  
 tuning parameter =  

balance of fit and sparsity 
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Regularization path – L2 penalty 
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Regularization path – L1 penalty 
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Summary of overfitting in  
logistic regression 
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What you can do now… 
•  Identify when overfitting is happening 
•  Relate large learned coefficients to overfitting 
•  Describe the impact of overfitting on decision 

boundaries and predicted probabilities of linear 
classifiers 

•  Motivate the form of L2 regularized logistic 
regression quality metric  

•  Describe what happens to estimated 
coefficients as tuning parameter λ is varied 

•  Interpret coefficient path plot 
•  Estimate L2 regularized logistic regression 

coefficients using gradient ascent 
•  Describe the use of L1 regularization to obtain 

sparse logistic regression solutions 
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