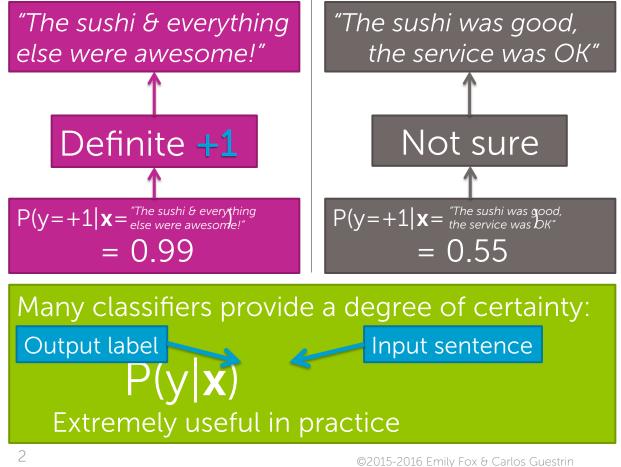
Linear classifiers: Parameter learning

Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

©2015-2016 Emily Fox & Carlos Guestrir

Learn a probabilistic classification model



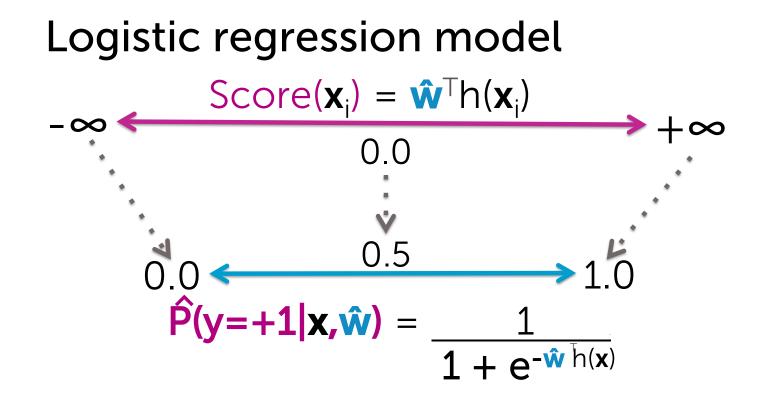
A (linear) classifier

• Will use training data to learn a weight or coefficient for each word

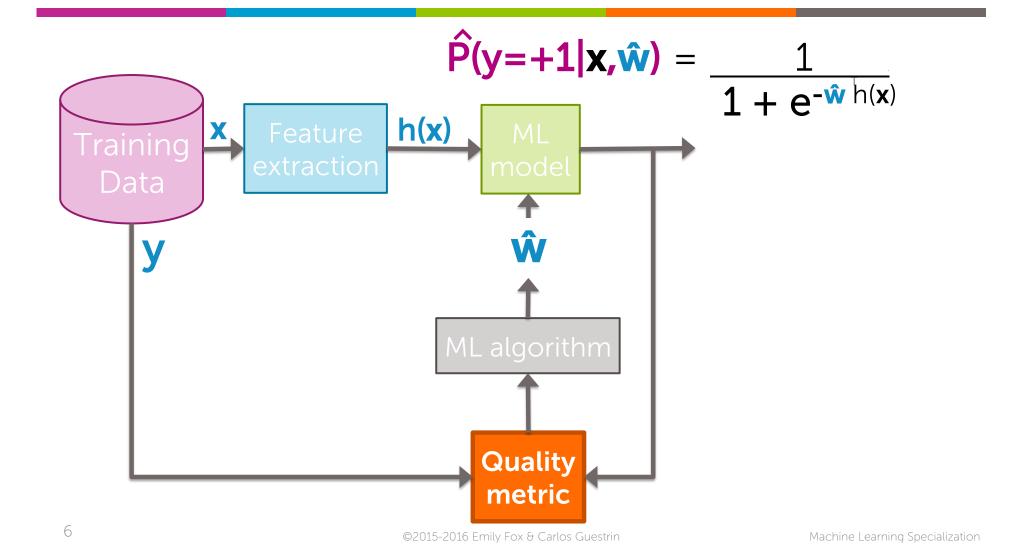
Word	Coefficient	Value
	ŵ ₀	-2.0
good	ŵ ₁	1.0
great	ŵ ₂	1.5
awesome	Ŵ ₃	2.7
bad	ŵ ₄	-1.0
terrible	ŵ ₅	-2.1
awful	ŵ ₆	-3.3
restaurant, the, we,	ŵ _{7,} ŵ _{8,} ŵ _{9,}	0.0
3	@2015-2016 Emily E	ox & Carlos Guestrin

Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin



Quality metric for logistic regression: Maximum likelihood estimation



Learning problem

Training data:

N observations (\mathbf{x}_{i}, y_{i})

x [1] = #awesome	x [2] = #awful	y = sentiment	
2	1	+1	
0	2	-1	
3	3	-1	
4	1	+1	Optimize quality metric
1	1	+1	on training
2	4	-1	data
0	3	-1	
0	1	-1	
2	1	+1	

©2015-2016 Emily Fox & Carlos Guestrin

MOVE TO HEAD SHOT

©2015-2016 Emily Fox & Carlos Guestrin

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1
1	1	+1
2	4	-1
0	3	-1
0	1	-1
2	1	+1

©2015-2016 Emily Fox & Carlos Guestrin

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment
0	2	-1
3	3	-1
2	4	-1
0	3	-1
0	1	-1
2	4	-1
0	3	-1
0	1	-1

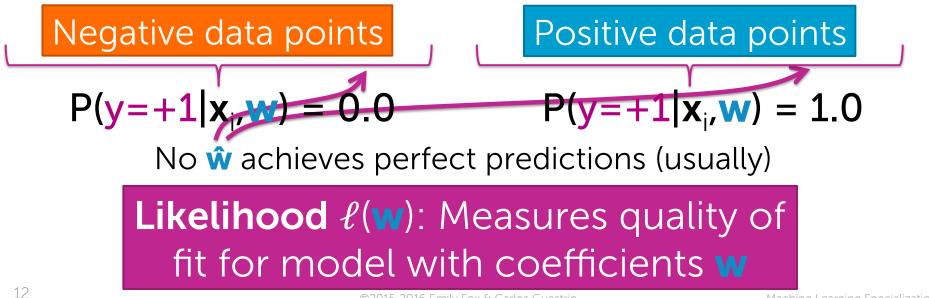
x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
4	1	+1
1	1	+1
2	1	+1
1	1	+1
2	1	+1

Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment		x [1] = #awesome	x [2] = #awful	y = sentiment	
0	2	-1		2	1	+1	
3	3	-1		4	1	+1	
2	4	-1		1	1	+1	
0	3	-1		2	1	+1	
0	1	-1					
$P(y=+1 x_i,w) = 0.0$ $P(y=+1 x_i,w) = 1.0$							
Pick ŵ that makes							

©2015-2016 Emily Fox & Carlos Guestrin

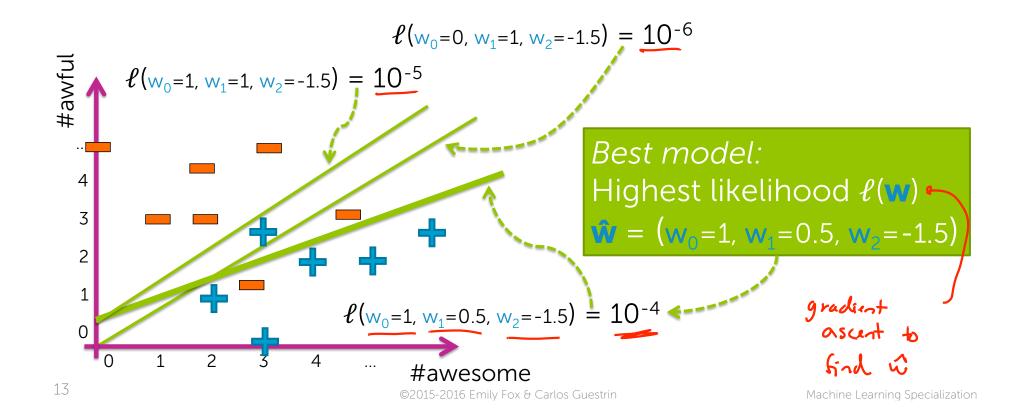
Quality metric = Likelihood function



©2015-2016 Emily Fox & Carlos Guestrin

Find "best" classifier

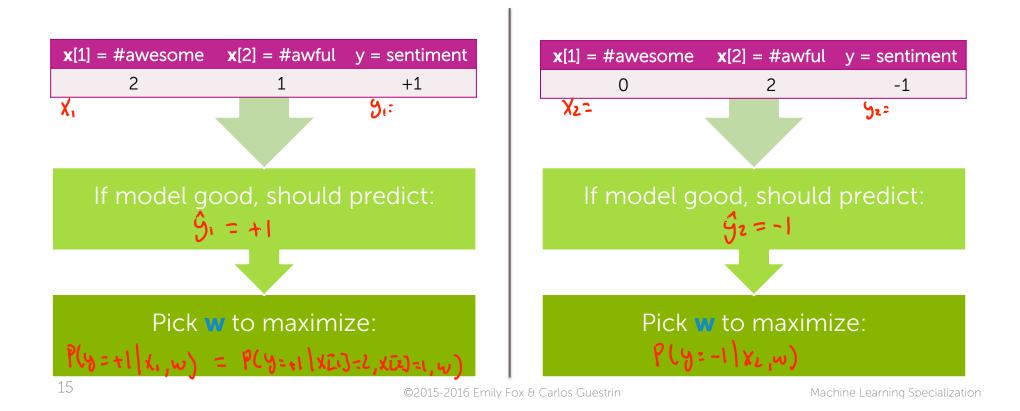
Maximize likelihood over all possible w_0, w_1, w_2



Data likelihood

©2015-2016 Emily Fox & Carlos Guestrin

Quality metric: probability of data



Maximizing likelihood (probability of data)

Data point	x [1]	x [2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	+1	$P(y=+1 x_{1}, w) = P(y=+1 x_{D}]=2, x_{D}]=1, w)$
x ₂ ,y ₂	0	2	-1	P(g=-1 X2,w)
X ₃ ,y ₃	3	3	-1	P(g=-1 x3,w)
x ₄ ,y ₄	4	1	+1	P(y=+1 x4, w)
x ₅ ,y ₅	1	1	+1	
x ₆ ,y ₆	2	4	-1	
x ₇ ,y ₇	0	3	-1	
x ₈ ,y ₈	0	1	-1	
x ₉ ,y ₉	2	1	+1	
16				

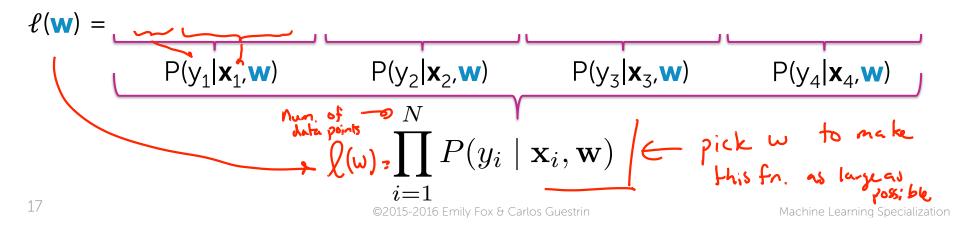
Must combine into single measure of quality ? Multiply Probabilites P(y=+11X,,w) P(y=-11X2,w) P(y=-11X3,w)...

16

©2015-2016 Emily Fox & Carlos Guestrin

Learn logistic regression model with maximum likelihood estimation (MLE)

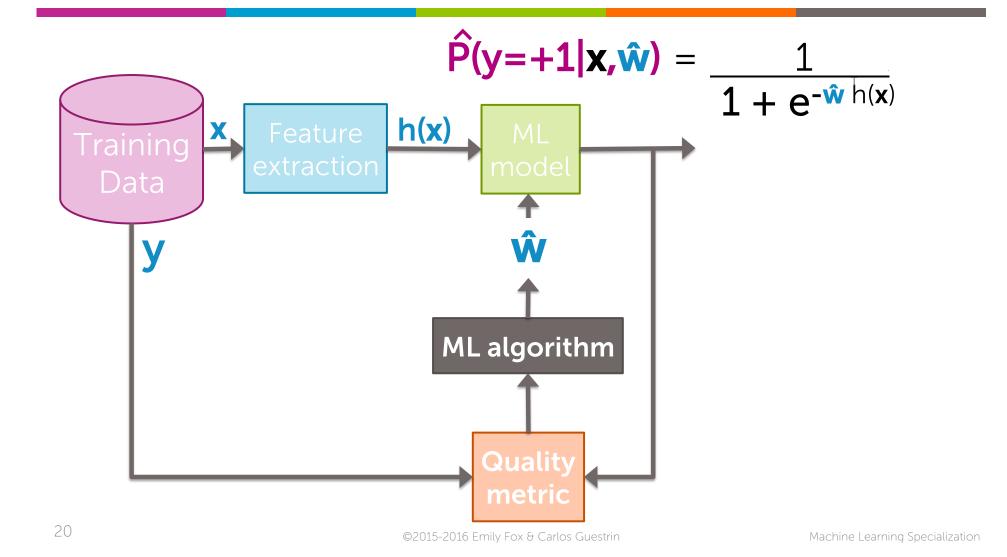
Data point	x [1]	x [2]	У	Choose w to maximize
x ₁ ,y ₁	2	1	y: +1	P(y=+1 x[1]=2, x[2]=1, w)
x ₂ ,y ₂	0	2	-1	P(y=-1 x[1]=0, x[2]=2, w)
x ₃ ,y ₃	3	3	-1	$P(y=-1 \mathbf{x}[1]=3, \mathbf{x}[2]=3, \mathbf{w})$
x ₄ ,y ₄	4	1	+1	P(y=+1 x [1]=4, x [2]=1, w)



MOVE TO FULL BODY SHOT

©2015-2016 Emily Fox & Carlos Guestrin

Finding best linear classifier with gradient ascent

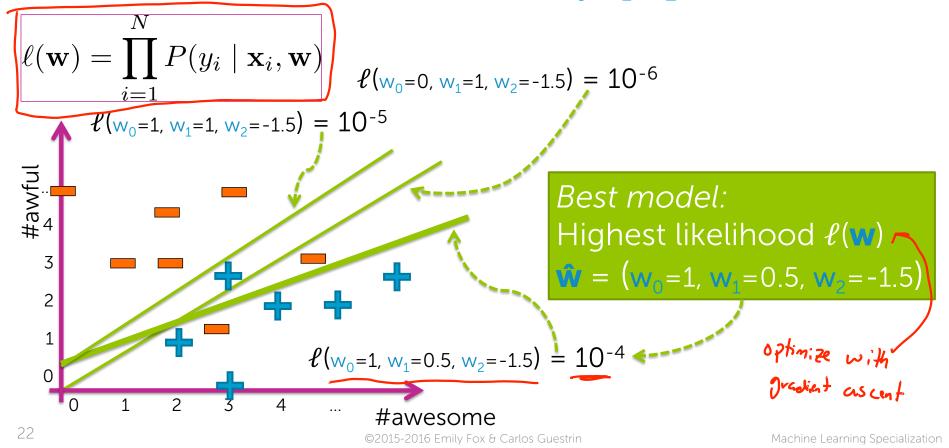


MOVE TO HEAD SHOT

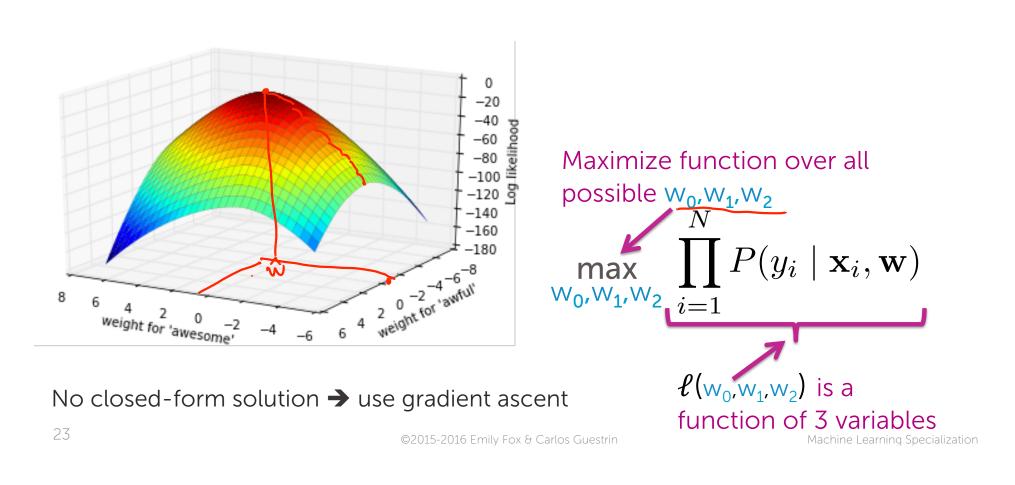
©2015-2016 Emily Fox & Carlos Guestrin

Find "best" classifier

Maximize likelihood over all possible w_0, w_1, w_2



Maximizing likelihood



MOVE TO FULL BODY SHOT

©2015-2016 Emily Fox & Carlos Guestrin

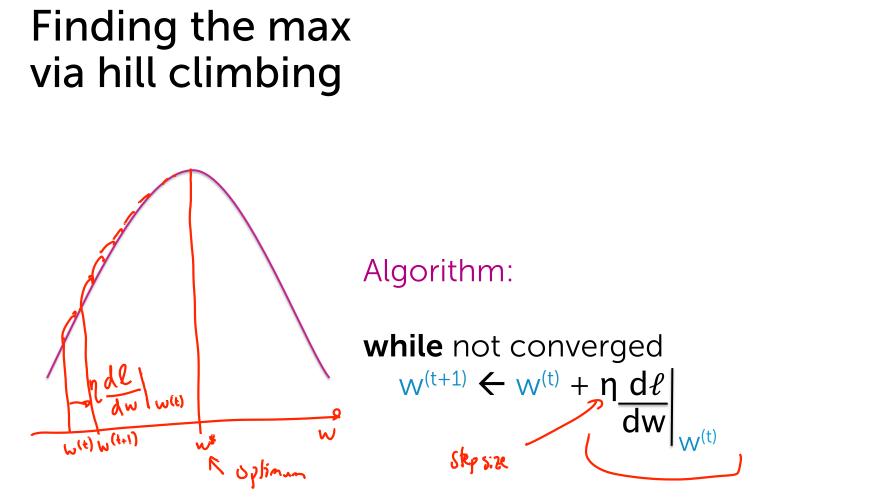
24

Review of gradient ascent

©2015-2016 Emily Fox & Carlos Guestrin

MOVE TO HEAD SHOT

©2015-2016 Emily Fox & Carlos Guestrin



©2015-2016 Emily Fox & Carlos Guestrin

For convex functions, optimum occurs when

$$\frac{dl}{dw} = 0$$

In practice, stop when

$$\frac{d\ell}{d\omega} < \epsilon$$

 $\frac{d\omega}{\omega^{(6)}} + \frac{1}{tokran le}$

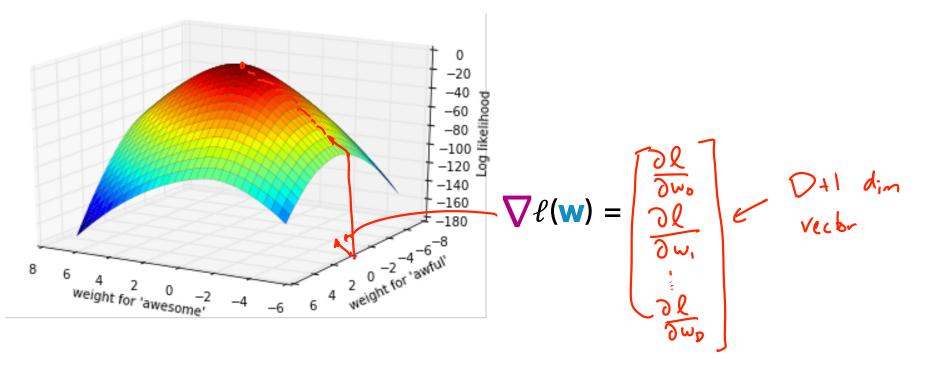
Algorithm:

while not converged $w^{(t+1)} \leftarrow w^{(t)} + \eta d\ell$ **^**(t)

©2015-2016 Emily Fox & Carlos Guestrin

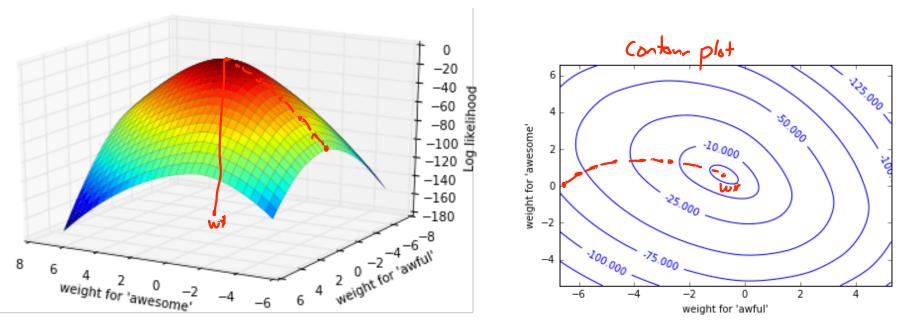
w

Moving to multiple dimensions: Gradients



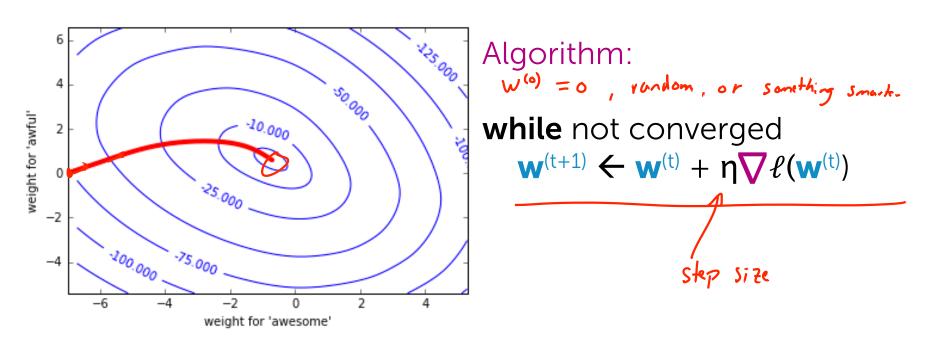
©2015-2016 Emily Fox & Carlos Guestrin

Contour plots



©2015-2016 Emily Fox & Carlos Guestrin

Gradient ascent



31

©2015-2016 Emily Fox & Carlos Guestrin

MOVE TO FULL BODY SHOT

©2015-2016 Emily Fox & Carlos Guestrin

32

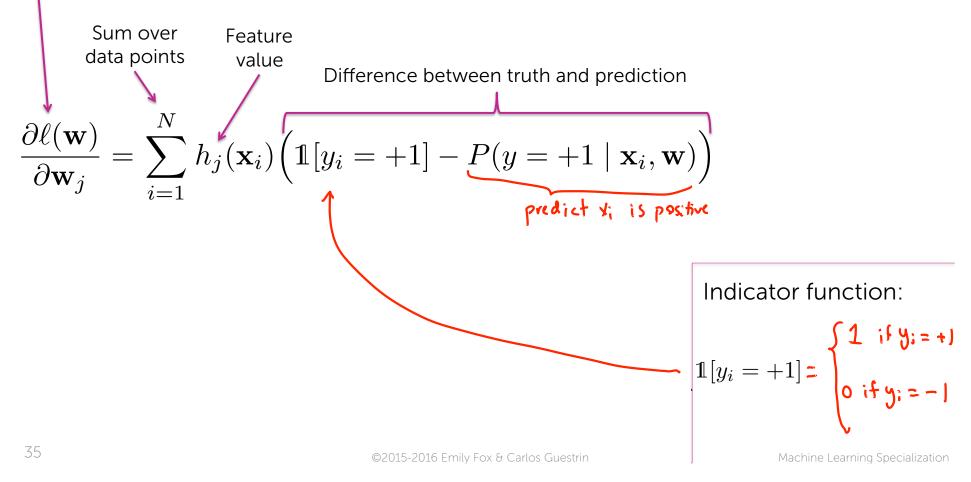
Learning algorithm for logistic regression

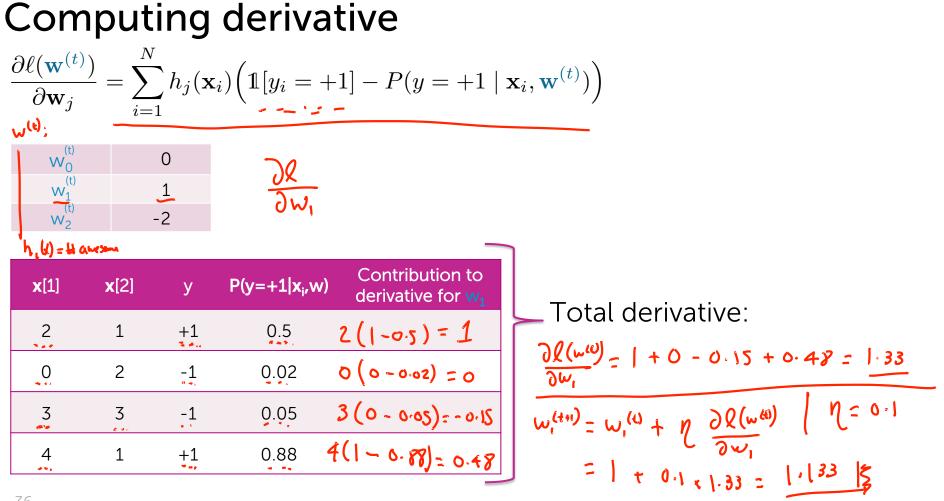
©2015-2016 Emily Fox & Carlos Guestrin

MOVE TO HEAD SHOT

©2015-2016 Emily Fox & Carlos Guestrin

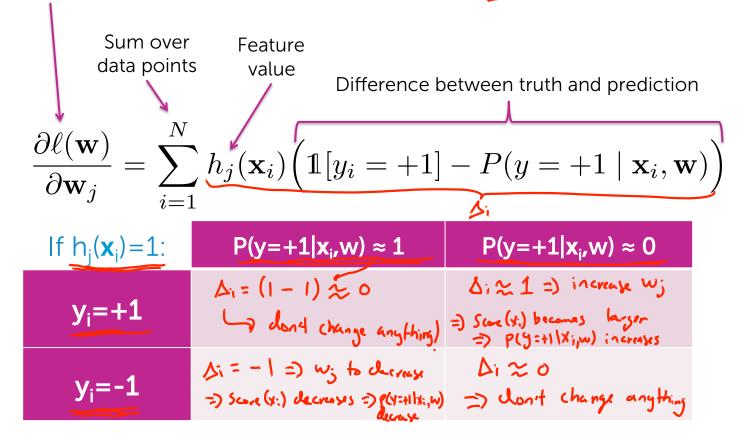




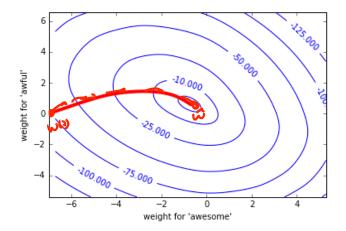


©2015-2016 Emily Fox & Carlos Guestrin

Derivative of (log-)likelihood: Interpretation



Summary of gradient ascent for logistic regression



init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), t=1while $|| \nabla \ell(\mathbf{w}^{(t)}) || > \epsilon$ for j=0,...,Dpartial[j] = $\sum_{i=1}^{N} h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \right)$ $w_j^{(t+1)} \leftarrow w_j^{(t)} + \eta$ partial[j] $t \leftarrow t+1$ $shpsize \int \ell(w^{(t)})$

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

38

MOVE TO FULL BODY SHOT

©2015-2016 Emily Fox & Carlos Guestrin

39

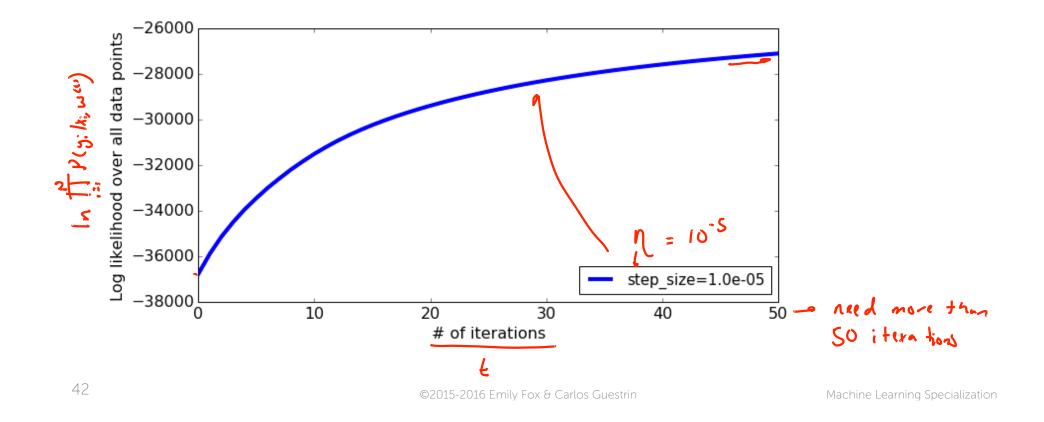
Choosing the step size $\boldsymbol{\eta}$

©2015-2016 Emily Fox & Carlos Guestrin

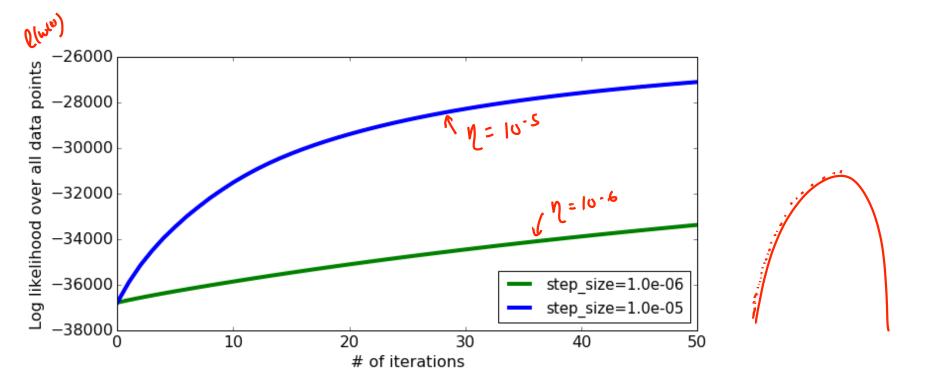
MOVE TO HEAD SHOT

©2015-2016 Emily Fox & Carlos Guestrin

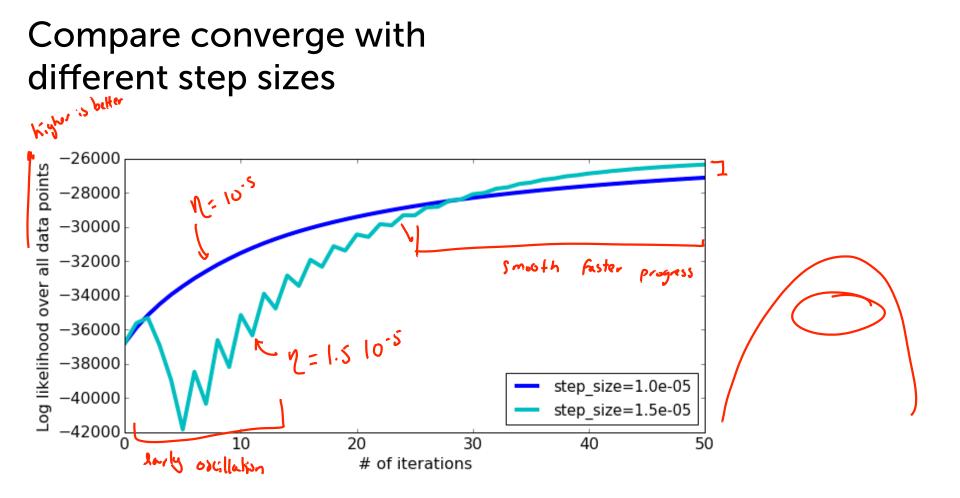
Learning curve: Plot quality (likelihood) over iterations



If step size is too small, can take a long time to converge



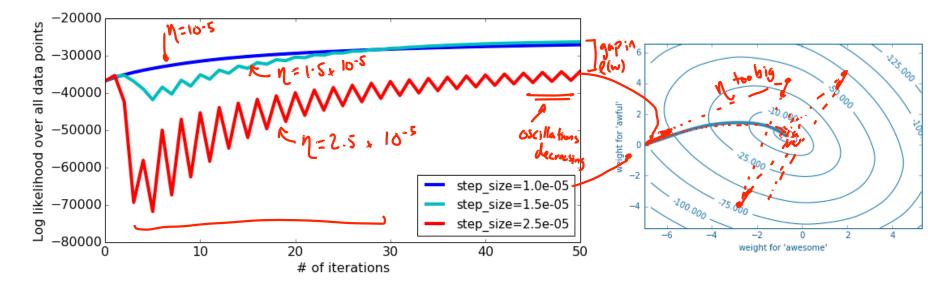
©2015-2016 Emily Fox & Carlos Guestrin



44

©2015-2016 Emily Fox & Carlos Guestrin

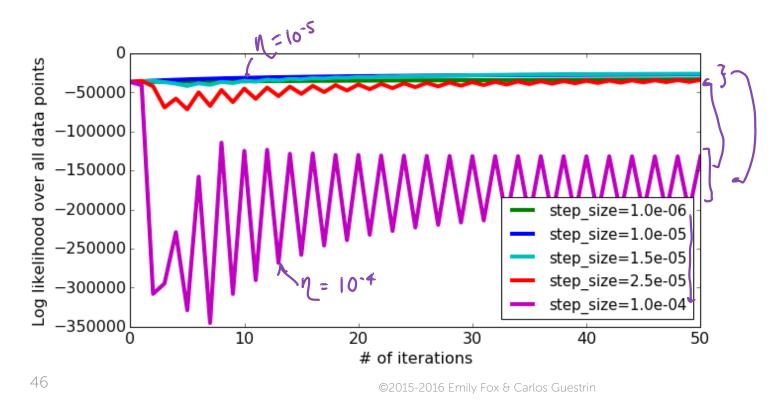
Careful with step sizes that are too large



45

©2015-2016 Emily Fox & Carlos Guestrin

Very large step sizes can even cause divergence or wild oscillations



Simple rule of thumb for picking step size η

- Unfortunately, picking step size requires a lot of trial and error ⊗
- Try a several values, exponentially spaced
 - Goal: plot learning curves to
 - find one η that is too small (smooth but moving too slowly)
 - find one η that is too large (oscillation or divergence)
- Try values in between to find "best" η
- <u>Advanced tip</u>: can also try step size that decreases with iterations, e.g.,

$$N_t = \frac{N_t}{t}$$

©2015-2016 Emily Fox & Carlos Guestrin

MOVE TO FULL BODY SHOT

©2015-2016 Emily Fox & Carlos Guestrin

48

Deriving the gradient for logistic regression

VERY OPTIONAL

MOVE TO HEAD SHOT

©2015-2016 Emily Fox & Carlos Guestrin

Log-likelihood function

• Goal: choose coefficients **w** maximizing likelihood:

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

• Math simplified by using log-likelihood – taking (natural) log:

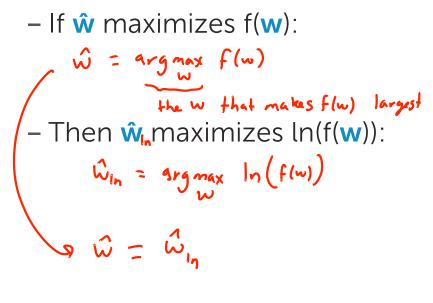
$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

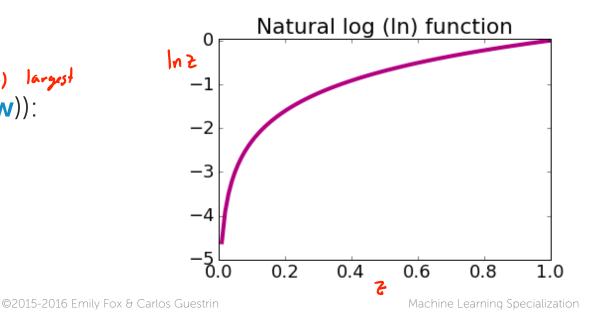
Machine Learning Specialization

51

The log trick, often used in ML...

- Products become sums:
 In a b = In a + Inb
 In a b = Ina Inb
- Doesn't change maximum!





Insert next title slide before Slide 52, around 4:55 in PL7_DerivingtheGradient_1stEdit

Expressing the log-likelihood

Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin

Using log to turn products into sums

$$\lim_{i \to 1} \int_{i=1}^{N} \int_{i$$

• The log of the product of likelihoods becomes the sum of the logs:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$
$$= \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Rewriting log-likelihood

• For simpler math, we'll rewrite likelihood with indicators:

$$\ell\ell(\mathbf{w}) = \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i=1}^{N} [\mathbbm{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbbm{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})]$$

$$\int \mathcal{Y}_{i=+1}$$

$$\int \mathcal{O}$$

$$\mathcal$$

Insert next title slide before Slide 54, around 7:33 in PL7_DerivingtheGradient_1stEdit

Deriving probability that y=-1 given x

Logistic regression model: P(y=-1|x,w)

Probability model predicts y=+1:

$$P(y=+1|x,w) = \frac{1}{1 + e^{-w^{T}h(x)}}$$

• Probability model predicts y=-1: $P(y=-1|X,w) = 1 - P(y=+1|X,w) = 1 - \frac{1}{1+e^{-wth(x)}}$ ($w^{th(x)} = w^{th(x)}$

$$= \frac{1+e^{\omega rh(\alpha)}}{1+e^{-\omega rh(\alpha)}} = \frac{e}{1+e^{-\omega rh(\alpha)}}$$

©2015-2016 Emily Fox & Carlos Guestrin

Insert next title slide before Slide 55, around 9:15 in PL7_DerivingtheGradient_1stEdit

60 ©2015-2016 Emily Fox & Carlos Guestrin

Rewriting the log-likelihood

Plugging in logistic function for 1 data point

$$P(y = +1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}} \quad P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{e^{-\mathbf{w}^{\top}h(\mathbf{x})}}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}}$$

$$\frac{\ell\ell(\mathbf{w}) = 1[y_i = +1] \ln P(y = +1 | \mathbf{x}_i, \mathbf{w}) + 1[y_i = -1] \ln P(y = -1 | \mathbf{x}_i, \mathbf{w})$$

$$= 1[y_i = +1] \ln P(y = +1 | \mathbf{x}_i, \mathbf{w}) + 1[y_i = -1] \ln P(y = -1 | \mathbf{x}_i, \mathbf{w})$$

$$= 1[y_i = +1] \ln \frac{1}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}} + (1 - 1[y_i = +1]) \ln \frac{e^{-\mathbf{w}^{\top}h(\mathbf{x})}}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}}$$

$$= -(1 - 1[y_i = +1]) \ln(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}) - \ln(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})})$$

$$= -(1 - 1[y_i = +1]) \ln^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)})$$

$$\lim_{k \to \infty} \frac{1}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}} = -\ln(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)})$$

$$\lim_{k \to \infty} \frac{1}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}} = -\ln(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)})$$

_

_

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

62

_

_

-

Insert next title slide before Slide 56, around 16:56 in PL7_DerivingtheGradient_1stEdit

Deriving gradient of log-likelihood

Gradient for 1 data point

$$\ell\ell(\mathbf{w}) = -(1 - \mathbb{1}[y_i = +1])\mathbf{w}^{\top}h(\mathbf{x}_i) - \ln\left(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}\right)$$

$$\frac{\partial \ell\ell}{\partial w_j} = -(1 - \mathbb{1}[y_i = +1])\frac{\partial}{\partial w_j} \frac{\mathbf{w}^{\top}h(\mathbf{x}_i)}{\partial w_j} - \frac{\partial}{\partial w_j} \ln\left(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}\right)$$

$$= -(1 - \mathbb{1}[y_i = +1])h_j(\mathbf{x}_i) P(y_{i-1}|\mathbf{x}_{i,w})$$

$$= h_j(\mathbf{x}_i)\left[\mathbb{1}[y_i = +1] - P(y_{i-1}|\mathbf{x}_{i,w})\right]$$

$$= h_j(\mathbf{x}_i)\left[\mathbb{1}[y_i = +1] - P(y_{i-1}|\mathbf{x}_{i,w})\right]$$

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

65

Finally, gradient for all data points

• Gradient for one data point:

$$h_j(\mathbf{x}_i) \left(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) \right)$$

• Adding over data points:

 $\frac{\partial \ell \ell}{\partial \omega_{j}} = \sum_{i=1}^{N} h_{j}(x_{i}) \left(1 [L_{g:=+1}] - P(y=+1 | x_{i}, \omega) \right) \left\{ \begin{array}{c} \cdot \\ \cdot \\ \cdot \\ \cdot \end{array} \right\}$

MOVE TO FULL BODY SHOT

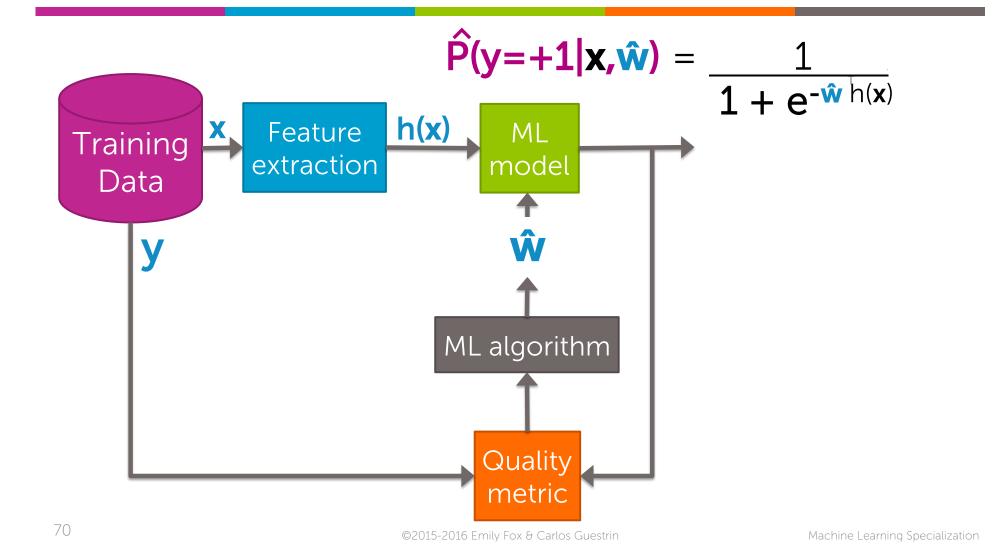
©2015-2016 Emily Fox & Carlos Guestrin

67

Summary of logistic regression classifier

MOVE TO HEAD SHOT

©2015-2016 Emily Fox & Carlos Guestrin



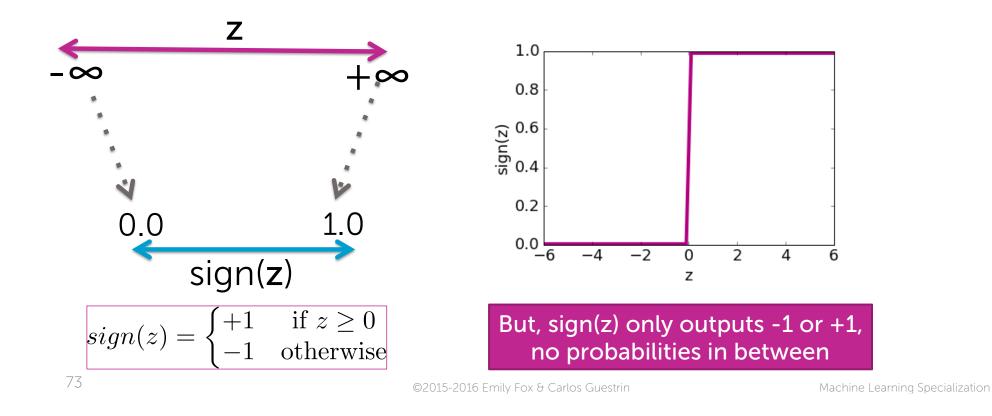
MOVE TO FULL BODY SHOT

©2015-2016 Emily Fox & Carlos Guestrin

What you can do now...

- Measure quality of a classifier using the likelihood function
- Interpret the likelihood function as the probability of the observed data
- Learn a logistic regression model with gradient descent
- (Optional) Derive the gradient descent update rule for logistic regression

Simplest link function: sign(z)

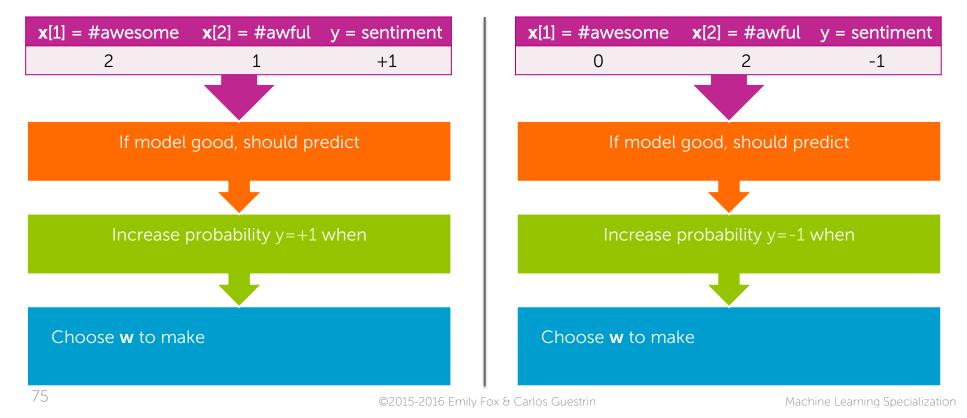


Finding best coefficients

x [1] = #awesome	x [2] = #awful	y = sentiment		x [1] = #awesome	x [2] = #awful	y = sentiment	
0	2	-1		2	1	+1	
3	3	-1		4	1	+1	
2	4	-1		1	1	+1	
0	3	-1		2	1	+1	
0	1	-1	1 1				
$0.0 \longleftarrow P(y=+1 x_i, \hat{w}) \longrightarrow 1.0$							
$-\infty \leftarrow Score(\mathbf{x}_i) = \mathbf{\hat{w}}^{T}h(\mathbf{x}_i) \rightarrow + \mathbf{\hat{x}}^{T}h(\mathbf{x}_i)$							
74		©2015-2016	r Carlos Guestrin		Machine Learning Speci		

Quality metric: probability of data

$$\hat{\mathbf{P}}(\mathbf{y}=+\mathbf{1}|\mathbf{x},\hat{\mathbf{w}}) = \frac{1}{1+e^{-\hat{\mathbf{w}}^{T}h(\mathbf{x})}}$$



Maximizing likelihood (probability of data)

Data point	x [1]	x [2]	У	Choose w to maximize			
x ₁ ,y ₁	2	1	+1				
x ₂ ,y ₂	0	2	-1				
x ₃ ,y ₃	3	3	-1		Must combine into single measure of quality		
x ₄ ,y ₄	4	1	+1				
x ₅ ,y ₅	1	1	+1				
x ₆ ,y ₆	2	4	-1				
x ₇ ,y ₇	0	3	-1				
x ₈ ,y ₈	0	1	-1				
x ₉ ,y ₉	2	1	+1				
76				©2015-2016 Emily Fox & Carlos	Guestrin Machine Learning Specialization		

Learn logistic regression model with maximum likelihood estimation (MLE)

• Choose coefficients **w** that maximize likelihood:

$$\prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

• No closed-form solution \rightarrow use gradient ascent