
Machine Learning Specialization 

Linear classifiers:  
Logistic regression 

Emily Fox & Carlos Guestrin 
Machine Learning Specialization 

University of Washington 

1 ©2015-2016 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 

Predicting sentiment by topic:  
An intelligent restaurant  
review system 
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It’s a big day & I want to book a table at  
a nice Japanese restaurant 
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Seattle has many 
★★★★  

sushi restaurants 

What are people 
saying about  

the food?  
the ambiance?...  
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Positive reviews not positive about everything 
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Sample review: 
Watching the chefs create 
incredible edible art made  
the experience very unique.  

My wife tried their ramen  
and it was pretty forgettable.  

All the sushi was delicious!   
Easily best sushi in Seattle. 

Experience 
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Classifying sentiment of review 
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Easily best sushi in Seattle. 

Sentence Sentiment 
Classifier 
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Linear classifier: Intuition  
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Classifier 
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Sentence  
from  

review 

Classifier 
MODEL 

Input:  x 
Output:  y  
Predicted  
class 

Note: we’ll start talking about 2 classes, and address multiclass later 

ŷ = +1 	

ŷ = -1 	
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A (linear) classifier 
•  Will use training data to learn a weight  

or coefficient for each word  
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Word Coefficient 
good   1.0 

great   1.5 

awesome   2.7 

bad -1.0 

terrible -2.1 

awful -3.3 

restaurant, the, we, where, …   0.0 

…  … 
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Scoring a sentence 
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Word Coefficient 
good   1.0 

great   1.2 

awesome   1.7 

bad -1.0 

terrible -2.1 

awful  -3.3 

restaurant, the,  
we, where, … 

  0.0 

…  … 

Input xi: 
Sushi was great,  
the food was awesome,  
but the service was terrible.  

Called a linear classifier, because output is weighted sum of input. 
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Score(x) = weighted count of 
      words in sentence 

 
If Score (x) > 0: 

  ŷ =  
Else: 

  ŷ = 

Word Coefficient 

… … 
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Sentence  
from  

review 

Input:  x 

Simple linear classifier  
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Training a classifier = Learning the coefficients 
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Data 

(x,y) 
(Sentence1,     ) 
(Sentence2,     ) 

… 

Training 
set 

Validation 
set 

Learn 
classifier 

Accuracy 

Word Coefficient 

good   1.0 

awesome   1.7 

bad -1.0 

awful  -3.3 

…  … 
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Decision boundaries 

14 ©2015-2016 Emily Fox & Carlos Guestrin 



Machine Learning Specialization 15 

Suppose only two words had non-zero coefficient 
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Word Coefficient 

#awesome   1.0 

#awful  -1.5 

#awesome 
0 1 2 3 4 … 

#
aw

fu
l 

0 

1 

2 

3 

4 

… 

Sushi was awesome,  
the food was awesome,  
but the service was awful.  

Score(x) = 1.0 #awesome – 1.5 #awful 
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Decision boundary example 
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#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) > 0 

Score(x) < 0 

Word Coefficient 

#awesome   1.0 

#awful  -1.5 
Score(x) = 1.0 #awesome – 1.5 #awful 
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Decision boundary separates 
positive & negative predictions 

•  For linear classifiers: 
- When 2 coefficients are non-zero  
è line 

- When 3 coefficients are non-zero  
è plane 

- When many coefficients are non-zero 
è hyperplane  

•  For more general classifiers  
è more complicated shapes 
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Linear classifier: Model  
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y 

ŷ  

ŵ 

h(x) x 
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Coefficients of classifier 
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#awesome 

#
aw

fu
l 

x[1] 

x[3] 

Score(x) = w0  
           + w1

 #awesome 
           + w2

 #awful 
           + w3

 #great 

x[
2

] 
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General notation 

Output: y 
Inputs: x = (x[1],x[2],…, x[d]) 
 
 
Notational conventions: 

 x[j] = jth input (scalar) 
 hj(x) = jth feature (scalar) 
 xi = input of ith data point (vector) 
 xi[j] = jth input of ith data point (scalar) 
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d-dim vector 

{-1,+1} 



Machine Learning Specialization 26 

Simple hyperplane 
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Model:   ŷi = sign(Score(xi))  
 

Score(xi) = w0 + w1
 xi[1] + … + wd

 xi[d] 
     
feature 1 = 1 

feature 2 = x[1] … e.g., #awesome 

feature 3 = x[2] … e.g., #awful 

… 

feature d+1 = x[d] … e.g., #ramen 

= wTxi	



Machine Learning Specialization 27 

Decision boundary: effect of changing coefficients 
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Input Coefficient Value 

w0   0.0 

#awesome w1   1.0 

#awful  w2 -1.5 

#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) = 1.0 #awesome – 1.5 #awful 

Score(x) > 0 

Score(x) < 0 
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Input Coefficient Value 

w0 

#awesome w1   1.0 

#awful  w2 -1.5 

Decision boundary: effect of changing coefficients 
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#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) = 

Score(x) > 0 

Score(x) < 0 

0.0	

1.0 #awesome – 1.5 #awful 1.0 +  
1.0 
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Input Coefficient Value 

w0 

#awesome w1   1.0 

#awful  w2 

Decision boundary: effect of changing coefficients 
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#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) = 

Score(x) > 0 

Score(x) < 0 

1.0 + 1.0 #awesome – 1.5 #awful 
  

1.0 

-1.5 -3.0 
– 3.0 
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More generic features… D-dimensional hyperplane 
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feature 1 = h0(x) … e.g., 1 

feature 2 = h1(x) … e.g., x[1] = #awesome 

feature 3 = h2(x) … e.g., x[2] = #awful 
                     or, log(x[7]) x[2] = log(#bad) x #awful 

                     or, tf-idf(“awful”) 

… 

feature D+1 = hD(x) … some other function of x[1],…, x[d] 

DX

j=0

Model:   ŷi = sign(Score(xi))  
 

Score(xi) = w0 h0(xi) + w1
 h1(xi) + … + wD

 hD(xi) 
 

    =      wj
 hj(xi) = wTh(xi) 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y ŵ 

(either -1 or +1) 

ŷ	=	sign(ŵTh(x))	
h(x) x 
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Are you sure about the prediction?  
Class probability 
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How confident is your prediction? 

•  Thus far, we’ve outputted a prediction  or  

•  But, how sure are you about the prediction? 
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Definite  

“The sushi & everything  
else were awesome!” 

“The sushi was good,  
 the service was OK” 

Not sure 

ŷ = +1 with  
high probability 

ŷ = +1 with  
probability 0.5 
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Basics of probabilities – quick review  
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Basic probability 
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x =  
review text 

y = 
sentiment 

All the sushi was delicious!  Easily best sushi in Seattle. +1 

The sushi & everything else were awesome! +1 

My wife tried their ramen, it was pretty forgettable. -1 

The sushi was good, the service was OK +1 

…  … 

Probability a review is positive is 0.7 

I expect 70% of rows  
to have y = +1 

(Exact number will vary  
for each specific dataset) 
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Interpreting probabilities  
as degrees of belief 
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0.0	 1.0	

P(y=+1)	

Absolutely sure  
reviews are positive 

Absolutely sure  
reviews are negative 

Not sure if reviews are  
positive or negative 

0.5	
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Key properties of probabilities 
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Property Two class 
(e.g., y is +1 or -1) 

Multiple classes 
(e.g., y is dog, cat or bird) 

Probabilities always 
between 0 & 1 

Probabilities  
sum up to 1 
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Conditional probability 
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x = review text y = sentiment 
All the sushi was delicious!  Easily best sushi in Seattle. +1 

Sushi was awesome & everything else was awesome! 
The service was awful, but overall awesome place! 

+1 

My wife tried their ramen, it was pretty forgettable. -1 

The sushi was good, the service was OK +1 

…  … 

awesome … awesome … awful … awesome  +1 

…  … 

awesome … awesome … awful … awesome  -1 

…  … 

…  … 

awesome … awesome … awful … awesome  +1 

x = review text y = sentiment 
All the sushi was delicious!  Easily best sushi in Seattle. +1 

Sushi was awesome & everything else was awesome! 
The service was awful, but overall awesome place! 

+1 

My wife tried their ramen, it was pretty forgettable. -1 

The sushi was good, the service was OK +1 

…  … 

awesome … awesome … awful … awesome  +1 

…  … 

awesome … awesome … awful … awesome  -1 

…  … 

…  … 

awesome … awesome … awful … awesome  +1 

I expect 90% of rows with  
reviews containing  

3 “awesome” & 1 “awful” 
to have y = +1 

(Exact number will vary  
for each specific dataset) 

Probability a review with  
3 “awesome” and 1 “awful” is positive is 0.9 
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Interpreting conditional probabilities  
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0.0	 1.0	

P(y=+1|xi=“All the sushi was delicious!”)	

Absolutely sure review  
“All the sushi was delicious!”  

is positive 

Absolutely sure review  
“All the sushi was delicious!”  

is negative 

Not sure if review 
“All the sushi was delicious!”  

is positive or negative 

0.5	

Output label Input sentence 
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Key properties of  
conditional probabilities 
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Property 
Two class 

(e.g., y is +1 or -1, 
xi is review text) 

Multiple classes 
(e.g., y is dog, cat or bird, 

xi is image) 

Conditional 
probabilities always 
between 0 & 1 

Conditional 
probabilities  
sum up to 1 over y, 
but not over x 
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Using probabilities in classification 
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How confident is your prediction? 
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Definite  

“The sushi & everything  
else were awesome!” 

“The sushi was good,  
 the service was OK” 

Not sure 

P(y=+1| x=              )  

             = 0.99 

P(y=+1| x=              )  

             = 0.55 

“The sushi & everything  
else were awesome!”	

“The sushi was good,  
the service was OK”	

Many classifiers provide a degree of certainty: 
 
 

       P(y|x) 

 Extremely useful in practice 

Output label Input sentence 
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Goal: Learn conditional probabilities from data  

x[1] = #awesome x[2] = #awful y = sentiment 

2 1 +1 

0 2 -1 

3 3 -1 

4 1 +1 

… … … 
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Training data: N observations (xi,yi) 

Optimize quality metric  
on training data 

Find best model P  
by finding best ŵ  

⌃ 
Useful for 

predicting ŷ 
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            = estimate of class 
               probabilities 

 

If            > 0.5: 

  ŷ =  
Else: 

  ŷ = 
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Sentence  
from  

review 

Input:  x 

Predict most likely class 

P(y|x) 
⌃ 

P(y=+1|x) 
⌃ 

•  Estimating             improves interpretability: 
- Predict ŷ = +1 and tell me how sure you are 

P(y|x) 
⌃ 
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Predicting class probabilities with  
generalized linear models 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y 

h(x) 

ŵ 

x P(y|x) 
⌃ 
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Thus far, we focused on decision boundaries 
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#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

Score(x) > 0 

Score(x) < 0 

Score(xi) = w0 h0(xi) + w1
 h1(xi) + … + wD

 hD(xi) 

      = wTh(xi) 

Relate  
Score(xi) to  

P(y=+1|x,ŵ)?   
⌃ 
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Interpreting Score(xi) 
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-∞	 +∞	

Score(xi)	=	wTh(xi)	

ŷi = +1	ŷi = -1	

Very sure 
ŷi = +1 

Very sure 
ŷi = -1 

P(y=+1|xi) = 1 
⌃ 

P(y=+1|xi) = 0 
⌃ 

Not sure if			

ŷi = -1 or +1 
 

P(y=+1|xi) = 0.5 
⌃ 

0.0	
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Why not just use regression to build classifier? 
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Score(xi) = w0h0(xi) + w1
 h1(xi) + … + wD

 hD(xi) 

-∞	 +∞	0.0	

0.5	0.0	 1.0	

P(y=+1|xi) 

-∞ < Score(xi) < +∞	

But probabilities between 0 and 1 

How do  
we link 
-∞,+∞ 

to 0,1??? 



Machine Learning Specialization 52 

Link function: squeeze real line into [0,1]  
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-∞	 +∞	

Score(xi) = wTh(xi)	

0.0	 1.0	

0.0	

0.5	

g(wTh(xi))	

Link  
function 

P(y=+1|xi) = 
⌃ 

Generalized linear model 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y ŵ 

P(y=+1|x,ŵ) =	g(ŵTh(x))	
 

⌃ 

h(x) x 
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Logistic regression classifier:  
  linear score with  
   logistic link function 
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Logistic function (sigmoid, logit) 
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Score -∞ -2 0.0 +2 +∞ 

sigmoid(Score) 
 
 

 
 
 
 
 

sigmoid(Score) =

1

1 + e

�Score
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Logistic regression model 
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-∞	 +∞	

Score(xi) = wTh(xi)	

0.0	 1.0	

0.0	

0.5	

P(y=+1|xi,w) = sigmoid(Score(xi))  
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Understanding the logistic  
regression model 
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P (y = +1 | x,w) =
1

1 + e�w

>h(x)

1

1
+

e�
w

>
h
(x

)

w

>h(x)

Score(xi)	 P(y=+1|xi,w)	
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Logistic regression è  
     Linear decision boundary 
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#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

1

1
+

e�
w

>
h
(x

)

w

>h(x)
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Effect of coefficients on  
logistic regression model 

©2015-2016 Emily Fox & Carlos Guestrin 

w0 0 

w#awesome +1 

w#awful -1 

w0 0 

w#awesome +3 

w#awful -3 

w0 -2 

w#awesome +1 

w#awful -1 

#awesome - #awful 

1

1
+

e�
w

>
h
(x

)

1

1
+

e�
w

>
h
(x

)

#awesome - #awful 

1

1
+

e�
w

>
h
(x

)

#awesome - #awful 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y ŵ 

h(x) x 

P(y=+1|x,ŵ) =	sigmoid(ŵTh(x)) =         1       . 	
 

⌃ 

1 + e-ŵ h(x)	
T	
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Overview of learning  
logistic regression model 
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Training a classifier = Learning the coefficients 
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Data 

(x,y) 
(Sentence1,     ) 
(Sentence2,     ) 

… 

Training 
set 

Validation 
set 

Learn 
classifier 

Quality 

Word Coefficient Value 

ŵ0 -2.0 

good ŵ1   1.0 

awesome ŵ2   1.7 

bad ŵ3 -1.0 

awful  ŵ4 -3.3 

… …  … 

P(y=+1|x,ŵ) =											1       . 	
 

⌃ 

1 + e-ŵ h(x)	
T	
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Find “best” classifier =  
Maximize quality metric over all possible w0,w1,w2 
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#awesome 

#
aw

fu
l 

0 1 2 3 4 … 

0 

1 

2 

3 

4 

… 

ℓ(w0=1, w1=0.5, w2=-1.5) = 10-4 

ℓ(w0=1, w1=1, w2=-1.5) = 10-5 

ℓ(w0=0, w1=1, w2=-1.5) = 10-6 

Best model:  
Highest likelihood ℓ(w) 
ŵ = (w0=1, w1=0.5, w2=-1.5)  

Likelihood ℓ(w)	

Find best model 
coefficients w with 

gradient ascent! 
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Encoding categorical inputs 
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Categorical inputs 
•  Numeric inputs: 

-  #awesome, age, salary,… 

-  Intuitive when multiplied  
by coefficient 
•  e.g., 1.5 #awesome 

•  Categorical inputs: 

©2015-2016 Emily Fox & Carlos Guestrin 

Gender 
(Male, Female,...)	

Country of birth 
(Argentina, Brazil, USA,...)	

Zipcode 
(10005, 98195,...)	

Numeric value, but should be  
interpreted as category  

(98195 not about 9x larger than 10005) 

How do we multiply category by coefficient??? 
Must convert categorical inputs into numeric features 
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Encoding categories as numeric features 
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Country of birth 
(Argentina, Brazil, USA,...)	

x = 

196 categories 

1-hot 
encoding x h1(x) h2(x) … h195(x) h196(x) 

Brazil 

Zimbabwe 

196 features 

10,000 words in vocabulary 

Bag of 
words 

x h1(x) h2(x) … h9999(x) h10000(x) 

	
	

10,000 features 

Restaurant review 
(Text data)	

x = 
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Multiclass classification 
using 1 versus all 
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Multiclass classification 
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Input:  x 
Image pixels 

Output:  y 
Object in image 
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Multiclass classification formulation 

•  C possible classes: 
- y can be 1, 2,…, C 

•  N datapoints:  
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Data 
point 

x[1] x[2] y 

x1,y1  2 1 

x2,y2 0 2 

x3,y3 3 3 

x4,y4 4 1 

Learn: 

P(y=    |x) 
⌃ 

P(y=    |x) 
⌃ 

P(y=    |x) 
⌃ 
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1 versus all:  
Estimate        using 2-class model 
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Predict:  

Train classifier: 

+1 class: points with yi= 
-1 class: points with yi=      OR    

P(y=    |x) 
⌃ 

P (y=+1|x) 
⌃ 

P(y=     |xi)=  
⌃ 

P (y=+1|xi) 
⌃ 
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1 versus all: simple multiclass classification  
using C 2-class models 
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P(y=     |xi) =  
⌃ 

P(y=     |xi) =  
⌃ 

P(y=     |xi) =  
⌃ 
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                       = estimate of  
 1 vs all model for each class 

 
 
 
max_prob = 0; ŷ = 0 

For c = 1,…,C: 

 If        > max_prob: 

   ŷ = c 

   max_prob =  
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Input:  xi 

Multiclass training 

Pc(y=+1|x) 
⌃ 

Predict most likely class 

Pc(y=+1|xi) 
⌃ 

Pc(y=+1|xi) 
⌃ 
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Summary of logistic  
regression classifier 
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Training 
Data 

Feature 
extraction 

ML  
model 

Quality 
metric 

ML algorithm 

y ŵ 

h(x) x 

P(y=+1|x,ŵ) =         1       . 	
 

⌃ 

1 + e-ŵ h(x)	
T	
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What you can do now… 
•  Describe decision boundaries and linear 

classifiers 
•  Use class probability to express degree of 

confidence in prediction  
•  Define a logistic regression model 
•  Interpret logistic regression outputs as class 

probabilities  
•  Describe impact of coefficient values on 

logistic regression output 
•  Use 1-hot encoding to represent categorical 

inputs 
•  Perform multiclass classification using the  

1-versus-all approach 
©2015-2016 Emily Fox & Carlos Guestrin 


