Linear classifiers: Logistic regression

Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

©2015-2016 Emily Fox & Carlos Guestrir

Predicting sentiment by topic: An intelligent restaurant review system

It's a big day & I want to book a table at a nice Japanese restaurant

©2015-2016 Emily Fox & Carlos Guestrin

Sample review:

Watching the chefs create incredible edible art made the <u>experience</u> very unique.

My wife tried their <u>ramen</u> and it was pretty forgettable.

All the <u>sushi</u> was delicious! Easily best <u>sushi</u> in Seattle. Experience

©2015-2016 Emily Fox & Carlos Guestrin

Classifying sentiment of review

Easily best sushi in Seattle.

©2015-2016 Emily Fox & Carlos Guestrin

Linear classifier: Intuition

©2015-2016 Emily Fox & Carlos Guestrin

Note: we'll start talking about 2 classes, and address multiclass later

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

7

A (linear) classifier

• Will use training data to learn a weight or coefficient for each word

Word	Coefficient
good	1.0
great	1.5
awesome	2.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0
8 ©	2015-2016 Emily Fox & Carlos Guestrin

Scoring a sentence

• • •

Word	Coefficient
good	1.0
great	1.2
awesome	1.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0

Input **x**_i: Sushi was <u>great</u>, the food was <u>awesome</u>, but the service was <u>terrible</u>.

Called a linear classifier, because output is weighted sum of input.

•••

©2015-2016 Emily Fox & Carlos Guestrin

Training a classifier = Learning the coefficients

Decision boundaries

©2015-2016 Emily Fox & Carlos Guestrin

Suppose only two words had non-zero coefficient

15

Decision boundary example

©2015-2016 Emily Fox & Carlos Guestrin

Decision boundary separates positive & negative predictions

- For linear classifiers:
 - When 2 coefficients are non-zero
 - → line
 - When 3 coefficients are non-zero
 - ➔ plane
 - When many coefficients are non-zero
 - → hyperplane
- For more general classifiers
 more complicated shapes

©2015-2016 Emily Fox & Carlos Guestrin

Linear classifier: Model

©2015-2016 Emily Fox & Carlos Guestrin

General notation

Output: $y \not{\sim} \{-1,+1\}$ Inputs: $\mathbf{x} = (\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[d])$ d-dim vector

Notational conventions: $\mathbf{x}[j] = j^{\text{th}} \text{ input } (scalar)$ $h_j(\mathbf{x}) = j^{\text{th}} \text{ feature } (scalar)$ $\mathbf{x}_i = \text{ input of } i^{\text{th}} \text{ data point } (vector)$ $\mathbf{x}_i[j] = j^{\text{th}} \text{ input of } i^{\text{th}} \text{ data point } (scalar)$

Simple hyperplane

Model: $\hat{y}_i = \text{sign}(\text{Score}(\mathbf{x}_i))$

Score(
$$\mathbf{x}_i$$
) = \mathbf{w}_0 + $\mathbf{w}_1 \mathbf{x}_i$ [1] + ... + $\mathbf{w}_d \mathbf{x}_i$ [d] = $\mathbf{w}^T \mathbf{x}_i$

feature 1 = 1 feature 2 = \mathbf{x} [1] ... e.g., #awesome feature 3 = \mathbf{x} [2] ... e.g., #awful

feature $d+1 = \mathbf{x}[d] \dots e.g.$, #ramen

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

. . .

Decision boundary: effect of changing coefficients

Input	Coefficient	Value	
	W ₀	0.0	
#awesome	W ₁	1.0	Score(x) = $1.0 \text{ #awesome} - 1.5 \text{ #awful}$
#awful	W ₂	-1.5	

Decision boundary: effect of changing coefficients

©2015-2016 Emily Fox & Carlos Guestrin

Decision boundary: effect of changing coefficients

More generic features... D-dimensional hyperplane

Model: $\hat{\mathbf{y}}_{i} = \operatorname{sign}(\operatorname{Score}(\mathbf{x}_{i}))$ Score $(\mathbf{x}_{i}) = \mathbf{w}_{0} \mathbf{h}_{0}(\mathbf{x}_{i}) + \mathbf{w}_{1} \mathbf{h}_{1}(\mathbf{x}_{i}) + \dots + \mathbf{w}_{D} \mathbf{h}_{D}(\mathbf{x}_{i})$ $= \sum_{j=0}^{D} \mathbf{w}_{j} \mathbf{h}_{j}(\mathbf{x}_{i}) = \mathbf{w}^{T} \mathbf{h}(\mathbf{x}_{i})$

 $\begin{array}{l} \textit{feature 1} = h_0(\textbf{x}) \ ... \ e.g., \ 1 \\ \textit{feature 2} = h_1(\textbf{x}) \ ... \ e.g., \ \textbf{x}[1] = \#awesome \\ \textit{feature 3} = h_2(\textbf{x}) \ ... \ e.g., \ \textbf{x}[2] = \#awful \\ & \text{or, } \log(\textbf{x}[7]) \ \textbf{x}[2] = \log(\#bad) \ x \ \#awful \\ & \text{or, } tf\text{-idf}(``awful'') \end{array}$

feature $D+1 = h_D(\mathbf{x})$... some other function of $\mathbf{x}[1], ..., \mathbf{x}[d]$

...

Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Are you sure about the prediction? Class probability

How confident is your prediction?

- Thus far, we've outputted a prediction +1 or -1
- But, how sure are you about the prediction?

©2015-2016 Emily Fox & Carlos Guestrin

Basics of probabilities – quick review

©2015-2016 Emily Fox & Carlos Guestrin

Basic probability

Probability a review is positive is 0.7

x = review text	y = sentiment	
All the sushi was delicious! Easily best sushi in Seattle.	+1	Lovport 70% of rows
The sushi & everything else were awesome!	+1	
My wife tried their ramen, it was pretty forgettable.	-1	to have $y = +1$
The sushi was good, the service was OK	+1	(Exact number will vary

©2015-2016 Emily Fox & Carlos Guestrin

Interpreting probabilities as degrees of belief

Not sure if reviews are positive or negative

©2015-2016 Emily Fox & Carlos Guestrin

Key properties of probabilities

Property	Two class (e.g., y is +1 or -1)	Multiple classes (e.g., y is dog, cat or bird)
Probabilities always between 0 & 1		
Probabilities sum up to 1		
8	©2015-2016 Emily Fox & Carlos Guestrin	Machine Learning Special

Conditional probability		
Probability a review with 3 "awesome" and 1 "awful" is posit	ive is 0.9	
x = review text	y = sentiment	
All the sushi was delicious! Easily best sushi in Seattle.	+1	
Sushi was awesome & everything else was awesome ! The service was awful , but overall awesome place!	+1	
My wife tried their ramen, it was pretty forgettable.	-1	
The sushi was good, the service was OK	+1	
		Lowport 00% of your with
awesome awesome awful awesome	+1	respect 90% of rows with
		reviews containing
awesome awesome awful awesome	-1	3 "awesome" & 1 "awful"
		to have $y = +1$
		(Exact number will vary
awesome awesome awful awesome	+1	for each specific dataset)

39

©2015-2016 Emily Fox & Carlos Guestrin

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

40

Key properties of conditional probabilities

Property	Two class (e.g., y is +1 or -1, x _i is review text)	Multiple classes (e.g., y is dog, cat or bird, x _i is image)
Conditional probabilities always between 0 & 1		
Conditional probabilities sum up to 1 over y, but not over x		
11	©2015-2016 Emily Fox & Carlos Guestrin	Machine Learning Specializ

Using probabilities in classification

©2015-2016 Emily Fox & Carlos Guestrin

How confident is your prediction?

Machine Learning Specialization

44

Goal: Learn conditional probabilities from data

x [1] = #awesome	x [2] = #awful	y = sentiment		
2	1	+1		
0	2	-1		
3	3	-1		
4	1	+1		

Training data: N observations $(\mathbf{x}_{i}, \mathbf{v}_{i})$

©2015-2016 Emily Fox & Carlos Guestrin

- Estimating **P(y|x)** improves **interpretability**:
 - Predict $\hat{y} = +1$ **and** tell me how sure you are

Predicting class probabilities with generalized linear models

Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

50

Why not just use regression to build classifier?

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Logistic regression classifier: linear score with logistic link function

Logistic function (sigmoid, logit)

$$sigmoid($$
Score $) = \frac{1}{1 + e^{-$ Score}}

©2015-2016 Emily Fox & Carlos Guestrin

©2015-2016 Emily Fox & Carlos Guestrin

Logistic regression → Linear decision boundary

59

©2015-2016 Emily Fox & Carlos Guestrin

Effect of coefficients on logistic regression model

©2015-2016 Emily Fox & Carlos Guestrin

Overview of learning logistic regression model

©2015-2016 Emily Fox & Carlos Guestrin

Training a classifier = Learning the coefficients

©2015-2016 Emily Fox & Carlos Guestrin

Word	Coefficient	Value	
	ŵ	-2.0	^
good	$\mathbf{\hat{w}}_{1}$	1.0	P(y=+1 x,ŵ) = <u>1</u>
awesome	ŵ ₂	1.7	1 + e ⁻ ŵ h(x)
bad	ŵ ₃	-1.0	I I C
awful	ŵ 4	-3.3	
() (Sent	Data x,y) ence1, →) ence2, →)	Validation set	Quality
C 4			•

Machine Learning Specialization

64

Encoding categorical inputs

©2015-2016 Emily Fox & Carlos Guestrin

Categorical inputs

- Numeric inputs:
 - #awesome, age, salary,...
 - Intuitive when multiplied by coefficient
 - e.q., **1.5** #awesome
- Categorical inputs:

Numeric value, but should be interpreted as category (98195 not about 9x larger than 10005)

Y IN THE DAY!

ZIP CODE DELIVERY NI

How do we multiply category by coefficient??? Must convert categorical inputs into numeric features

69

©2015-2016 Emily Fox & Carlos Guestrin

Encoding categories as numeric features

Multiclass classification using 1 versus all

Multiclass classification

Input: **x** Image pixels Output: y Object in image

©2015-2016 Emily Fox & Carlos Guestrin

Multiclass classification formulation

- C possible classes:
 - y can be 1, 2,..., C
- N datapoints:

Data point	x [1]	x [2]	У
x ₁ ,y ₁	2	1	
x ₂ ,y ₂	0	2	•
x ₃ ,y ₃	3	3	0
x ₄ ,y ₄	4	1	0

0 Learn: **P̂(y=**▲|**x**) **P̂(y=♥ |x)) |X)** $\hat{\mathbf{P}}(\mathbf{v}=\mathbf{O})$ ©2015-2016 Emily Fox & Carlos Guestrin

1 versus all: Estimate $\hat{P}(y = A | x)$ using 2-class model

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

77

1 versus all: simple multiclass classification using C 2-class models

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

78

Multiclass training

 $\hat{P}_{c}(y=+1|\mathbf{x}) = \text{estimate of}$ 1 vs all model for each class

Input: **x**_i

Predict most likely class

 $\begin{array}{l} \max_prob = 0; \ \hat{y} = 0 \\ \mbox{For } c = 1, ..., C: \\ \mbox{If } \ \widehat{P}_c(y = + 1 | \mathbf{x}_i) \mbox{ax_prob}: \\ \ \hat{y} = c \\ \ max_prob = \ \widehat{P}_c(y = + 1 | \mathbf{x}_i) \end{array}$

©2015-2016 Emily Fox & Carlos Guestrin

Summary of logistic regression classifier

What you can do now...

- Describe decision boundaries and linear classifiers
- Use class probability to express degree of confidence in prediction
- Define a logistic regression model
- Interpret logistic regression outputs as class probabilities
- Describe impact of coefficient values on logistic regression output
- Use 1-hot encoding to represent categorical inputs
- Perform multiclass classification using the 1-versus-all approach

85