Classification:

A machine learning perspective

Emily Fox & Carlos Guestrin Machine Learning Specialization University of Washington

©2015-2016 Emily Fox & Carlos Guestrin

Part of a specialization

©2015-2016 Emily Fox & Carlos Guestrin

This course is a part of the Machine Learning Specialization

©2015-2016 Emily Fox & Carlos Guestrin

What is the course about?

©2015-2016 Emily Fox & Carlos Guestrin

What is classification?

From features to predictions

Input **x**: Easily best sushi in Seattle.

©2015-2016 Emily Fox & Carlos Guestrin

Example multiclass classifier *Output y has more than 2 categories*

Spam filtering

Osman Khan to Carlos sounds good +ok

Carlos

Hi everyone,

Welcome to New Media Installation:Art that Learns

=== Natural WeightL0SS Solution ===

Rapid WeightLOSS
Increased metabolism - BurnFat & calories easily!
Better Mood and Attitude
More Self Confidence
Cleanse and Detoxily Your Body
Much More Energy

Output: y

Input: x Text of email, sender, IP,...

©2015 Emily Fox & Carlos Guestrin

Image classification

Input: **x** Image pixels Output: y Predicted object

©2015 Emily Fox & Carlos Guestrin

Reading your mind

©2015-2016 Emily Fox & Carlos Guestrin

Impact of classification

©2015-2016 Emily Fox & Carlos Guestrin

Impact of classification

Course overview

©2015-2016 Emily Fox & Carlos Guestrin

Course philosophy: Always use case studies & ...

©2015-2016 Emily Fox & Carlos Guestrin

Overview of content

©2015-2016 Emily Fox & Carlos Guestrin

Course outline

©2015-2016 Emily Fox & Carlos Guestrin

Overview of modules

©2015-2016 Emily Fox & Carlos Guestrin

©2015-2016 Emily Fox & Carlos Guestrin

...

 $Score(\mathbf{x}) > 0$

#awesome

Module 1: Logistic regression represents probabilities

$$\hat{\mathbf{P}}(\mathbf{y}=+\mathbf{1}|\mathbf{x},\hat{\mathbf{w}}) = \underbrace{1}{\mathbf{1}+\mathbf{e}^{-\hat{\mathbf{w}}^{T}}\mathbf{h}(\mathbf{x})}$$

©2015-2016 Emily Fox & Carlos Guestrin

Module 2: Learning "best" classifier Maximize likelihood over all possible W₀, W₁, W₂

©2015-2016 Emily Fox & Carlos Guestrin

Module 4: Decision trees

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

26

Module 5: Overfitting in decision trees

Decision Tree

Logistic Regression

Degree 1 features

Degree 2 features

Degree 6 features

©2015-2016 Emily Fox & Carlos Guestrin

Module 5: Alleviate overfitting by learning simpler trees

Occam's Razor: "Among competing hypotheses, the one with fewest assumptions should be selected", William of Occam, 13th Century

Module 6: Handling missing data

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	?	high	risky
poor	5 yrs	low	safe
fair	?	high	safe

©2015-2016 Emily Fox & Carlos Guestrin

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Yes! Schapire (1990)

Boosting

Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions

©2015-2016 Emily Fox & Carlos Guestrin

Module 7: Boosting using AdaBoost

Ensemble: Combine votes from many simple classifiers to learn complex classifiers

©2015-2016 Emily Fox & Carlos Guestrin

Machine Learning Specialization

34

©2015-2016 Emily Fox & Carlos Guestrin

Module 9: Scaling to huge datasets & online learning

You Tube

twitter

Assumed background

©2015-2016 Emily Fox & Carlos Guestrin

Courses 1 & 2 in this ML Specialization

- Course 1: Foundations
 - Overview of ML case studies
 - Black-box view of ML tasks
 - Programming & data manipulation skills
- Course 2: Regression
 - Data representation (input, output, features)
 - Linear regression model
 - Basic ML concepts:
 - ML algorithm
 - Gradient descent
 - Overfitting
 - Validation set and cross-validation
 - Bias-variance tradeoff
 - Regularization

Math background

Basic calculus

- Concept of derivatives

- Basic vectors
- Basic functions
 - Exponentiation e^x
 - Logarithm

Programming experience

- Basic Python used
 - Can pick up along the way if knowledge of other language

©2015-2016 Emily Fox & Carlos Guestrin

Reliance on GraphLab Create

- SFrames will be used, though not required
 - open source project of Dato (creators of GraphLab Create)
 - can use pandas and numpy instead
- Assignments will:
 - 1. Use GraphLab Create to explore high-level concepts
 - 2. Ask you to implement *all* algorithms without GraphLab Create
- Net result:
 - learn how to code methods in Python

Computing needs

- Basic 64-bit desktop or laptop
- Access to internet
- Ability to:
 - Install and run Python (and GraphLab Create)
 - Store a few GB of data

©2015-2016 Emily Fox & Carlos Guestrin

Let's get started!

©2015-2016 Emily Fox & Carlos Guestrin