4" ¢ Introduction

% About The Course

Design and Analysis
of Algorithms |



Course Topics

Vocabulary for design and analysis of algorithms
Divide and conquer algorithm design paradigm
Randomization in algorithm design

Primitives for reasoning about graphs

Use and implementation of data structures

Tim Roughgarden



Course Topics

* Vocabulary for design and analysis of algorithms
— E.g., “Big-Oh” notation
— “sweet spot” for high-level reasoning about algorithms

Tim Roughgarden



Course Topics

* Vocabulary for design and analysis of algorithms
* Divide and conquer algorithm design paradigm

Tim Roughgarden



Course Topics

* Vocabulary for design and analysis of algorithms

* Divide and conquer algorithm design paradigm

— Will apply to: Integer multiplication, sorting, matrix
multiplication, closest pair

— General analysis methods (“Master Method/Theorem”)

Tim Roughgarden



Course Topics

* Vocabulary for design and analysis of algorithms
* Divide and conquer algorithm design paradigm

 Randomization in algorithm design

— Will apply to: QuickSort, primality testing, graph
partitioning, hashing.

Tim Roughgarden



Course Topics

Vocabulary for design and analysis of algorithms
Divide and conquer algorithm design paradigm
Randomization in algorithm design

Primitives for reasoning about graphs

— Connectivity information, shortest paths, structure of
information and social networks.

Tim Roughgarden



Course Topics

Vocabulary for design and analysis of algorithms
Divide and conquer algorithm design paradigm
Randomization in algorithm design

Primitives for reasoning about graphs

Use and implementation of data structures

— Heaps, balanced binary search trees, hashing and some
variants (e.g., bloom filters)

Tim Roughgarden



Topics in Sequel Course

* Greedy algorithm design paradigm



Topics in Sequel Course

* Greedy algorithm design paradigm
* Dynamic programming algorithm design paradigm

Tim Roughgarden



Topics in Sequel Course

* Greedy algorithm design paradigm
* Dynamic programming algorithm design paradigm
 NP-complete problems and what to do about them

Tim Roughgarden



Topics in Sequel Course

Greedy algorithm design paradigm

Dynamic programming algorithm design paradigm
NP-complete problems and what to do about them
Fast heuristics with provable guarantees

Fast exact algorithms for special cases

Exact algorithms that beat brute-force search

Tim Roughgarden



Skills You’ll Learn

 Become a better programmer



Skills You’ll Learn

 Become a better programmer
* Sharpen your mathematical and analytical skills

Tim Roughgarden



Skills You’ll Learn

 Become a better programmer
* Sharpen your mathematical and analytical skills
e Start “thinking algorithmically”

Tim Roughgarden



Skills You’ll Learn

Become a better programmer

Sharpen your mathematical and analytical skills
Start “thinking algorithmically”

Literacy with computer science’s “greatest hits”

Tim Roughgarden



Skills You’ll Learn

Become a better programmer

Sharpen your mathematical and analytical skills
Start “thinking algorithmically”

Literacy with computer science’s “greatest hits”
Ace your technical interviews

Tim Roughgarden



Who Are You?

e |t doesn’t really matter.



Who Are You?

e |t doesn’t really matter.
* |deally, you know some programming.

Tim Roughgarden



Who Are You?

e |t doesn’t really matter.
* |deally, you know some programming.

* Doesn’t matter which language(s) you know.

— But you should be capable of translating high-level
algorithm descriptions into working programs in some
programming language.

Tim Roughgarden



Who Are You?

It doesn’t really matter.
ldeally, you know some programming.
Doesn’t matter which language(s) you know.

Some (perhaps rusty) mathematical experience.

— Basic discrete math, proofs by induction, etc.

Tim Roughgarden



Who Are You?

It doesn’t really matter.
ldeally, you know some programming.
Doesn’t matter which language(s) you know.

Some (perhaps rusty) mathematical experience.
— Basic discrete math, proofs by induction, etc.

Excellent free reference: “Mathematics for Computer

Science”, by Eric Lehman and Tom Leighton. (Easy to find on
the Web.)

Tim Roughgarden



Supporting Materials

e All (annotated) slides available from course site.



Supporting Materials

e All (annotated) slides available from course site.

* No required textbook. A few of the many good ones:
— Kleinberg/Tardos, Algorithm Design, 2005.
— Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.

— Cormen/Leiserson/Rivest/Stein, Introduction to
Algorithms, 2009 (3™ edition).

— Mehlhorn/Sanders, Data Structures and Algorithms: The
Basic Toolbox, 2008.

Tim Roughgarden



Supporting Materials

e All (annotated) slides available from course site.

* No required textbook. A few of the many good ones:
— Kleinberg/Tardos, Algorithm Design, 2005.
— Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.
— Cormen/Leiserson/Rivest/Stein, Introduction to Algorithms, 2009 (3™ edition).
— Mehlhorn/Sanders, Data Structures and Algorithms: The Basic Toolbox, 2008.

* No specific development environment required.
— But you should be able to write and execute programs.

Tim Roughgarden



Assessment

* No grades per se. (Details on a certificate of
accomplishment TBA.)

 Weekly homeworks.
— Test understand of material
— Synchronize students, greatly helps discussion forum
— Intellectual challenge

Tim Roughgarden



Assessment

No grades per se. (Details on a certificate of
accomplishment TBA.)

Weekly homeworks.

Assessment tools currently just a “1.0” technology.
— We’'ll do our best!

Will sometimes propose harder “challenge problems”
— Will not be graded; discuss solutions via course forum

Tim Roughgarden



