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Course Topics

Vocabulary for design and analysis of algorithms
Divide and conquer algorithm design paradigm
Randomization in algorithm design

Primitives for reasoning about graphs

Use and implementation of data structures
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Course Topics

* Vocabulary for design and analysis of algorithms
— E.g., “Big-Oh” notation
— “sweet spot” for high-level reasoning about algorithms
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Course Topics

* Vocabulary for design and analysis of algorithms

* Divide and conquer algorithm design paradigm

— Will apply to: Integer multiplication, sorting, matrix
multiplication, closest pair

— General analysis methods (“Master Method/Theorem”)
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Course Topics

* Vocabulary for design and analysis of algorithms
* Divide and conquer algorithm design paradigm

 Randomization in algorithm design

— Will apply to: QuickSort, primality testing, graph
partitioning, hashing.
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Course Topics

Vocabulary for design and analysis of algorithms
Divide and conquer algorithm design paradigm
Randomization in algorithm design

Primitives for reasoning about graphs

— Connectivity information, shortest paths, structure of
information and social networks.
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Course Topics

Vocabulary for design and analysis of algorithms
Divide and conquer algorithm design paradigm
Randomization in algorithm design

Primitives for reasoning about graphs

Use and implementation of data structures

— Heaps, balanced binary search trees, hashing and some
variants (e.g., bloom filters)
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* Greedy algorithm design paradigm
* Dynamic programming algorithm design paradigm
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Topics in Sequel Course

* Greedy algorithm design paradigm
* Dynamic programming algorithm design paradigm
 NP-complete problems and what to do about them

Tim Roughgarden



Topics in Sequel Course

Greedy algorithm design paradigm

Dynamic programming algorithm design paradigm
NP-complete problems and what to do about them
Fast heuristics with provable guarantees

Fast exact algorithms for special cases

Exact algorithms that beat brute-force search
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Skills You’ll Learn

 Become a better programmer
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 Become a better programmer
* Sharpen your mathematical and analytical skills
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 Become a better programmer
* Sharpen your mathematical and analytical skills
e Start “thinking algorithmically”
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Skills You’ll Learn

Become a better programmer

Sharpen your mathematical and analytical skills
Start “thinking algorithmically”

Literacy with computer science’s “greatest hits”
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Skills You’ll Learn

Become a better programmer

Sharpen your mathematical and analytical skills
Start “thinking algorithmically”

Literacy with computer science’s “greatest hits”
Ace your technical interviews
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e |t doesn’t really matter.



Who Are You?

e |t doesn’t really matter.
* |deally, you know some programming.
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Who Are You?

e |t doesn’t really matter.
* |deally, you know some programming.

* Doesn’t matter which language(s) you know.

— But you should be capable of translating high-level
algorithm descriptions into working programs in some
programming language.
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Who Are You?

It doesn’t really matter.
ldeally, you know some programming.
Doesn’t matter which language(s) you know.

Some (perhaps rusty) mathematical experience.

— Basic discrete math, proofs by induction, etc.

Tim Roughgarden



Who Are You?

It doesn’t really matter.
ldeally, you know some programming.
Doesn’t matter which language(s) you know.

Some (perhaps rusty) mathematical experience.
— Basic discrete math, proofs by induction, etc.

Excellent free reference: “Mathematics for Computer

Science”, by Eric Lehman and Tom Leighton. (Easy to find on
the Web.)
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Supporting Materials

e All (annotated) slides available from course site.

* No required textbook. A few of the many good ones:
— Kleinberg/Tardos, Algorithm Design, 2005.
— Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.

— Cormen/Leiserson/Rivest/Stein, Introduction to
Algorithms, 2009 (3™ edition).

— Mehlhorn/Sanders, Data Structures and Algorithms: The
Basic Toolbox, 2008.
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Supporting Materials

e All (annotated) slides available from course site.

* No required textbook. A few of the many good ones:
— Kleinberg/Tardos, Algorithm Design, 2005.
— Dasgupta/Papadimitriou/Vazirani, Algorithms, 2006.
— Cormen/Leiserson/Rivest/Stein, Introduction to Algorithms, 2009 (3™ edition).
— Mehlhorn/Sanders, Data Structures and Algorithms: The Basic Toolbox, 2008.

* No specific development environment required.
— But you should be able to write and execute programs.
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Assessment

* No grades per se. (Details on a certificate of
accomplishment TBA.)

 Weekly homeworks.
— Test understand of material
— Synchronize students, greatly helps discussion forum
— Intellectual challenge
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Assessment

No grades per se. (Details on a certificate of
accomplishment TBA.)

Weekly homeworks.

Assessment tools currently just a “1.0” technology.
— We’'ll do our best!

Will sometimes propose harder “challenge problems”
— Will not be graded; discuss solutions via course forum
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