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Abstract

There is a wide set of evaluation metrics available to compare the qual-
ity of text clustering algorithms. In this article, we define a few intuitive
formal constraints on such metrics which shed light on which aspects of
the quality of a clustering are captured by different metric families. These
formal constraints are validated in an experiment involving human assess-
ments, and compared with other constraints proposed in the literature.
Our analysis of a wide range of metrics shows that only BCubed satisfies
all formal constraints.

We also extend the analysis to the problem of overlapping clustering,
where items can simultaneously belong to more than one cluster. As
Bcubed cannot be directly applied to this task, we propose a modified
version of Bcubed that avoids the problems found with other metrics.

1 Motivation

The clustering task consists of grouping together those objects which are similar
while separating those which are not. The difference with classification tasks is
that the set of categories (or clusters) is not known a priori.

Given a similarity metric between objects, evaluation metrics can be intrin-
sic, i.e., based on how close elements from one cluster are to each other, and how
distant from elements in other clusters. Extrinsic metrics, on the other hand,
are based on comparisons between the output of the clustering system and a
gold standard usually built using human assessors. In this work we will focus
on extrinsic measures, which are the most commonly used in text clustering
problems.

When doing extrinsic evaluation, determining the distance between both
clustering solutions (the system output and the gold standard) is non-trivial
and still subject to discussion. Many different evaluation metrics (reviewed later
in this paper) have been proposed, such as Purity and Inverse Purity (usually
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combined via Van Rijsbergen’s F measure), Clusters and class entropy, VI mea-
sure, Q0, V-measure, Rand Statistic, Jaccard Coefficient, Mutual Information,
etc.

There have already been some attempts to analyze and compare the prop-
erties of the different metrics available. [Strehl, 2002] compares several metrics
according to their different biases and scaling properties: purity and entropy
are extreme cases where the bias is towards small clusters, because they reach
a maximal value when all clusters are of size one. Combining precision and
recall via a balanced F measure, on the other hand, favors coarser clusterings,
and random clusterings do not receive zero values (which is a scaling problem).
Finally, according to Strehl’ study, Mutual Information has the best properties,
because it is unbiased and symmetric in terms of the cluster distribution and
the gold-standard. This kind of information is very helpful to determine which
metric to use in a specific clustering scenario.

Our goal is to perform a similar study, but focusing on a set of mathematical
constraints that an ideal metric should satisfy. Closely related to our work is
[Meila, 2003], where a specific metric based on entropy is tested against twelve
mathematical constraints. The immediate question is why twelve constraints,
or why precisely those set. In this article we also start by defining proper-
ties/constraints that any clustering metric should satisfy, but trying to observe
a number of rules:

1. Constraints should be intuitive and clarify the limitations of each metric.
This should allow the system developer to identify which constraints must
be considered for the specific task at hand.

2. It should be possible to prove formally which metrics satisfy which prop-
erties (some previously proposed constraints can only be checked empiri-
cally).

3. The constraints should discriminate metric families, grouped according to
their mathematical foundations, pointing the limitations of each metric
family rather than individual metric variants. This analysis is useful for
metric developers, since it ensures that further work on a certain kind of
metrics will not help solving certain constraints.

We have found four basic formal constraints for clustering evaluation metrics
that satisfy the above requisites. These set of constraints covers all quality
aspects that have been proposed in previous work, and have been validated in
an experiment involving human assessments.

Once the formal conditions have been defined and validated, we have checked
all major evaluation metrics, finding that metrics from the same family behave
likewise according to these formal constrains. In particular, we found BCubed
metrics (BCubed precision and BCubed recall) to be the only ones that satisfy
all our proposed constraints. Our work opens the possibility, however, of choos-
ing other metrics when, for a particular clustering task, some of the restrictions
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do not hold, and other metric can be found to be best suited according to other
criteria, such as for instance its ability to scale.

We also extend the analysis to the problem of overlapping clustering, propos-
ing an extension of BCubed metrics which satisfies all our formal requirements.

Finally, we examine a case of study in which the combination of (extended)
BCubed metrics is compared with the most commonly used pair of metrics,
Purity and Inverse Purity. The case of study shows that, unlike Purity and
Inverse Purity, the proposed combination is able to discriminate and penalize
an undesirable, “cheat” clustering solution.

The remainder of the paper is structured as follows: In section 2, we in-
troduce and discuss the set of proposed formal constraints. In Section 3, we
describe the experimental procedure to validate the constraints, and discuss its
results. In Section 4, we analyze current metrics according to our proposed con-
straints. Then, in Section 5, we compare our formal constraints with previously
proposed constraint sets in the literature. In section 6, we address the evalu-
ation of overlapping clustering and propose and extended version of BCubed
metrics to handle the problem adequately. Our proposal is finally tested using
a case of study in Section 7, and Section 8 ends with the main conclusions of
our study.

2 Formal constraints on evaluation metrics for
clustering tasks

In order to define formal restrictions on any suitable metric, we will employ the
following methodology: each formal restriction consists of a pattern (D1, D2)
of system output pairs, where D2 is assumed to be a better clustering option
than D1 according to our intuition. The restriction on any metric Q is then
Q(D1) < Q(D2). We have identified four basic constraints which are discussed
below.

2.1 Constraint 1: Cluster Homogeneity

This is an essential quality property that has already been proposed in previous
research [Rosenberg and Hirschberg, 2007]. Here, we formalize it as follows:
Let S be a set of items belonging to categories L1 . . . Ln. Let D1 be a cluster
distribution with one cluster C containing items from two categories Li, Lj . Let
D2 be a distribution identical to D1, except for the fact that the cluster C is
split into two clusters containing the items with category Li and the items with
category Lj , respectively. Then an evaluation metric Q must satisfy Q(D1) <
Q(D2).
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This constraint is illustrated in Figure 1; it is a very basic restriction which
states that the clusters must be homogeneous, i.e. they should not mix items
belonging to different categories.

Figure 1: Constraint 1: Cluster Homogeneity

2.2 Constraint 2: Cluster Completeness

The counterpart to the first constraint is that items belonging to the same
category should be grouped in the same cluster1. In other words, different
clusters should contain items from different categories. We can model this notion
with the following formal constraint: Let D1 be a distribution such that two
clusters C1, C2 only contain items belonging to the same category L. Let D2

be an identical distribution, except for the fact that C1 and C2 are merged
into a single cluster. Then D2 is a better distribution: Q(D1) < Q(D2). This
restriction is illustrated in Figure 2.

Constraints 1 and 2 are the most basic restrictions that any evaluation metric
must hold and refer to the basic goals of a clustering system: keeping items from
the same category together, and keeping items from different categories apart.
In the next section we will see that, surprisingly, some of the most popular
metrics fail to satisfy these constraints.

Figure 2: Constraint 2: cluster completeness

1As in [Rosenberg and Hirschberg, 2007], we use the term “Completeness” to avoid “Com-
pactness”, which in the clustering literature is used as an internal property of clusters which
refers to minimizing the distance between the items of a cluster.
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2.3 Constraint 3: Rag Bag

An additional intuition on the clustering task is that introducing disorder into a
disordered cluster is less harmful than introducing disorder into a clean cluster.
Indeed, for many practical situations it is useful to have a “rag bag” of items
which cannot be grouped with other items (think of “miscellaneous”, “other”,
“unclassified” categories); it is then assumed that such a set contains items of
diverse genre. Of course, in any case a perfect clustering system should identify
that these items cannot be grouped and belong to different categories. But
when comparing sub-optimal solutions, the intuition is that it is preferable to
have clean sets plus a “rag bag” than having sets with a dominant category plus
additional noise.

The boundary condition, which makes our third restriction, can be stated as
follows: Let Cclean be a cluster with n items belonging to the same category.
Let Cnoisy be a cluster merging n items from unary categories (there exists just
one sample for each category). Let D1 be a distribution with a new item from
a new category merged with the highly clean cluster Cclean, and D2 another
distribution with this new item merged with the highly noisy cluster Cnoisy.
Then Q(D1) < Q(D2) (see Figure 3). In the next section we will see that this
constraint is almost unanimously validated by our human judges via examples.

Figure 3: Constraint 3: Rag Bag

2.4 Constraint 4: Clusters size vs. quantity

A small error in a big cluster should be preferable to a large number of small er-
rors in small clusters. This property is partially related with the fourth property
in [Meila, 2003], called in [Rosenberg and Hirschberg, 2007] as n-invariance. We
state a boundary condition related to this notion saying that separating one item
from its class of n > 2 members is preferable to fragmenting n binary categories
(see Figure 4).

Formally, let us consider a distribution D containing a cluster Cl with n+ 1
items belonging to the same category L, and n additional clusters C1 . . . Cn,
each of them containing two items from the same category L1 . . . Ln. If D1 is a
new distribution similar to D where each Ci is split in two unary clusters, and
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D2 is a distribution similar to D, where Cl is split in one cluster of size n and
one cluster of size 1, then Q(D1) < Q(D2).

Figure 4: Clusters Size vs. Quantity

3 Testing the Formal Constraints

We now want to test whether our formal constraints reflect common intuitions
on the quality of a clustering. For this, we have performed an experiment
in which we presented pairs of alternative clustering options to eight human
assessors, and they were asked to select the best option in each pair. Every
pair was designed to match one of the constraints, so that each assessor’s choice
confirms or contradicts the constraint.

We have used the EFE 1994-1995 CLEF corpus [Gonzalo and Peters, 2005]
to generate the test set. This corpus consists of news-wire documents in Spanish,
along with a set of topics and relevance judgments for each of the topics. We have
randomly selected six queries and ten relevant documents per query, and then
we have used the documents for each query as a category. Note (Figure 9) that
each piece of news is manually tagged with a rather specific keyword description,
which makes the clustering task easier to the assessors. Titles for the selected
topics were “UN forces in Bosnia”, “Invasion of Haiti”, “War in Chechnya”,
“Uprising in Chiapas”, “Operation Turquoise in Ruanda” and “Negotiations in
Middle East”.

For each formal constraint, we have implemented an algorithm which ran-
domly generates pairs of two distributions which are instances of D1 and D2:

• Cluster Homogeneity(See figure 5)

(1) We generate three clusters C1, C2 and C3 containing titles from a
topic L13 (the subscript 13 indicating that there are items from this topic
in clusters C1 and C3), and from another topic L2 (which has items in C2)
such that |C1|+ |C2| < |C3|. (2) We generate a cluster C4 containing news
titles from several random topics, such that most of them correspond
to one single topic L′ different from L13 and L2.(3) Then we build the
following distributions:

6



D1 = {C1 ∪ C2, C3, C4}

D2 = {C1, C2, C3, C4}

Figure 5: Example of test to validate the Cluster Homogeneity constraint

• Cluster Completeness(See figure 6)

(1) We generate three clusters C1, C2 and C3 containing titles from the
same topic L, with |C1|+ |C2| < |C3|. (2) The cluster C4 is generated as
in the previous algorithm. (3) Then we build the following distributions:

D1 = {C1, C2, C3, C4}

D2 = {C1 ∪ C2, C3, C4}

Figure 6: Example of test to validate the Cluster Completeness constraint
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• Rag Bag(See figure 7)

(1) We generate a cluster C1 with four titles, each from a different topic.
(2) We generate a cluster C2 with four titles from the same topic. (3) We
generate a cluster C3 with one title from a new topic. (4) We compare the
distributions:

D1 = {C1, C2 ∪ C3}

D2 = {C1 ∪ C3, C2}

Figure 7: Example of test to validate the Rag Bag constraint

• Cluster Size vs. Quantity(See figure 8) (1) We generate four clusters
C1, C2, C3 and C4 each one with two titles from the same topic. (2)
We split these clusters in two Ci′ and Ci

′′. (3) We generate a cluster C5

with five titles from the same topic. (4) We extract one item from C5

generating C5
′ and C5

′′. (5) We compare the distributions:

D1 = {C1
′, C1

′′, C2
′, C2

′′, C3
′, C3

′′, C4
′, C4

′′, C5}

D2 = {C1, C2, C3, C4, C5
′, C5

′′}

Figure 8: Sample of distribution to validate the Cluster size vs. quality con-
straint

8



Constraint validated contradicted indifferent
Cluster Homogeneity 37 (92%) 1 (2,5%) 2(5%)
Cluster Completeness 36 (90%) 1 (2,5%) 3 (7,5%)
Rag Bag 38 (95%) 1 (2,5%) 1 (2,5%)
Cluster Size vs. Quantity 40 (100%) 0 0

Table 1: Validation of constraints by assessors: experimental results

Eight volunteers and five instances per constraint have been employed in
this experiment, for a total of 40 individual assessments. For each instance,
both distributions were presented to the volunteers, showing only the titles
of the documents. The instructions asked the assessors to decide if the first
distribution was better, worse or roughly equivalent to the second one. The
ordering of both distributions (D1 and D2) and the titles within each cluster
have been randomly reordered for each case. Figure 9 shows an example of how
the document clusters were presented to the judges.

Figure 9: Example of test presented to users for the Rag Bag Constraint

Table 1 shows the results of the experiment. All restrictions were validated
by more than 90% of the assessments. Constraint 4 was validated in all cases,
and constraints 1,2,3 were only contradicted in one case each. Given the test
conditions and the fact that eight different assessors participated in the ex-
periment, we take these figures as a strong empirical support for the potential
relevance of constraints. Note that constraints 3 and 4 (which are less obvi-
ous and more restricted in scope than constraints 1 and 2) receive even higher
support than the first two constraints.
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4 Comparison of evaluation metrics

Given the large number of metrics proposed for the clustering task, we will
group them in four families and try to test properties inherent to the kind of
information that each family uses.

4.1 Evaluation by set matching

This metric family was identified as such in [Meila, 2003]. They share the feature
of assuming a one to one mapping between clusters and categories, and they
rely on the precision and recall concepts inherited from Information Retrieval.

The most popular measures for cluster evaluation are Purity, Inverse Purity
and their harmonic mean (F measure). Purity [Zhao and Karypis, 2001] focuses
on the frequency of the most common category into each cluster. Being C the
set of clusters to be evaluated, L the set of categories (reference distribution)
and N the number of clustered items, Purity is computed by taking the weighted
average of maximal precision values:

Purity =
∑
i

|Ci|
N

maxj Precision(Ci, Lj)

where the precision of a cluster Ci for a given category Lj is defined as:

Precision(Ci, Lj) =
|Ci
⋂
Lj |

|Ci|

Purity penalizes the noise in a cluster, but it does not reward grouping items
from the same category together; if we simply make one cluster per item, we
reach trivially a maximum purity value. Inverse Purity focuses on the cluster
with maximum recall for each category. Inverse Purity is defined as:

Inverse Purity =
∑
i

|Li|
N

maxj Precision(Li, Cj)

Inverse Purity rewards grouping items together, but it does not penalize mixing
items from different categories; we can reach a maximum value for Inverse purity
by making a single cluster with all items.

A more robust metric can be obtained by combining the concepts of Purity
and Inverse Purity, matching each category with the cluster that has a highest
combined precision and recall, using Van Rijsbergen’s F measure [Van Rijsbergen, 1974,
Larsen and Aone, 1999, Steinbach et al., 2000]:

F =
∑
i

|Li|
N

maxj{F (Li, Cj)}

where

F (Li, Cj) =
2× Recall(Li, Cj)× Precision(Li, Cj)

Recall(Li, Cj) + Precision(Li, Cj)
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Recall(L,C) = Precision(C,L)

One common problem with these type of metrics is that they cannot sat-
isfy constraint 2 (cluster completeness): as each category is judged only by
the cluster which has more items belonging to it, changes in other clusters are
not detected. This problem has been previously identified (see [Meila, 2003] or
[Rosenberg and Hirschberg, 2007]). An example can be seen in Figure 6: clus-
ters C1 and C2 contain items from the same category, so merging them should
improve the quality of the distribution (Category completeness constraint). But
Purity does not satisfy this constraint in general, and both Inverse Purity and
F measure are not sensible to this case, as the cluster with maximal precision
and F measure over the category of black circles is C3.

Figure 11 shows the results of computing several metrics in four test cases
instantiating the four constraints; there, we can see counterexamples showing
that no metric in this family satisfies constraints 2 and 3, and even constraint
1 is only satisfied by the Purity measure.

4.2 Metrics based on Counting Pairs

Another approach to define evaluation metrics for clustering is considering
statistics over pairs of items [Halkidi et al., 2001, Meila, 2003]. Let SS be the
number of pairs of items belonging to the same cluster and category; SD the
number of pairs belonging to the same cluster and different category; DS the
number of pairs belonging to different cluster and the same category, and DD
the number of pairs belonging to different category and cluster. SS and DD are
“good choices”, and DS, SD are “bad choices”.

Some of the metrics using these figures are:

Rand statistic R =
(SS +DD)

SS + SD +DS +DD

Jaccard Coefficient J =
SS

SS + SD +DS

Folkes and Mallows FM =

√
SS

SS + SD

SS

SS +DS

It is easy to see that these type of metrics satisfy the first two constraints; but
they do not satisfy constraints 3 and 4; Figure 11 shows counterexamples. Take
for instance the example for constraint 4: With regard to the ideal clustering,
in both distributions some elements from the same category are moved apart,
producing a SS decrase and a DS increase. The number of pairs affected by the
fragmentation in both distributions is the same. In the first case, one black item
is separated from the other four black items. In the second case, four correct
binary clusters are fragmented into unary clusters. Therefore, the values for SS
(10), and DS (4) are the same in both distributions. The problem is that the
number of item pairs in a cluster has a quadratic dependence with the cluster
size, and then changes in bigger clusters have an excessive impact in this type
of measures.
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4.3 Metrics based on entropy

The Entropy of a cluster [Steinbach et al., 2000, Ghosh, 2003] reflects how the
members of the k categories are distributed within each cluster; the global
quality measure is again computed by averaging the entropy of all clusters:

Entropy = −
∑
j

nj
n

∑
i

P (i, j)× log2 P (i, j)

being P (i, j) the probability of finding an element from the category i in
the cluster j, nj the number of items in cluster j and n the total number
of items in the distribution. Other metrics based on entropy have also been
defined, for instance, “class entropy” [Bakus et al., 2002], “variation of infor-
mation” [Meila, 2003] “Mutual Information” [Xu et al., 2003], Qo [Dom, 2001]
or “V-measure” [Rosenberg and Hirschberg, 2007].

Figure 11 shows counterexamples for some of these measures in all con-
straints: entropy and mutual information fail to satisfy constraints 2,3,4, and
class entropy constraints 1 and 3. In particular, the Rag Bag constraint can-
not be satisfied by any metric based on entropy: conceptually, the increase of
entropy when an odd item is added is independent from the previous grade of
disorder in the cluster; therefore, it is equivalent to introduce a wrong item in
a clean cluster or in a noisy cluster.

Let us formalize our argument: Let C be a cluster with n items. Then the
entropy would be computed as

EC =
∑
i

Pi logPi

where Pi is the probability of finding an element of the category i in the
cluster. Let C ′ be the same cluster adding an item that is unique in its category
and was previously isolated. Then

EC′ =
1

n+ 1
log

1
n+ 1

+
∑
i

nPi
n+ 1

log
nPi
n+ 1

being n the number of items in the cluster. Operating:

EC′ =
1

n+ 1
log

1
n+ 1

+
n

n+ 1

∑
i

[Pi ∗ (log
n

n+ 1
+ logPi)] =

=
1

n+ 1
log

1
n+ 1

+
n

n+ 1
[log

n

n+ 1

∑
i

Pi +
∑
i

Pi ∗ logPi]

Since
∑
i Pi = 1

EC′ =
1

n+ 1
log

1
n+ 1

+
n

n+ 1
[log

n

n+ 1
+ EC ]

In other words, the increase in entropy depends exclusively from n; the
homogeneity or heterogeneity of the cluster does not affect the result.
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4.4 Evaluation metrics based on edit distance

In [Pantel and Lin, 2002], an evaluation metric based on transformation rules
is presented, which opens a new family of metrics. The quality of a clustering
distribution is related with the number of transformation rules that must be
applied to obtain the ideal distribution (one cluster for each category). This
set of rules includes merging two clusters and moving an item from one cluster
to another. Their metric (which we do not fully reproduce here for lack of
space) fails to satisfy constraints 1 and 3 (see counterexamples in Figure 11).
Indeed, metrics based on edit distance cannot satisfy the Rag Bag constraint:
independently from where we introduce the noisy item, the distance edit is
always one application of a transformation rule, and therefore the quality of
both distributions will always be the same.

4.5 BCubed: a mixed family of metrics

We have seen that none of previous metric families satisfy all our formal restric-
tions. The most problematic constraints is Rag Bag, which is not satisfied by any
of them. However, BCubed precision and recall metrics [Bagga and Baldwin, 1998]
satisfy all constraints. Unlike Purity or Entropy metrics, which compute inde-
pendently the quality of each cluster and category, BCubed metrics decompose
the evaluation process estimating the precision and recall associated to each
item in the distribution. The item precision represents how many items in the
same cluster belong to its category. Symmetrically, the recall associated to one
item represents how many items from its category appear in its cluster. Figure
10 illustrates how the precision and recall of one item is computed by BCubed
metrics.

Figure 10: Example of computing the BCubed precision and recall for one item
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From a user’s point of view, BCubed represents the clustering system effec-
tiveness when, after accessing one reference item, the user explores the rest of
items in the cluster. If this item had a high BCubed recall, the user would find
most of related items without leaving the cluster. If the reference item had a
high precision, the user would not find noisy items in the same cluster. The
underlying difference with Purity or Entropy measures is that the adequacy of
items depends on the reference item rather than the predominant category in
the cluster.

Although BCubed is defined in [Bagga and Baldwin, 1998] as an algorithm,
it can also be described in terms of a function. Let L(e) and C(e) denote the
category and the cluster of an item e. We can define the correctness of the
relation between e and e′ in the distribution as:

Correctness(e, e′) =
{

1 iff L(e) = L(e′)←→ C(e) = C(e′)
0 otherwise

That is, two items are correctly related when they share a category if and
only if they appear in the same cluster. BCubed precision of an item is the
proportion of items in its cluster which have the item’s category (including
itself). The overall BCubed precision is the averaged precision of all items in
the distribution. Since the average is calculated over items, it is not necessary to
apply any weighting according to the size of clusters or categories. The BCubed
recall is analogous, replacing “cluster” with “category”. Formally:

Precision BCubed = Avge[Avge′.C(e)=C(e′)[Correctness(e, e′)]]

Recall BCubed = Avge[Avge′.L(e)=L(e′)[Correctness(e, e′)]]

BCubed combines the best features from other metric families. Just like
Purity or Inverse Purity, it is inspired on precision and recall concepts, being
easily interpretable. As entropy based metrics, it considers the overall disorder
of each cluster, not just the predominant category, satisfying restrictions 1 and 2
(homogeneity and completeness). Both BCubed and metrics based on counting
pairs consider the relation between pairs of items. However in BCubed metrics
the overall average is computed over single items and the quadratic effect pro-
duced by the cluster size disappears, therefore satisfying restriction 4, cluster
size vs. cluster quantity. In addition, unlike all other metrics, BCubed also
satisfies the Rag Bag constraint.

Let us verify the four constraints:

• Cluster homogeneity constraint: Splitting a cluster that mixes two
categories into two “pure” clusters increases the BCubed precision, and
does not affect recall (see Figure 1).

• Cluster completeness constraint: Unifying two clusters which contain
only items from the same category increases the BCubed recall measure,
and the precision of joined items remains maximal (see Figure 2).
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• Rag Bag constraint: Let us suppose that we have an item (unique in
its category) in an isolated cluster. Introducing the item in a clean cluster
of n items (D1, Figure 3) decreases the precision of each item in the clean
cluster from 1 to n

n+1 , and the precision of the item just inserted from 1 to
1

n+1 . So, being Ntot the total number of items in the distribution, while
the recall is not affected in any way, the overall precision decreasing in the
distribution is:

DECD1 =
1 + n ∗ 1
Ntot

−
1

n+1 + n ∗ n
n+1

Ntot
=

2n
n+1

Ntot
' 2
Ntot

On the other hand, introducing the item in a noisy cluster (D2, Figure 3)
decreases the precision of the isolated item from 1 to 1

n+1 , and the items in
the noisy cluster from 1

n to 1
n+1 . So the overall decrease in the distribution

is smaller:

DECD2 =
1 + n ∗ 1

n

Ntot
−

1 ∗ 1
n+1 + n ∗ 1

n+1

Ntot
=

1
Ntot

< DECD1

• Cluster Size vs. Quantity: In the distribution D1 from Figure 4, 2n
items decrease their recall in 50%. That represents an overall decrease of:

DECD1 =
2n
Ntot

−
2n 1

2

Ntot
=

n

Ntot

On the other hand, in the distribution D2 the recall of n items decreases
from 1 to n

n+1 , and the recall of one item decreases from 1 to 1
n+1 . So the

overall decrease in the distribution is smaller:

DECD2 =
n+ 1
Ntot

−
n n
n+1 + 1

n+1

Ntot
=

2n
n+1

Ntot
' 2
Ntot

< DECD1

In conclusion, BCubed metrics together satisfy all our formal constraints.
BCubed precision covers restrictions 1 and 3. BCubed recall covers constraints
2 and 4. Figure 11 contains a sample of clustering distribution pair for each
formal constraint. The table shows that BCubed precision and recall metrics
cover all of them.

A remaining issue is how to combine both in a single evaluation metric. Ac-
cording to our formal constraints, any averaging criterion for combining metrics
satisfies all formal constraints when these are satisfied by the combined metrics
in isolation. This is due to the fact that our formal constraints are defined in
such a way that each one represents an isolated quality aspect. When a metric
does not cover a specific quality aspect, the associated restriction is not affected.

A standard way of combining metrics is Van Rijsbergen’s F [Van Rijsbergen, 1974]
and it is computed as follows:

F (R,P ) =
1

α( 1
P ) + (1− α)( 1

R )
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being R and P two evaluation metrics and being α and (1 − α) the relative
weight of each metric (α = 0.5 leads to the harmonic average of P ,R). The last
row in Figure 11 shows the results when applying Fα=0.5 over BCubed Precision
and Recall, satisfying all formal constraints.

Figure 11: Satisfaction of Formal Constraints: Examples
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5 Related work: other proposed formal constraints

Are four constraints enough? We do not have a formal argument supporting
this, but we can at least compare our set of constraints with previous related
proposals.

5.1 Dom’s constraints

In [Dom, 2001], Dom proposes five formal constraints. These were extended to
seven in [Rosenberg and Hirschberg, 2007]. The author decomposes the clus-
tering quality into a set of parameters: the number of “noise” and “useful”
clusters, the number of “noise” and “useful” categories, and three components
of the error mass probability. “Noise” clusters are those that contain items
equally from each category. On the opposite, “Useful” clusters have a predomi-
nant category. The error mass probability measures to what extent single items
are not included in the corresponding “useful” cluster.

The formal constraints consist of testing, over a random set of clustering
samples, if specific parameter configurations do lead to a decrease of quality
according to the metric. Basically, these formal constraints capture the idea
that a clustering is worse when: (1) the number of useful clusters varies away
from the number of categories, (2) the number of noise clusters increases and (3)
the error mass parameters increase. Roughly speaking, these ideas are directly
correlated with our constraints. For instance, Cluster Homogeneity and Clus-
ter Completeness implies respectively a decrease and increase of useful clusters
regarding the number of categories.

But Dom’s restrictions reflect intermediate situations which are not consid-
ered explicitly by our formal constraints, since we defined them using boundary
conditions. Theoretically speaking, this implies that a metric satisfying our
constraints may not satisfy Dom’s constraints. However, all metric drawbacks
which are detected by Dom’s constraints are also detected by our set.

In particular, the results in [Rosenberg and Hirschberg, 2007] shows that
metrics based on Entropy satisfy all these formal constraints, and metrics based
on counting pairs fail at least in two properties. To explain this result, the
authors state that “the number of noise classes or clusters can be increased
without reducing any of these metrics” when counting pairs. We believe that
our constraint 4 Cluster size vs. quantity provides a more in-depth explana-
tion. Increasing the number of noise clusters while fixing the rest of parameters
produces smaller clusters (see Figure 12). Metrics based on counting pairs give
a quadratic relevance to erroneously joined items in bigger clusters, increasing
the score when splitting noise clusters. For instance, in Figure 12, the right dis-
tribution introduces 9 correct item associations at the expense of 27 incorrect
pairs. Metrics based on entropy, on the contrary, satisfy the Cluster size vs.
quantity constraint, overcoming this problem.

Dom’s constraints have some drawbacks with respect to our meta-evaluation
framework:
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Figure 12: More noise clusters implies less quality

1. Dom’s constraints detect less limitations than our constraints. For in-
stance, they do not detect drawbacks of entropy-based metrics, while they
fail to satisfy our Rag Bag constraint.

2. Each Dom’s constraint is related with several quality aspects. For in-
stance the mass error or the number of noise clusters are related simulta-
neously with the concepts of homogeneity, completeness and Cluster Size
vs. Quantity. Therefore, it is not easy to identify the need for satisfying
specific constraints in specific clustering applications.

3. It is not easy to prove formally that an evaluation metric satisfies Dom’s
constraints. Indeed, these restrictions were tested by evaluating “random”
clustering distributions. Our constraints, however, can be formally verified
for each family of metrics.

5.2 Meila’s constraints

Meila [Meila, 2003] proposes an entropy-based metric (Variation Information
or VI) and enumerates twelve desirable properties associated with this metric.
Properties 1-3, for instance, are positivity, symmetry and triangle inequality,
which altogether imply that VI is a proper metric on clusterings. Most of these
properties are not directly related to the quality aspects captured by a metric,
but rather on other intrinsic features such as the ability to scale or computational
cost. The most relevant properties for our discussion are:

• Property 4 is related with the cluster size vs. quantity constraint. It
states that the quality of a distribution depends on the relative sizes of
clusters but not on the number of points in the data set. Metrics based on
counting pairs do not satisfy this property since the number of item pairs
increase quadratically regarding the number of items in the distribution.

• Property 7 states that splitting or merging smaller clusters has less im-
pact than splitting or merging larger ones. It states also that the variation
in the evaluation measure is independent of anything outside the clusters
involved. Although this property is desirable, in practice all metrics dis-
cussed here satisfy it. Therefore, it does not provide much information
about what metrics are more suitable for evaluation purposes.
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• Properties 10 and 11 are associated to the idea that splitting all clusters
according to item categories improves the results. This corresponds with
the formal constraint that we call Cluster Completeness.

In short, while Meila’s properties are an in-depth characterization of the VI
metric, they do not suggest any additional constraint to our original set. Indeed,
the VI metric proposed by Meila does not satisfy our constraint 3 (Rag Bag),
being an entropy-based metric (see Section 4.3).

6 Evaluation of overlapping clustering

The metrics discussed so far do not (at least explicitly) handle clustering sce-
narios where the same item can be assigned to more than one cluster/category
(overlapping clustering). For instance, a piece of news could be related to both
“international” and “culture” sections of an electronic newspaper at the same
time. Ideally, an information retrieval system based on clustering should put
this article in both clusters.

This problem can be seen also as a generalization of the hierarchical cluster-
ing task. For instance, international news could be sub-classified into “international-
culture” and “international-politics”. This article would belong both to “international-
culture” (child category/cluster) and “international” (parent category/cluster).
From a general point of view, a hierarchical clustering is an overlapping cluster-
ing where each item that occurs in a leaf cluster occurs also in all its ancestors.

Figure 13 illustrates the relationship between hierarchical and overlapping
clustering. The leftmost representation is a distribution where items 1 and 3
belong to the grey category (cluster A) and items 1 and 2 belong to the black
category (cluster B). This is an overlapping clustering because item 1 belongs
both to black and grey categories. The rightmost clustering is its hierarchical
counterpart: the cluster A (root cluster) is associated with the grey category,
and its child clusters (B and C) are associated with the categories black and
white respectively. The three items occur in the root category. In addition, items
1 and 2 belong to the left child cluster (black category) and item 3 belongs to
the right child cluster (white category). In short, a hierarchical clustering is an
overlapping clustering where each cluster at each level is related with a category.

6.1 Extending standard metrics for overlapping clustering

While in standard clustering each item is assigned to one cluster, in overlap-
ping clustering each item is assigned to a set of clusters. Let us use the term
“categories” to denote the set of “perfect” clusters defined in the gold standard.
Then, any evaluation metric must reflect the fact that, in a perfect clustering,
two items sharing n categories should share n clusters.

This apparently trivial condition is not always met. In particular, purity
and entropy-based metrics cannot capture this aspect of the quality of a given
clustering solution. This is because they focus on the quality of the clusters
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Figure 13: Multi-category vs. hierarchical clustering

(purity) and the quality of the categories (inverse purity) independently from
each other. Let us consider an example.

Figure 14 represents a clustering case where three items must be distributed
hierarchically. The rightmost distribution shows the correct solution: each item
(1,2 and 3) belongs to two categories and therefore appears in two clusters.
The leftmost distribution, on the contrary, simply groups all items in just one
cluster. This one does not represent the hierarchical structure of the correct
clustering; however, the only given cluster is perfectly coherent, since all items
share one category (grey). In addition, all the items from the same category
share the same cluster (because there is only one). Therefore, cluster/category
oriented metrics inevitably think that the leftmost cluster is perfect.

The problem with purity and inverse purity shows that the extension of
quality metrics to overlapping clustering is not trivial. Addressing this problem
requires another formal analysis, with a new set of formal constraints and a
study of how the different metric families can satisfy them. While such a study
is beyond the scope of this paper, here we will try to extend Bcubed metrics,
which are the only ones that satisfy all formal constraints proposed in this paper,
with the goal of providing a good starting point for a more in-depth study. We
will show that our extension of Bcubed metrics solves some practical problems
of existing metrics.

6.2 Extending BCubed metrics

BCubed metrics independently compute the precision and recall associated to
each item in the distribution. The precision of one item represents the amount
of items in the same cluster that belong to its category. Analogously, the recall
of one item represents how many items from its category appear in its cluster.

As we stated in Section 4.5, the correctness of the relation between two items
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Figure 14: Item Multiplicity

in a non-overlapping clustering is represented by a binary function.

Correctness(e, e′) =
{

1 if L(e) = L(e′)←→ C(e) = C(e′)
0 in other case

where L(e) is the cluster assigned to e by the clustering algorithm and C(e)
is the cluster assigned to e by the gold standard.

In the case of overlapping clustering the relation between two items can not
be represented as a binary function. This is due to the fact that in overlapping
clustering we must take into account the multiplicity of item occurrences in
clusters and categories. For instance, if two items share two categories and share
just one cluster, then the clustering is not capturing completely the relation
between both items (see items 1 and 2 in the second case of Figure 15). On
the other hand, if two items share three clusters but just two categories, then
the clustering is introducing more information than necessary. This is the third
case in Figure 15.

These new aspects can be measured in terms of precision and recall between
two items. Let us define:

Multiplicity Precision(e, e′) =
Min(|C(e) ∩ C(e′)|, |L(e) ∩ L(e′)|)

|C(e) ∩ C(e′)|

Multiplicity Recall(e, e′) =
Min(|C(e) ∩ C(e′)|, |L(e) ∩ L(e′)|)

|L(e) ∩ L(e′)|
where e and e′ are two items, L(e) the set of categories and C(e) the set of

clusters associated to e. Note that Multiplicity Precision is defined only when
e, e′ share some cluster, and Multiplicity Recall when e, e′ share some category.
This is enough to define Bcubed extensions. Multiplicity Precision is used when
two items share one or more clusters, and it is maximal (1) when the number
of shared clusters is lower or equal than the number of shared categories, and
it is minimal (0) when the two items do not share any category. Reversely,
Multiplicity Recall is used when two items share one or more categories, and it
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is maximal when the the number of shared categories is lower or equal than the
number of shared clusters, and it is minimal when the two items do not share
any cluster.

Intuitively, multiplicity precision grows if there is a matching category for
each cluster where the two items co-occur; multiplicity recall, on the other hand,
grows when we add a shared cluster for each category shared by the two items. If
we have less shared clusters than needed, we lose recall; if we have less categories
than clusters, we lose precision. Figure 15 shows and example on how they are
computed.

Figure 15: Computing the multiplicity recall and precision between two items
for extended BCubed metrics
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The next step is integrating multiplicity precision and recall into the over-
all BCubed metrics. For this, we will use the original Bcubed definitions, but
replacing the Correctness function with multiplicity precision (for Bcubed pre-
cision) and multiplicity Recall (for Bcubed recall). Then, the extended Bcubed
precision associated to one item will be its averaged multiplicity precision over
other items sharing some of its categories; and the overall extended Bcubed
precision will be the averaged precision of all items. The extended BCubed
recall is obtained using the same procedure. Formally:

Precision BCubed = Avge[Avge′.C(e)∩C(e′)6=∅[Multiplicity precision(e, e′)]]

Recall BCubed = Avge[Avge′.L(e)∩L(e′)6=∅[Multiplicity recall(e, e′)]]

It is important to remember that the metric includes in the computation
the relation of each item with itself. That penalizes unnapropriate removal or
duplication of a cluster with just one element. Note also that when clusters do
not overlap, this extended version of BCubed metrics behaves exactly as the
original BCubed metrics do, satisfying all previous constraints.

6.3 Extended Bcubed: example of usage

In this section, we will illustrate how BCubed extended metrics behave using an
example (see Figure 16). We start from a correct clustering where seven items
are distributed along three clusters. Items 1 and 2 belong at the same time to
two categories (black and grey). Since both the categories and the clusters are
coherent this distribution has maximum precision and recall.

Now, let us suppose that we duplicate one cluster (black circle in Figure 17).
In this case, the clustering produces more information than the categories re-
quire. Therefore, the recall is still maximum, but at the cost of precision. In
addition, the more the clusters are duplicated, the more the precision decreases
(see Figure 18). On the other hand, if items belonging to two categories are not
duplicated, the clustering provides less information than it should, and BCubed
recall decreases (Figure 19).

If a correct cluster is split, some connections between items are not covered
by the clustering distribution and the BCubed recall decreases (Figure 20).
Reversely, if two clusters of the ideal distribution are merged, then some of the
new connections will be incorrect, and the multiplicity of some elements will not
be covered. Then, both the BCubed precision and recall decreases (Figure 21).
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Figure 16: BCubed computing example 1 (ideal solution): Precision=1 Recall=1

Figure 17: BCubed computing example 2 (duplicating clusters): Precision=0.86
Recall=1

Figure 18: BCubed computing example 3 (duplicating clusters): Precision=0.8
Recall=1

Figure 19: BCubed computing example 4 (removing item occurrences): Preci-
sion=1 Recall=0.68

24



Figure 20: BCubed computing example 5 (splitting clusters): Precision=1 Re-
call=0.74

Figure 21: BCubed computing example 6 (joining clusters): Precision=0.88
Recall=0.94

6.4 Extended Bcubed: a case of study

Here we will compare the behavior of standard metrics Purity and Inverse Purity
with the suggested metrics BCubed Precision and Recall, in the context of the
analysis of results of an international competitive evaluation campaign. We
exclude from this comparison metrics based on entropy or on counting pairs
because they cannot be directly applied to overlapping clustering tasks. We will
see that the the standard metrics Purity and Inverse Purity (which were used as
official results in the campaign chosen for our study) are not able to discriminate
a cheat clustering solution from a set of real systems, but the proposed metrics
do.

6.4.1 Testbed

Our testbed is the Web People Search (WePS) Task [Artiles and Sekine, 2007]
that was held in the framework of the Semeval-2007 Evaluation Workshop 2.
The WEPS task consists of disambiguating person names in Web search results.
The systems receive as input web pages retrieved by a Web search engine us-
ing an ambiguous person name as a query (e.g. “John Smith”). The system
output must specify how many different people are referred to by that person
name, and assign to each person its corresponding documents. The challenge
is to correctly estimate the number of different people (categories) and group

2http://nlp.cs.swarthmore.edu/semeval
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documents (items) referring to the same individual. Since the set of different
people for each name is not known in advance, there is not a predefined set of
categories when grouping items. This can be considered as a clustering task. A
special characteristic is that a document can contain mentions to several peo-
ple sharing the same name (a common example are the URLs with the search
results for that name in Amazon). Therefore, this is an overlapping clustering
task.

6.4.2 The cheat system

One way of checking the suitability of evaluation metrics consists of introducing
undesirable outputs (cheat system) in the evaluation testbed. Our goal is to
check which set of metrics is necessary to discriminate these outputs against
real systems. Here we will use the cheat system proposed by Paul Kalmar in
the context of the evaluation campaign3 which consists of putting all items into
one big cluster, and then duplicating each item in a new, size one cluster (see
Figure 22).

Let us suppose that we are clustering a set of documents retrieved by the
query “John Smith”. In this case the cheat distribution would imply that every
document talks about the same person and, in addition, that every document
also talks about another “John Smith” which is only mentioned in that partic-
ular document. This solution is very unlikely and, therefore, this cheat system
should be ranked in the last positions when compared with real systems. Purity
and Inverse Purity, however, are not able to discriminate this cheat distribution.

Figure 22: Output of a cheat system

3Discussion forum of Web People Search Task 2007 (Mar 23th 2007)

http://groups.google.com/group/web-people-search-task—semeval-2007/
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Purity Inverse Purity F(Purity,Inverse Purity)

S4 0,81 Cheat System 1 S1 0,79
S3 0,75 S14 0,95 Cheat System 0,78
S2 0,73 S13 0,93 S3 0,77
S1 0,72 S15 0,91 S2 0,77

Cheat System 0,64 S5 0,9 S4 0,69
S6 0,6 S10 0,89 S5 0,67
S9 0,58 S7 0,88 S6 0,66
S8 0,55 S1 0,88 S7 0,64
S5 0,53 S12 0,83 S8 0,62
S7 0,5 S11 0,82 S9 0,61
S10 0,45 S2 0,82 S10 0,6
S11 0,45 S3 0,8 S11 0,58
S12 0,39 S6 0,73 S12 0,53
S13 0,36 S8 0,71 S13 0,52
S14 0,35 S9 0,64 S14 0,51
S15 0,3 S4 0,6 S15 0,45

Table 2: WEPS system ranking according to Purity, Inverse Purity and
F(Purity, Inverse Purity)

6.4.3 Results

Table 2 shows the system rankings according to Purity, Inverse Purity and the
F combination of both (α = 0.5). The cheat system obtains a maximum Inverse
Purity, because all items are connected to each other in the big cluster. On the
other hand, all duplicated items in single clusters contribute to the Purity of the
global distribution. As a result, the cheat system ranks fifth according to Purity.
Finally, it appears in the second position when both metrics are combined with
the purity and Inverse Purity F measure.

Let us see the results when using BCubed metrics (Table 3). BCubed Recall
behaves similarly to Inverse Purity, ranking the cheat system in first position.
BCubed Precision, however, does not behave as Purity. In this case, the cheat
system goes down to the end of the ranking. The reason is that BCubed com-
putes the precision of items rather than the precision of clusters. In the cheat
system output, all items are duplicated and inserted into a single cluster, in-
creasing the number of clusters. Therefore, the clustering solution provides more
information than required, and the overall BCubed precision of the distribution
is dramatically reduced (see Section 6.2). On the other hand, the BCubed re-
call slightly decreases (0,99) because the multiplicity of a few items belonging
to more than two categories is not covered by the cheat system.
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BCubed Precision BCubed Recall F(Precision,Recall
(BP) (BR)

S4 0,79 Cheat System 0,99 S1 0,71
S3 0,68 S14 0,91 S3 0,68
S2 0,68 S13 0,87 S2 0,67
S1 0,67 S15 0,86 S4 0,58
S6 0,59 S5 0,84 S6 0,57
S9 0,53 S10 0,82 S5 0,53
S8 0,5 S1 0,81 S7 0,51
S5 0,43 S7 0,81 S8 0,5
S7 0,42 S12 0,74 S9 0,48
S11 0,36 S11 0,73 S11 0,42
S10 0,29 S2 0,73 S12 0,38
S12 0,29 S3 0,71 S13 0,38
S13 0,28 S6 0,64 S10 0,38
S14 0,26 S8 0,63 S14 0,36
S15 0,23 S9 0,53 S15 0,3

Cheat System 0,17 S4 0,5 Cheat System 0,24

Table 3: WEPS system ranking according to Extended BCubed Precision, Ex-
tended BCubed Recall, and its F combination.

6.5 Is the problem of overlapping clustering solved?

In this article, we have selected BCubed metrics for extending to overlapping
clustering tasks because it satisfies all our proposed constraints for the non
overlapping problem, and we have obtained a metric that appears to be more
robust than purity and inverse purity.

Note, however, that we should extend and redefine our set of formal con-
straints in order to know if we have reached a satisfactory solution to the prob-
lem. In fact, our metric has at least one problem: a maximal value of Bcubed
does not necessarily imply a perfect clustering distribution. This is a basic con-
straint that is trivially met by all metrics in the non-overlapping problem, but
becomes a challenge when overlaps are allowed. Let us illustrate the problem.

In the case of hierarchical clustering, it is easy to show that if extended
Bcubed Precision and Recall are maximal (1), then the distribution is perfect.
When Precision and Recall are 1, then if two elements share n clusters they must
share n categories. Assuming that the distribution has a hierarchical structure,
this is equivalent to saying that two elements share a branch of the hierarchy up
to level n. One could build up the tree branching, in each step, according to the
lenght of the branches shared by each pair of elements to arrive univocally to the
ideal clustering. Therefore, maximal Bcubed values imply a perfect distribution.

Surprisingly, in the case of non-hierarchical clustering none of the current
metrics satisfy this basic restriction. Let us illustrate the problem with the
example in Figure 23. All clusters are pure (Purity=1), and for every category
there is a cluster that contains all elements belonging to the category (Inverse
Purity=1). In fact, for every category there is a cluster with maximal precision
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and recall over elements of that category, and therefore the F-measure (see
Section 4.1) also achieves a maximal value. In addition, Bcubed metrics is also
maximal, because the three elements appear three times each, and each pair
of elements shares three categories and three clusters. And yet the clustering
solution is clearly non-optimal.

Figure 23: Counterexample of non-hierarchical overlapping clustering for
BCubed and purity based metrics.

Purity and Inverse purity fail to detect the errors because they do not con-
sider multiplicity of occurrences in the elements (see Section 6). But BCubed
metrics also fail in this case, because they only check coherence between pairs
of elements, but this can have crossed relations in different clusters in such a
way that they satisfy restrictions on paired elements.

Note, however, that generating such a counterexample requires knowing the
ideal distribution beforehand, and therefore this problem cannot lead to a cheat
system that gets high scores exploiting this weakness of the metrics. In practice,
the possibility of having misleading scores from Bcubed metrics is negligible.

7 Conclusions

In this paper, we have analyzed extrinsic clustering evaluation metrics from
a formal perspective, proposing a set of constraints that a good evaluation
metric should satisfy in a generic clustering problem. Four constraints have been
proposed that correspond with basic intuitions about the quality features of a
clustering solution, and they have been validated with respect to users’ intuitions
in a (limited) empirical test. We have also compared our constraints with related
work, checking that they cover the basic features proposed in previous related
research.

A practical conclusion of our work is that the combination of Bcubed preci-
sion and recall metrics is the only one that is able to satisfy all constraints (for
non-overlapping clustering). We take this result as a recommendation to use
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Bcubed metrics for generic clustering problems. It must be noted, however, that
there is a wide range of clustering applications. For certain specific applications,
some of the constraints may not apply, and new constraints may appear, which
could make other metrics more suitable in that cases. Some recommendations
derived from our study are:

• If the system quality is determined by the most representative cluster for
each category, metrics based on matching between clusters and categories
can be appropriate (e.g. Purity and Inverse Purity). However, we have
to take into account that these metrics do not always detect small im-
provements in the clustering distribution, and that might have negative
implications in the system evaluation/refinement cycles.

• If the system quality is not determined by the most representative cluster
for each category, other metric families based on entropy, editing distances,
counting pairs, etc. would be more appropriate.

• If the system developer wants to avoid the quadratic effect over cluster
sizes (related to our fourth formal constraint), we recommend to avoid
using metrics based on counting pairs. Instead of this, the developer may
use entropy-based metrics, edit distance metrics or BCubed metrics.

• In addition, if the developer does not want to penalize merging unrelated
items in a “rag bag” (“other” or “miscellaneous” cluster), then the only
recommendable choice is Bcubed metrics.

We have also examined the case of overlapping clustering, where an item
can belong to more than one category at once. Most evaluation metrics are
not prepared to deal with cluster overlaps and its definition must be extended
to handle them (the exception being purity and inverse purity) We have then
focused on Bcubed metrics, proposing an intuitive extension of Bcubed precision
and recall that handles overlaps, and that behaves as the original Bcubed metrics
in the absence of overlapping.

As a case study, we have used the testbed from the WEPS competitive eval-
uation task, where purity and inverse purity (combined via Van Rijsbergen’s F)
were used for the official system scores. A cheating solution, which receives an
unreasonably high F score (rank 2 in the testbed), is detected by the extended
Bcubed metrics, which relegate the cheating solution to the last position in the
ranking. We have seen, however, that Bcubed can, in extreme cases, give maxi-
mal values to imperfect clustering solutions. This is an evidence that a complete
formal study, similar to the one we have performed for the non-overlapping case,
is required.

Three main limitations of our study should be highlighted. The first one
is that our formal constraints have been checked against users’ intuitions in a
limited empirical setting, with just one clustering scenario taken out of a typical
ad-hoc retrieval test bed, and with a reduced number of users. An extension
of our empirical study into different clustering applications should reinforce the
validity of our constraints.
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The second one is that, beyond formal constraints, there are also other crite-
ria that may apply when selecting a metric. For instance, two important features
of any evaluation metric are its ability to scale (v.g. is 0.5 twice as good as 0.25?)
and its biases [Strehl, 2002]. While we believe that our constraints help choosing
an adequate metric family, more features must be taken into account to select
the individual metric that is best suited for a particular application. In partic-
ular, it must be noted that hierarchical clustering, which is a wide information
access research area, has peculiarities (in particular regarding the cognitive cost
of traversing the hierarchical cluster structures) that need a specific treatment
from the point of view of evaluation. Our future work includes the extension of
our analysis for hierarchical clustering tasks and metrics.

Finally, note that considering the computational properties of evaluation
metrics is beyond the scope of this paper, but might become a limitation for
practical purposes. Indeed, the BCubed metric, which is the best according to
our methodology, requires an O(n2) computation, which is more costly than
computing most other metrics (except those based on counting pairs). While
the typical amount of manually annotated material is limited, and therefore
computing Bcubed is not problematic, this might become an issue with, for
instance, automatically generated testbeds.
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