Discrete
Optimization

Constraint-based Scheduling

Goals of the Lecture

» Scheduling with Constraint Programming
—modeling
—global constraints
—and some nice techniques ...

Motivation

> Very successful application area for constraint
programming

Motivation

> Very successful application area for constraint
programming

> minimize project duration subject to
— precedence constraints

—disjunctive constraints: no two tasks scheduled on
the same machine can overlap in time

Project Scheduling

Project Scheduling

Modeling

> Dedicated abstractions for scheduling
—model-based computing

Modeling

> Dedicated abstractions for scheduling
—model-based computing

» Domain-specific concepts such as
— activities
—Iresources
— precedence constraints

Modeling

> Dedicated abstractions for scheduling
—model-based computing

» Domain-specific concepts such as
— activities
—Iresources
— precedence constraints

> Encapsulate
—variables and global constraints

Modeling

> Dedicated abstractions for scheduling
—model-based computing

» Domain-specific concepts such as
— activities
—Iresources
— precedence constraints

> Encapsulate
—variables and global constraints

> Support

— search procedures

Jobshop Scheduling

> The “TSP” of scheduling
—standard benchmarks and open problems

Jobshop Scheduling

> The “TSP” of scheduling
—standard benchmarks and open problems

> Problem formulation
— a set of tasks and
—each task t has a duration d(t)

—each task t executes on a machine m(t) and no
two tasks scheduled on the same machine can
overlap in time

—a set of precedence constraints (b,a) stating that
task a must start after task b has completed

Jobshop Scheduling

> The “TSP” of scheduling
—standard benchmarks and open problems

> Problem formulation
— a set of tasks and
—each task t has a duration d(t)

—each task t executes on a machine m(t) and no
two tasks scheduled on the same machine can
overlap in time

—a set of precedence constraints (b,a) stating that
task a must start after task b has completed

> Objective
—minimize the project completion time

@—C
hine,

V ‘ | | ‘ -

O)
G
D
5
O
e
O
P
OR
O
A6
n
O
O

Jobshop Scheduling

>» A machine must handle its tasks sequentially

—a solution must find an ordering of the tasks on
each machine

Jobshop Scheduling

O

X

\

> A machine must handle its task sequentially

—a solution must find an ordering of the tasks on
each machine

Jobshop Scheduling

> |t IS sufficient to order all machines

—each ordering then introduces precedence
constraints

10

Jobshop Scheduling

> |t IS sufficient to order all machines

—each ordering then introduces precedence
constraints

> Minimize project duration under precedence
constraints
—polynomial time
—topological sorting (PERT)
—transitive closure (Floyd-Warshall)

10

11

Jobshop Scheduling

int duration[Jobs,Tasks] = ...,
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

Scheduler sched(horizon);

Activity act[j in Jobs,t in Tasks] (sched,duration[j,t]);
Activity makespan (sched,0) ;

UnaryResource r[Machines] (sched);

minimize makespan.end
subject to {
forall(j in Jobs,t in tasks: t !'= Tasks.high)
act[j,t] precedes act[]j,t+l];
forall (j in Jobs)
act[j,Tasks.high] precedes makespan;
forall(j in Jobs,t in Tasks)
act[j,t] requires r[machine[]j,t]]’

Thursday, 20 June 13

Jobshop Scheduling

int duration[Jobs,Tasks] = ...,
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

--

Scheduler sched(horizon); .
Activity act[]j in Jobs,t in Tasks] (sched,duration[j,t]); :
Activity makespan (sched, 0) ; :
UnaryResource r[Machines] (sched)

minimize makespan.end

subject to {
forall (j in Jobs,t in tasks: t != Tasks.high)

act[j,t] precedes act[]j,t+l];
forall (j in Jobs)
act[j,Tasks.high] precedes makespan;

forall(j in Jobs,t in Tasks)
act[j,t] requires r[machine[]j,t]]’

11

Thursday, 20 June 13

Jobshop Scheduling

int duration[Jobs,Tasks] = ...,
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

--

Scheduler sched(horizon); .
Activity act[j in Jobs,t in Tasks] (sched,duration[j,t]); :
Activity makespan (sched, 0) ;

UnaryResource r[Machines] (sched)

--

--

forall(j in Jobs,t in tasks: t !'= Tasks. h1gh)
act[j,t] precedes act[j,t+l];

ForalI(§ In Jobs) ~~wTTTTTTTTTTTTT e
act[j,Tasks.high] precedes makespan;

forall(j in Jobs,t in Tasks)
act[j,t] requires r[machine[]j,t]]’

4

11

Thursday, 20 June 13

11

Jobshop Scheduling

int duration[Jobs,Tasks] = ...,
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

--

Scheduler sched(horizon); .
Activity act[j in Jobs,t in Tasks] (sched,duration[j, t]); :
Activity makespan (sched, 0) ; ;
UnaryResource r[Machines] (sched)

--

--

+forall(j in Jobs,t in tasks: t !'= Tasks.high)
' act[j,t] precedes act[j,t+1l];
FOorallI(jJ In Jobs) ~ T eees

1
1
1
1

1 |
|

4

Thursday, 20 June 13

Model Compilation

» Each activity encapsulates

—variables (e,s,d) for starting date, ending date,
and duration

—a constraint linking these three variables
e s+d=¢e

» Each precedence constraint (b,a)
— Sa = €p

» Each machine m gives rise to a global
constraint

—disjunctive(ts,...,tn)

12

Jobshop Scheduling

13

14

Disjunctive Constraint: Feasibility

g | ||| || SRS ||

14

Disjunctive Constraint: Feasibility

g | ||| || S ||

14

Disjunctive Constraint: Feasibility

g | || ||| S ||

o | | SN)]
- HNEENEENEERERERE
SRR NRENEERERES

14

Disjunctive Constraint: Feasibility

g | || ||| S ||

o | | SN)]
g || e)]
SRR NRENEERERES

14

Disjunctive Constraint: Feasibility

g | || ||| S ||

o | | SN)]
g || e)]
SRR NRENEERERES

> Detecting feasibility of a disjunctive constraint
IS NP-Complete

14

Feasibility of Disjunctive Constraints

» Some basic intuition and algorithms
—very rich domain
— Just making you curious
—many interesting connections

> Notations
—5(€QQ) = min(t in Q) min(st)
—e(Q)) = max(t in Q) max(et)
—d(Q) = sum(t in Q) min(d)

15

Disjunctive Feasibility

> Feasibility test: tasks T
—s(T) +d(T) £ e(T)

16

Disjunctive Feasibility

> Feasibility test: tasks T
—s(T) +d(T) £ e(T)

17

Disjunctive Feasibility

> A better feasibility test: tasks T
—for all Q € T: s(QQ) + d(€)) = e(£))

18

Disjunctive Feasibility

> A better feasibility test: tasks T
—for all Q € T: s(QQ) + d(€)) = e(£))

--

--

18

Disjunctive Feasibility

> A better feasibility test: tasks T
—for all Q € T: s(QQ) + d(€)) = e(£))

18

Disjunctive Feasibility

> A better feasibility test: tasks T
—for all Q € T: s(QQ) + d(€)) = e(£))

19

Disjunctive Feasibility

> A better feasibility test: tasks T
—for all Q € T: s(QQ) + d(€)) = e(£))

» \What is the iIssue here?

20

21

Disjunctive Feasibility

> A better feasibility test: tasks T
—for all Q € T: s(QQ) + d(€)) = e(£))

> \We only need to look at a quadratic number
of subsets.

Disjunctive Feasibility

> A better feasibility test: tasks T
—for all Q € T: s(QQ) + d(€)) = e(£))

> \We only need to look at a quadratic number
of subsets.

22

Disjunctive Feasibility

» Task intervals
—S(t1,t2) ={tin R 1 s(t) = s(t;) & e(t) < e(ty) }

23

Disjunctive Feasibility

» Task intervals
—S(t1,t2) ={tin R 1 s(t) = s(t;) & e(t) < e(ty) }

> A better feasibility test: tasks T
—forall Q C T: s(QQ) + d(QQ) = e(Q))

23

Disjunctive Feasibility

» Task intervals
—S(t1,t2) ={tin R 1 s(t) = s(t;) & e(t) < e(ty) }

> A better feasibility test: tasks T
—forall Q C T: s(QQ) + d(QQ) = e(Q))

> Implementation

—apply the feasibllity tests for all task intervals
S(ty,t2) with t4,t2in T

23

23

Disjunctive Feasibility

» Task intervals

—S(t1,t2) ={tin R 1 s(t) = s(t;) & e(t) < e(ty) }
> A better feasibility test: tasks T

—forall Q C T: s(QQ) + d(QQ) = e(Q))

> Implementation

—apply the feasibllity tests for all task intervals
S(ty,t2) with t4,t2in T

» Complexity
—O(ITI3)

Disjunctive Feasibility

24

Disjunctive Feasibility

d := 0;
for each task t i1in decreasing order of st
ifet<=e
d1=d+dt,’
ifst+d>e
return failure;
return success;

24

Disjunctive Constraint: Feasibility

> Relax: feasiblility of the preemptive schedule

g ||| ||| SeEEe. ||
IIIC]IIIIIIIIII

» One-machine preemptive feasibility can be
computed in O(ITI log I'Tl)

25

Disjunctive Pruning

> Edge finding rules
—select a set Q) of tasks and atask i ¢ ()

26

Disjunctive Pruning

> Edge finding rules
—select a set Q) of tasks and atask i ¢ ()

» Determine If | must start after all tasks in O
—s(Q U {i}) + d(Q u {i}) > e(Q)

26

26

Disjunctive Pruning

> Edge finding rules
—select a set Q) of tasks and atask i ¢ ()

» Determine If | must start after all tasks in O
—s(Q U {i}) + d(Q u {i}) > e(Q)

» Update the starting times of i1 to
—max(y <) s(y) +d(y)

26

Disjunctive Pruning

> Edge finding rules
—select a set Q) of tasks and atask i ¢ ()

> Determine if | must start after all tasks in ©
—s(Q u {i}) + d(Q u {i}) > e(Q2)

» Update the starting times of i1 to
—max(y ¢ Q) s(y) + d(y)

» Same for the ending dates

26

Disjunctive Pruning

> Edge finding rules
—select a set Q) of tasks and atask i ¢ ()

> Determine if | must start after all tasks in ©
—s(Q u {i}) + d(Q u {i}) > e(Q2)

» Update the starting times of i1 to
—max(y ¢ Q) s(y) + d(y)

» Same for the ending dates

> The edge finding rules can be enforced in
strongly polynomial time

Disjunctive Pruning

g | || ||| S ||

o ||]
g || e
JEEEENNRENEEREEES

27

Disjunctive Pruning

» Can A1 start before Az or As?

g ||| ||| e ||
~HEEC . CRENEREEEE

g || e
JEEEENNRENEEREEES

27

Disjunctive Pruning

» Can A1 start before Az or As?

o SRS)]
~HEEC CRESEEEEEE

-HEEL: NNESEEEEREE
RN NNENEEREEES

28

Disjunctive Pruning

> A1 must start after A2 and A3

«BEEENEENEEEEE RN
~HEEC CRESEEEEEE

-HEEL: NNESREREREE
JEEEENNRENEEREEES

29

Search for Disjunctive Scheduling

> Basic strategy
—choose a machine
—seqguence that machine
—repeat

30

Search for Disjunctive Scheduling

> Basic strategy
—choose a machine
—seqguence that machine
—repeat

> \Which machine?
—first-fail principle: the tightest machine

30

Search for Disjunctive Scheduling

> Basic strategy
—choose a machine
—seqguence that machine
—repeat
> \Which machine?
—first-fail principle: the tightest machine

> \Which task?

—a task that can be scheduled first (or last)
—a task that is as tight as possible

30

Until Next Time

31

