
Discrete
Optimization
Constraint-based Scheduling

Thursday, 20 June 13

Goals of the Lecture
‣Scheduling with Constraint Programming

– modeling
– global constraints
– and some nice techniques ...

2

Thursday, 20 June 13

Motivation
‣Very successful application area for constraint

programming

3

Thursday, 20 June 13

Motivation
‣Very successful application area for constraint

programming
‣minimize project duration subject to

– precedence constraints
– disjunctive constraints: no two tasks scheduled on

the same machine can overlap in time

3

Thursday, 20 June 13

Project Scheduling

4

Thursday, 20 June 13

Project Scheduling

4

S1

S1S1S1

S1

S2 S2

S3 S3

S2 S2 S2

S3S3

Thursday, 20 June 13

Modeling
‣Dedicated abstractions for scheduling

– model-based computing

5

Thursday, 20 June 13

Modeling
‣Dedicated abstractions for scheduling

– model-based computing

‣Domain-specific concepts such as
– activities
– resources
– precedence constraints
–

5

Thursday, 20 June 13

Modeling
‣Dedicated abstractions for scheduling

– model-based computing

‣Domain-specific concepts such as
– activities
– resources
– precedence constraints
–

‣Encapsulate
– variables and global constraints

5

Thursday, 20 June 13

Modeling
‣Dedicated abstractions for scheduling

– model-based computing

‣Domain-specific concepts such as
– activities
– resources
– precedence constraints
–

‣Encapsulate
– variables and global constraints

‣Support
– search procedures

5

Thursday, 20 June 13

Jobshop Scheduling
‣The “TSP” of scheduling

– standard benchmarks and open problems

6

Thursday, 20 June 13

Jobshop Scheduling
‣The “TSP” of scheduling

– standard benchmarks and open problems

‣Problem formulation
– a set of tasks and
– each task t has a duration d(t)
– each task t executes on a machine m(t) and no

two tasks scheduled on the same machine can
overlap in time

– a set of precedence constraints (b,a) stating that
task a must start after task b has completed

6

Thursday, 20 June 13

Jobshop Scheduling
‣The “TSP” of scheduling

– standard benchmarks and open problems

‣Problem formulation
– a set of tasks and
– each task t has a duration d(t)
– each task t executes on a machine m(t) and no

two tasks scheduled on the same machine can
overlap in time

– a set of precedence constraints (b,a) stating that
task a must start after task b has completed

‣Objective
– minimize the project completion time

6

Thursday, 20 June 13

Jobshop Scheduling

7

Thursday, 20 June 13

Jobshop Scheduling

8

‣A machine must handle its tasks sequentially
– a solution must find an ordering of the tasks on

each machine

Thursday, 20 June 13

Jobshop Scheduling

9

‣A machine must handle its task sequentially
– a solution must find an ordering of the tasks on

each machine

Thursday, 20 June 13

Jobshop Scheduling
‣ It is sufficient to order all machines

– each ordering then introduces precedence
constraints

10

Thursday, 20 June 13

Jobshop Scheduling
‣ It is sufficient to order all machines

– each ordering then introduces precedence
constraints

‣Minimize project duration under precedence
constraints
– polynomial time
– topological sorting (PERT)
– transitive closure (Floyd-Warshall)

10

Thursday, 20 June 13

Jobshop Scheduling

11

int duration[Jobs,Tasks] = ...;
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

Scheduler sched(horizon);
Activity act[j in Jobs,t in Tasks](sched,duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines](sched);

minimize makespan.end
subject to {
 forall(j in Jobs,t in tasks: t != Tasks.high)
 act[j,t] precedes act[j,t+1];
 forall(j in Jobs)
 act[j,Tasks.high] precedes makespan;
 forall(j in Jobs,t in Tasks)
 act[j,t] requires r[machine[j,t]];
}

Thursday, 20 June 13

Jobshop Scheduling

11

int duration[Jobs,Tasks] = ...;
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

Scheduler sched(horizon);
Activity act[j in Jobs,t in Tasks](sched,duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines](sched);

minimize makespan.end
subject to {
 forall(j in Jobs,t in tasks: t != Tasks.high)
 act[j,t] precedes act[j,t+1];
 forall(j in Jobs)
 act[j,Tasks.high] precedes makespan;
 forall(j in Jobs,t in Tasks)
 act[j,t] requires r[machine[j,t]];
}

Thursday, 20 June 13

Jobshop Scheduling

11

int duration[Jobs,Tasks] = ...;
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

Scheduler sched(horizon);
Activity act[j in Jobs,t in Tasks](sched,duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines](sched);

minimize makespan.end
subject to {
 forall(j in Jobs,t in tasks: t != Tasks.high)
 act[j,t] precedes act[j,t+1];
 forall(j in Jobs)
 act[j,Tasks.high] precedes makespan;
 forall(j in Jobs,t in Tasks)
 act[j,t] requires r[machine[j,t]];
}

Thursday, 20 June 13

Jobshop Scheduling

11

int duration[Jobs,Tasks] = ...;
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

Scheduler sched(horizon);
Activity act[j in Jobs,t in Tasks](sched,duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines](sched);

minimize makespan.end
subject to {
 forall(j in Jobs,t in tasks: t != Tasks.high)
 act[j,t] precedes act[j,t+1];
 forall(j in Jobs)
 act[j,Tasks.high] precedes makespan;
 forall(j in Jobs,t in Tasks)
 act[j,t] requires r[machine[j,t]];
}

Thursday, 20 June 13

Model Compilation
‣Each activity encapsulates

– variables (e,s,d) for starting date, ending date,
and duration

– a constraint linking these three variables
• s + d = e

‣Each precedence constraint (b,a)
– sa ≥ eb

‣Each machine m gives rise to a global
constraint
– disjunctive(t1,...,tn)

12

Thursday, 20 June 13

Jobshop Scheduling

13

Constraint
Store

Domain
StoreC1

C2

C4 C5

Constraint

C3

Thursday, 20 June 13

Disjunctive Constraint: Feasibility

14

A1

A2

A3

Thursday, 20 June 13

Disjunctive Constraint: Feasibility

14

A1

A2

A3

6

Thursday, 20 June 13

Disjunctive Constraint: Feasibility

14

A1

A2

A3

6

Thursday, 20 June 13

Disjunctive Constraint: Feasibility

14

A1

A2

A3

6

4

Thursday, 20 June 13

Disjunctive Constraint: Feasibility

14

A1

A2

A3

6

4

3

Thursday, 20 June 13

Disjunctive Constraint: Feasibility

14

A1

A2

A3

6

4

3

‣Detecting feasibility of a disjunctive constraint
is NP-Complete

Thursday, 20 June 13

Feasibility of Disjunctive Constraints
‣Some basic intuition and algorithms

– very rich domain
– just making you curious
– many interesting connections

‣Notations
– s(Ω) = min(t in Ω) min(st)
– e(Ω) = max(t in Ω) max(et)
– d(Ω) = sum(t in Ω) min(dt)

15

Thursday, 20 June 13

Disjunctive Feasibility
‣Feasibility test: tasks T

– s(T) + d(T) ≤ e(T)

16

Thursday, 20 June 13

Disjunctive Feasibility
‣Feasibility test: tasks T

– s(T) + d(T) ≤ e(T)

17

Thursday, 20 June 13

Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

18

Thursday, 20 June 13

Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

18

Thursday, 20 June 13

Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

18

Thursday, 20 June 13

Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

19

Thursday, 20 June 13

Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

‣What is the issue here?

20

Thursday, 20 June 13

Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

‣We only need to look at a quadratic number
of subsets.

21

Thursday, 20 June 13

Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

‣We only need to look at a quadratic number
of subsets.

22

Thursday, 20 June 13

Disjunctive Feasibility
‣Task intervals

– S(t1,t2) = { t in R | s(t) ≥ s(t1) & e(t) ≤ e(t2) }

23

Thursday, 20 June 13

Disjunctive Feasibility
‣Task intervals

– S(t1,t2) = { t in R | s(t) ≥ s(t1) & e(t) ≤ e(t2) }

‣A better feasibility test: tasks T
– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

23

Thursday, 20 June 13

Disjunctive Feasibility
‣Task intervals

– S(t1,t2) = { t in R | s(t) ≥ s(t1) & e(t) ≤ e(t2) }

‣A better feasibility test: tasks T
– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

‣ Implementation
– apply the feasibility tests for all task intervals

S(t1,t2) with t1,t2 in T

23

Thursday, 20 June 13

Disjunctive Feasibility
‣Task intervals

– S(t1,t2) = { t in R | s(t) ≥ s(t1) & e(t) ≤ e(t2) }

‣A better feasibility test: tasks T
– for all Ω ⊆ T: s(Ω) + d(Ω) ≤ e(Ω)

‣ Implementation
– apply the feasibility tests for all task intervals

S(t1,t2) with t1,t2 in T

‣Complexity
– O(|T|3)

23

Thursday, 20 June 13

Disjunctive Feasibility

24

es3s2s1

Thursday, 20 June 13

Disjunctive Feasibility

24

es3s2s1

d := 0;
for each task t in decreasing order of st
 if et <= e

 d := d + dt;
 if st + d > e
 return failure;

return success;

Thursday, 20 June 13

Disjunctive Constraint: Feasibility

25

‣Relax: feasibility of the preemptive schedule

‣One-machine preemptive feasibility can be
computed in O(|T| log |T|)

A1

A2

A3

A1 A2 A2 A2 A3 A3 A3 A1 A1 A1 A1 A1

6

4

3

Thursday, 20 June 13

Disjunctive Pruning
‣Edge finding rules

– select a set Ω of tasks and a task i ∉ Ω

26

Thursday, 20 June 13

Disjunctive Pruning
‣Edge finding rules

– select a set Ω of tasks and a task i ∉ Ω

‣Determine if i must start after all tasks in Ω
– s(Ω ⋃ {i}) + d(Ω ⋃ {i}) > e(Ω)

26

Thursday, 20 June 13

Disjunctive Pruning
‣Edge finding rules

– select a set Ω of tasks and a task i ∉ Ω

‣Determine if i must start after all tasks in Ω
– s(Ω ⋃ {i}) + d(Ω ⋃ {i}) > e(Ω)

‣Update the starting times of i to
– max(γ ⊆ Ω) s(γ) + d(γ)

26

Thursday, 20 June 13

Disjunctive Pruning
‣Edge finding rules

– select a set Ω of tasks and a task i ∉ Ω

‣Determine if i must start after all tasks in Ω
– s(Ω ⋃ {i}) + d(Ω ⋃ {i}) > e(Ω)

‣Update the starting times of i to
– max(γ ⊆ Ω) s(γ) + d(γ)

‣Same for the ending dates

26

Thursday, 20 June 13

Disjunctive Pruning
‣Edge finding rules

– select a set Ω of tasks and a task i ∉ Ω

‣Determine if i must start after all tasks in Ω
– s(Ω ⋃ {i}) + d(Ω ⋃ {i}) > e(Ω)

‣Update the starting times of i to
– max(γ ⊆ Ω) s(γ) + d(γ)

‣Same for the ending dates
‣The edge finding rules can be enforced in

strongly polynomial time

26

Thursday, 20 June 13

Disjunctive Pruning

27

A1

A2

A3

6

4

3

Thursday, 20 June 13

Disjunctive Pruning

27

‣Can A1 start before A2 or A3?

A1

A2

A3

6

4

3

Thursday, 20 June 13

Disjunctive Pruning

28

‣Can A1 start before A2 or A3?

A1

A2

A3

6

4

3

Thursday, 20 June 13

Disjunctive Pruning

29

‣A1 must start after A2 and A3

A1

A2

A3

6

4

3

Thursday, 20 June 13

Search for Disjunctive Scheduling
‣Basic strategy

– choose a machine
– sequence that machine
– repeat

30

Thursday, 20 June 13

Search for Disjunctive Scheduling
‣Basic strategy

– choose a machine
– sequence that machine
– repeat

‣Which machine?
– first-fail principle: the tightest machine

30

Thursday, 20 June 13

Search for Disjunctive Scheduling
‣Basic strategy

– choose a machine
– sequence that machine
– repeat

‣Which machine?
– first-fail principle: the tightest machine

‣Which task?
– a task that can be scheduled first (or last)
– a task that is as tight as possible

30

Thursday, 20 June 13

Until Next Time

31

Thursday, 20 June 13

