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Goals of the Lecture
‣Scheduling with Constraint Programming

– modeling
– global constraints
– and some nice techniques ...
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Motivation
‣Very successful application area for constraint 

programming
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Motivation
‣Very successful application area for constraint 

programming
‣minimize project duration subject to

– precedence constraints
– disjunctive constraints: no two tasks scheduled on 

the same machine can overlap in time
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Project Scheduling
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Modeling
‣Dedicated abstractions for scheduling

– model-based computing
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Modeling
‣Dedicated abstractions for scheduling

– model-based computing

‣Domain-specific concepts such as
– activities
– resources
– precedence constraints
– ....

‣Encapsulate 
– variables and global constraints

‣Support 
– search procedures
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Jobshop Scheduling
‣The “TSP” of scheduling

– standard benchmarks and open problems
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Jobshop Scheduling
‣The “TSP” of scheduling

– standard benchmarks and open problems

‣Problem formulation
– a set of tasks and 
– each task t has a duration d(t)
– each task t executes on a machine m(t) and no 

two tasks scheduled on the same machine can 
overlap in time

– a set of precedence constraints (b,a) stating that 
task a must start after task b has completed
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Jobshop Scheduling
‣The “TSP” of scheduling

– standard benchmarks and open problems

‣Problem formulation
– a set of tasks and 
– each task t has a duration d(t)
– each task t executes on a machine m(t) and no 

two tasks scheduled on the same machine can 
overlap in time

– a set of precedence constraints (b,a) stating that 
task a must start after task b has completed

‣Objective 
– minimize the project completion time
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Jobshop Scheduling
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Jobshop Scheduling

8

‣A machine must handle its tasks sequentially
– a solution must find an ordering of the tasks on 

each machine
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Jobshop Scheduling
‣ It is sufficient to order all machines

– each ordering then introduces precedence 
constraints
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Jobshop Scheduling
‣ It is sufficient to order all machines

– each ordering then introduces precedence 
constraints

‣Minimize project duration under precedence 
constraints
– polynomial time
– topological sorting (PERT)
– transitive closure (Floyd-Warshall) 
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Jobshop Scheduling

11

int duration[Jobs,Tasks] = ...;
int machine[Jobs,Tasks] = ...;
int horizon = sum(j in Jobs,t in tasks) duration[j,t];

Scheduler sched(horizon);
Activity act[j in Jobs,t in Tasks](sched,duration[j,t]);
Activity makespan(sched,0);
UnaryResource r[Machines](sched);

minimize makespan.end
subject to {
   forall(j in Jobs,t in tasks: t != Tasks.high)
       act[j,t] precedes act[j,t+1];
   forall(j in Jobs)
       act[j,Tasks.high] precedes makespan;
   forall(j in Jobs,t in Tasks)
       act[j,t] requires r[machine[j,t]];
}
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Model Compilation
‣Each activity encapsulates

– variables (e,s,d) for starting date, ending date, 
and duration

– a constraint linking these three variables
•  s + d = e

‣Each precedence constraint (b,a)
– sa ≥ eb

‣Each machine m gives rise to a global 
constraint
– disjunctive(t1,...,tn)
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Jobshop Scheduling
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Disjunctive Constraint: Feasibility
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Disjunctive Constraint: Feasibility
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‣Detecting feasibility of a disjunctive constraint 
is NP-Complete
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Feasibility of Disjunctive Constraints
‣Some basic intuition and algorithms

– very rich domain
– just making you curious
– many interesting connections 

‣Notations
– s(Ω) = min(t in Ω) min(st)
– e(Ω) = max(t in Ω) max(et)
– d(Ω) = sum(t in Ω) min(dt)
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Disjunctive Feasibility
‣Feasibility test: tasks T

– s(T) + d(T) ≤  e(T)
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Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤  e(Ω)
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Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤  e(Ω)

‣What is the issue here?
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Disjunctive Feasibility
‣A better feasibility test: tasks T

– for all Ω ⊆ T: s(Ω) + d(Ω) ≤  e(Ω)

‣We only need to look at a quadratic number 
of subsets.
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– for all Ω ⊆ T: s(Ω) + d(Ω) ≤  e(Ω)

‣We only need to look at a quadratic number 
of subsets.
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Disjunctive Feasibility
‣Task intervals

– S(t1,t2) = { t in R | s(t) ≥ s(t1) & e(t) ≤ e(t2) }
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‣A better feasibility test: tasks T
– for all Ω ⊆ T: s(Ω) + d(Ω) ≤  e(Ω)

‣ Implementation
– apply the feasibility tests for all task intervals 

S(t1,t2) with t1,t2 in T
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Disjunctive Feasibility
‣Task intervals

– S(t1,t2) = { t in R | s(t) ≥ s(t1) & e(t) ≤ e(t2) }

‣A better feasibility test: tasks T
– for all Ω ⊆ T: s(Ω) + d(Ω) ≤  e(Ω)

‣ Implementation
– apply the feasibility tests for all task intervals 

S(t1,t2) with t1,t2 in T

‣Complexity 
– O(|T|3)
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Disjunctive Feasibility
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Disjunctive Feasibility

24

es3s2s1

d := 0;
for each task t in decreasing order of st 
   if et <= e

 d := d + dt;
 if st + d > e
   return failure;

return success;
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Disjunctive Constraint: Feasibility

25

‣Relax: feasibility of the preemptive schedule

‣One-machine preemptive feasibility can be 
computed in O(|T| log |T|)
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Disjunctive Pruning
‣Edge finding rules

– select a set Ω of tasks and a task i ∉ Ω
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Disjunctive Pruning
‣Edge finding rules

– select a set Ω of tasks and a task i ∉ Ω

‣Determine if i must start after all tasks in Ω
– s(Ω ⋃ {i}) + d(Ω ⋃ {i}) > e(Ω)

‣Update the starting times of i to
– max(γ ⊆ Ω) s(γ) + d(γ)

‣Same for the ending dates
‣The edge finding rules can be enforced in 

strongly polynomial time
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Disjunctive Pruning
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Disjunctive Pruning
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‣Can A1 start before A2 or A3?
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Disjunctive Pruning
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‣Can A1 start before A2 or A3?
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Disjunctive Pruning
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‣A1 must start after A2 and A3
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Search for Disjunctive Scheduling
‣Basic strategy

– choose a machine 
– sequence that machine
– repeat
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Search for Disjunctive Scheduling
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– choose a machine 
– sequence that machine
– repeat

‣Which machine?
– first-fail principle: the tightest machine
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Search for Disjunctive Scheduling
‣Basic strategy

– choose a machine 
– sequence that machine
– repeat

‣Which machine?
– first-fail principle: the tightest machine

‣Which task?
– a task that can be scheduled first (or last)
– a task that is as tight as possible
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Until Next Time

31

Thursday, 20 June 13


