Discrete
Optimization

| ocal Search: Part IX

Goal of the Lecture

» | ocal search
—tabu-search

Tabu Search

Tabu Search

Tabu Search

Tabu Search

Tabu Search

Tabu Search

Tabu Search

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

Tabu node @ : node | have already visited

Tabu Search

» Key abstract idea

—maintain the sequence of nodes already visited
e tabu list and tabu nodes

Tabu Search

» Key abstract idea

—maintain the sequence of nodes already visited
e tabu list and tabu nodes

function LOCALSEARCH(f, N, L, S, s1) {

s* 1= 81;
= (s)
for £ :=1 to Max1'rials do
if satisfiable(s) A f(sk) < f(s™) then

S* 1= Sk:
Sk+1 := S(L(N(sk),T),T);
T = T i Ska1;
return s™;

= L XN O =

0. }

Thursday, 13 June 13

Tabu Search

» Basic abstract tabu-search

— select the best configurations that is not tabu,
l.e., has not been visited before

Tabu Search

» Basic abstract tabu-search

— select the best configurations that is not tabu,
l.e., has not been visited before

1. function TABUSEARCH(f,N,s)
2. return LOCALSEARCH(f,N,L-NOTTABU,S-BEST);

where

1. function L-NOTTABU(N,T)
2. return { ne N | né¢ 71 };

Short-Term Memory

» Key issue with tabu search
—expensive to maintain all the visited nodes

Short-Term Memory

» Key issue with tabu search
—expensive to maintain all the visited nodes

» Short-term memory

—only keep a small suffix of visited nodes
e typically called the tabu list

—may increase or decrease the size of the list
dynamically
» decrease when the selected node degrades the objective
* Increase when the selected node improves the objective

Short-Term Memory

> Still too big?

—may still be too costly
e requires to store and compare entire solutions

—keep an abstraction of the suffix
* many possiblilities

9

Thursday, 13 June 13

llustration: Car Sequencing

» Greedy local improvement

s := some 1initial configuration;

while (violations(s) > 0) {
N := { <i,3J> | violations(i) > 0 & 1 '= 3 };

<i,j> := argmin(<i,j> in N) f(swap(s,i,]));
n = swap(s,1i,]);
if £(n) < £(s)
S := n;
else

break;

}

return s;

Transition Abstractions

> Key idea
— store the transitions, not the states

10

Transition Abstractions

> Key idea
— store the transitions, not the states
> Consider car-sequencing

—a move swaps two slots a; and b

—the tabu list then keep pairs (aj,bi) to denote that
slots ai and b; have been swapped in step |

—a configuration n in N(s) is tabu if n can be
obtained by swapping a pair (aj,bi) in the tabu-list

10

Transition Abstractions

> How to implement this
—keep an iteration counter it

— keep a data structure tabuli,j] which stores the
next iteration when pair (i,J) can be swapped
e an iteration number
* not legal to swap this pair before

—assume that the tabu list of size L

11

Transition Abstractions

> How to implement this
—keep an iteration counter it

— keep a data structure tabuli,j] which stores the
next iteration when pair (i,J) can be swapped
e an iteration number
* not legal to swap this pair before

—assume that the tabu list of size L

>»\When is a move (li,]) tabu?
—when tabuli,|] > it

11

Transition Abstractions

> How to implement this
—keep an iteration counter it

— keep a data structure tabuli,j] which stores the
next iteration when pair (i,J) can be swapped
e an iteration number
* not legal to swap this pair before

—assume that the tabu list of size L
>»\When is a move (li,]) tabu?
—when tabuli,|] > it
> What happens when applying a move?
—tabull,|] becomes it + L

11

llustration: Car Sequencing

» Tabu search: quadratic neighborhood

s := some initial configuration;
s* = s;
it := 0;

for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
tabu[i,j] := 0;
while (violations(s) > 0) {
N := { <i,3J> | violations(i) > 0 & 1 !'= j };
NotTabu := { <i,3j> in N | tabu[i,j] <= it};
if (|NotTabu| > 0)
<i,j> := argmin(<i,j> in NotTabu) f(swap(s,i,j));
s = swap(s,1i,3);
tabu[i,3] := 1t + L;
tabu[j,i] := it + L;
if (£(s) < f(s¥*))
s* := s;
i1t++;
}

return s*;

12

Thursday, 13 June 13

Transition Abstractions

> \What happens if all moves are tabu

—the counter is still incremented and hence at
some point, some move will not be tabu any
more.

13

Transition Abstractions

> \What happens if all moves are tabu

—the counter is still incremented and hence at
some point, some move will not be tabu any
more.

> In practice

—the implementation does not perform the swaps
to find the best ones;

—the effect of the potential moves is computed
incrementally (differentiation)

— Important since tabu-search is (almost always)
greedy

13

Transition Abstractions

> Too strong or too weak?
—a bit of both

14

Transition Abstractions

> Too strong or too weak?
—a bit of both

» Too weak

—they cannot prevent cycling since they only
consider a suffix

14

Transition Abstractions

> Too strong or too weak?
—a bit of both

» Too weak

—they cannot prevent cycling since they only
consider a suffix

> Too strong

—they may prevent us from going to configurations
that have not yet been visited.

—the swaps would produce different configurations
but they are forbidden by the tabu list

14

Transition Abstractions

» Strengthening the abstraction
— store the transitions and the objective values

15

Transition Abstractions

» Strengthening the abstraction
— store the transitions and the objective values

> Consider car-sequencing
—a move swaps two slots a; and b

—the tabu list then keep pairs (aj,bi fi,fi+1) to denote
that slots a; and bi have been swapped in step |
moving from an objective value fi to fi:1

—a configuration n in N(s) is tabu if n can be
obtained by swapping a pair (a;,bi) in the tabu-list
and f(s)= fiand f(n)=fi:1

15

llustration: Car Sequencing

» Tabu search: linear neighborhood

s := some initial configuration;
s* = s;
it := 0;

for(int 1 = 1; i <= n; 1i++)
for(int jJ =1; J <= n; J++)
tabu[i,j] := 0;
while (violations(s) > 0) {
select i1 such that wviolations (i) > O;

N :={<i,j> | i '= 3 };
NotTabu := { <i,3j> in N | tabu[i,j] <= it};
if (|NotTabu| > 0)
<i,J> := argmin(<i,j> in NotTabu) f (swap(s,i,3));
s = swap(s,1i,3);
tabu[i,j] := it + L;
if (£(s) < f(s¥*))
s* := s;
i1t++;

}

return s*;

16

Thursday, 13 June 13

Queens Problem

17

Queens Problem

> Move
—assign the value of a variable

17

Queens Problem

> Move
—assign the value of a variable

» \What Is the transition abstraction?
—the variable cannot be assigned its old value

17

Queens Problem

> Move
—assign the value of a variable

» \What is the transition abstraction?
—the variable cannot be assigned its old value

> The tabu list should be viewed as
— storing pairs (X,v)

17

[llustration: The Queens

» Tabu search: linear neighborhood

s := some initial configuration;
s* = s;
it := 0;

for(int ¢ = 1; ¢ <= n; c++)
for(int r = 1; r <= n; r++)
tabufc,r] := 0;
while (violations(s) > 0) {
select ¢ such that violations (queens[c]) > 0O;

N := { <¢,r> | queens[c] != r};
NotTabu := { <c,r> in N | tabu[c,r] <= it};
if (|NotTabu| > 0)
<c,r> := argmin(<c,r> in NotTabu) f (s[queens|[c]:=r]);
tabu[i,queens|c]] := i1t + L;
s = s[queens|[c]:=r];
if (£(s) < f(s¥*))
s* := s;
i1t++;

}

return s*;

18

Thursday, 13 June 13

Queens Problem

19

Queens Problem

> Transition abstraction may be even coarser
—more diversification

19

Queens Problem

> Transition abstraction may be even coarser
—more diversification

> Move
—assign the value of a variable

19

Queens Problem

> Transition abstraction may be even coarser
—more diversification

> Move
—assign the value of a variable

» \What Is the transition abstraction?
— make the variable tabu!

—no move with this variable for a number of
iterations

19

Aspiration

> What if the move is tabu but really good?
—e.g., f(n) <f(s”)
—this is possible since the tabu list is too strong

20

Aspiration

> What if the move is tabu but really good?
—e.g., f(n) < f(s)
—this is possible since the tabu list is too strong
> Aspiration criterion
—override the tabu status

— NotTabu := { <i,3J> in N | tabu[i,j] <= it or
f(swap(s,1,]J)) < £(s¥*)};

20

Long-lerm Memory

» Intensification

— store high-quality solutions and return to them
periodically

21

Long-lerm Memory

» Intensification

— store high-quality solutions and return to them
periodically

» Diversification

—when the search is not producing improvement,
diversifty the current state
* e.g., randomly change the values of some variables

21

21

Long-lerm Memory

» Intensification
— store high-quality solutions and return to them
periodically
> Diversification

—when the search is not producing improvement,
diversifty the current state
* e.g., randomly change the values of some variables

» Strategic oscillation

—change the percentage of time spent in the
feasible and infeasible regions

Final Remark

» Techniques such as
—diversification
— intensification
— strategic oscillation

22

Final Remark

» Techniques such as
—diversification
— intensification
— strategic oscillation

have also been used in simulated annealing

22

Until Next Time

23

