Discrete
Optimization

| ocal Search: Part IX



Goal of the Lecture

» | ocal search
—tabu-search
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» Key abstract idea

—maintain the sequence of nodes already visited
e tabu list and tabu nodes

function LOCALSEARCH(f, N, L, S, s1) {

s* 1= 81;
= (s)
for £ :=1 to Max1'rials do
if satisfiable(s) A f(sk) < f(s™) then

S* 1= Sk:
Sk+1 := S(L(N(sk),T),T);
T = T i Ska1;
return s™;

= L XN O =

0. }
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» Basic abstract tabu-search

— select the best configurations that is not tabu,
l.e., has not been visited before

1. function TABUSEARCH(f,N,s)
2. return LOCALSEARCH(f,N,L-NOTTABU,S-BEST);

where

1. function L-NOTTABU(N,T)
2. return { ne N | né¢ 71 };
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Short-Term Memory

» Key issue with tabu search
—expensive to maintain all the visited nodes

» Short-term memory

—only keep a small suffix of visited nodes
e typically called the tabu list

—may increase or decrease the size of the list
dynamically
» decrease when the selected node degrades the objective
* Increase when the selected node improves the objective



Short-Term Memory

> Still too big?

—may still be too costly
e requires to store and compare entire solutions

—keep an abstraction of the suffix
* many possiblilities
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llustration: Car Sequencing

» Greedy local improvement

s := some 1initial configuration;

while (violations(s) > 0) {
N := { <i,3J> | violations(i) > 0 & 1 '= 3 };

<i,j> := argmin(<i,j> in N) f(swap(s,i,]));
n = swap(s,1i,]);
if £(n) < £(s)
S := n;
else

break;

}

return s;




Transition Abstractions

> Key idea
— store the transitions, not the states
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Transition Abstractions

> Key idea
— store the transitions, not the states
> Consider car-sequencing

—a move swaps two slots a; and b

—the tabu list then keep pairs (aj,bi) to denote that
slots ai and b; have been swapped in step |

—a configuration n in N(s) is tabu if n can be
obtained by swapping a pair (aj,bi) in the tabu-list
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Transition Abstractions

> How to implement this
—keep an iteration counter it

— keep a data structure tabuli,j] which stores the
next iteration when pair (i,J) can be swapped
e an iteration number
* not legal to swap this pair before

—assume that the tabu list of size L
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Transition Abstractions

> How to implement this
—keep an iteration counter it

— keep a data structure tabuli,j] which stores the
next iteration when pair (i,J) can be swapped
e an iteration number
* not legal to swap this pair before

—assume that the tabu list of size L
>»\When is a move (li,]) tabu?
—when tabuli,|] > it
> What happens when applying a move?
—tabull,|] becomes it + L
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llustration: Car Sequencing

» Tabu search: quadratic neighborhood

s := some initial configuration;
s* = s;
it := 0;

for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
tabu[i,j] := 0;
while (violations(s) > 0) {
N := { <i,3J> | violations(i) > 0 & 1 !'= j };
NotTabu := { <i,3j> in N | tabu[i,j] <= it};
if (|NotTabu| > 0)
<i,j> := argmin(<i,j> in NotTabu) f(swap(s,i,j));
s = swap(s,1i,3);
tabu[i,3] := 1t + L;
tabu[j,i] := it + L;
if (£(s) < f(s¥*))
s* := s;
i1t++;
}

return s*;
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Transition Abstractions

> \What happens if all moves are tabu

—the counter is still incremented and hence at
some point, some move will not be tabu any
more.
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Transition Abstractions

> \What happens if all moves are tabu

—the counter is still incremented and hence at
some point, some move will not be tabu any
more.

> In practice

—the implementation does not perform the swaps
to find the best ones;

—the effect of the potential moves is computed
incrementally (differentiation)

— Important since tabu-search is (almost always)
greedy
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—a bit of both
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Transition Abstractions

> Too strong or too weak?
—a bit of both

» Too weak

—they cannot prevent cycling since they only
consider a suffix

> Too strong

—they may prevent us from going to configurations
that have not yet been visited.

—the swaps would produce different configurations
but they are forbidden by the tabu list
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Transition Abstractions

» Strengthening the abstraction
— store the transitions and the objective values
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Transition Abstractions

» Strengthening the abstraction
— store the transitions and the objective values

> Consider car-sequencing
—a move swaps two slots a; and b

—the tabu list then keep pairs (aj,bi fi,fi+1) to denote
that slots a; and bi have been swapped in step |
moving from an objective value fi to fi:1

—a configuration n in N(s) is tabu if n can be
obtained by swapping a pair (a;,bi) in the tabu-list
and f(s)= fiand f(n)=fi:1
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llustration: Car Sequencing

» Tabu search: linear neighborhood

s := some initial configuration;
s* = s;
it := 0;

for(int 1 = 1; i <= n; 1i++)
for(int jJ =1; J <= n; J++)
tabu[i,j] := 0;
while (violations(s) > 0) {
select i1 such that wviolations (i) > O;

N :={<i,j> | i '= 3 };
NotTabu := { <i,3j> in N | tabu[i,j] <= it};
if (|NotTabu| > 0)
<i,J> := argmin(<i,j> in NotTabu) f (swap(s,i,3));
s = swap(s,1i,3);
tabu[i,j] := it + L;
if (£(s) < f(s¥*))
s* := s;
i1t++;

}

return s*;
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Queens Problem

> Move
—assign the value of a variable

» \What is the transition abstraction?
—the variable cannot be assigned its old value

> The tabu list should be viewed as
— storing pairs (X,v)
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[llustration: The Queens

» Tabu search: linear neighborhood

s := some initial configuration;
s* = s;
it := 0;

for(int ¢ = 1; ¢ <= n; c++)
for(int r = 1; r <= n; r++)
tabufc,r] := 0;
while (violations(s) > 0) {
select ¢ such that violations (queens[c]) > 0O;

N := { <¢,r> | queens[c] != r};
NotTabu := { <c,r> in N | tabu[c,r] <= it};
if (|NotTabu| > 0)
<c,r> := argmin(<c,r> in NotTabu) f (s[queens|[c]:=r]);
tabu[i,queens|c]] := i1t + L;
s = s[queens|[c]:=r];
if (£(s) < f(s¥*))
s* := s;
i1t++;

}

return s*;
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Queens Problem

> Transition abstraction may be even coarser
—more diversification

> Move
—assign the value of a variable

» \What Is the transition abstraction?
— make the variable tabu!

—no move with this variable for a number of
iterations
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Aspiration

> What if the move is tabu but really good?
—e.g., f(n) <f(s”)
—this is possible since the tabu list is too strong
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Aspiration

> What if the move is tabu but really good?
—e.g., f(n) < f(s)
—this is possible since the tabu list is too strong
> Aspiration criterion
—override the tabu status

— NotTabu := { <i,3J> in N | tabu[i,j] <= it or
f(swap(s,1,]J)) < £(s¥*)};
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» Intensification

— store high-quality solutions and return to them
periodically
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Long-lerm Memory

» Intensification
— store high-quality solutions and return to them
periodically
> Diversification

—when the search is not producing improvement,
diversifty the current state
* e.g., randomly change the values of some variables

» Strategic oscillation

—change the percentage of time spent in the
feasible and infeasible regions



Final Remark

» Techniques such as
—diversification
— intensification
— strategic oscillation

22



Final Remark

» Techniques such as
—diversification
— intensification
— strategic oscillation

have also been used in simulated annealing
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Until Next Time
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