
Discrete
Optimization
Local Search: Part IX

Thursday, 13 June 13

Goal of the Lecture
‣Local search

– tabu-search

2

Thursday, 13 June 13

Tabu Search

3

Thursday, 13 June 13

Tabu Search

3

Thursday, 13 June 13

Tabu Search

3

Thursday, 13 June 13

Tabu Search

3

Thursday, 13 June 13

Tabu Search

3

Thursday, 13 June 13

Tabu Search

4

Thursday, 13 June 13

Tabu Search

4

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

4

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search
‣Key abstract idea

– maintain the sequence of nodes already visited
• tabu list and tabu nodes

5

Thursday, 13 June 13

Tabu Search
‣Key abstract idea

– maintain the sequence of nodes already visited
• tabu list and tabu nodes

5

1. function LocalSearch(f,N, L, S, s1) {
2. s

⇤ := s1;
3. ⌧ := hsi;
4. for k := 1 to MaxTrials do

5. if satisfiable(s) ^ f(sk) < f(s⇤) then
6. s

⇤ := sk;
7. sk+1 := S(L(N(sk), ⌧), ⌧);
8. ⌧ := ⌧ :: sk+1;
9. return s

⇤;
10. }

Thursday, 13 June 13

Tabu Search
‣Basic abstract tabu-search

– select the best configurations that is not tabu,
i.e., has not been visited before

6

Thursday, 13 June 13

Tabu Search
‣Basic abstract tabu-search

– select the best configurations that is not tabu,
i.e., has not been visited before

6

1. function TabuSearch(f ,N ,s)
2. return LocalSearch(f ,N ,L-NotTabu,S-Best);

where

1. function L-NotTabu(N ,⌧)
2. return { n 2 N | n /2 ⌧ };

Thursday, 13 June 13

Short-Term Memory
‣Key issue with tabu search

– expensive to maintain all the visited nodes

7

Thursday, 13 June 13

Short-Term Memory
‣Key issue with tabu search

– expensive to maintain all the visited nodes

‣Short-term memory
– only keep a small suffix of visited nodes

• typically called the tabu list
– may increase or decrease the size of the list

dynamically
• decrease when the selected node degrades the objective
• increase when the selected node improves the objective

7

Thursday, 13 June 13

Short-Term Memory
‣Still too big?

– may still be too costly
• requires to store and compare entire solutions

– keep an abstraction of the suffix
• many possibilities

8

Thursday, 13 June 13

Illustration: Car Sequencing

9

‣Greedy local improvement
s := some initial configuration;

while (violations(s) > 0) {
 N := { <i,j> | violations(i) > 0 & i != j };
 <i,j> := argmin(<i,j> in N) f(swap(s,i,j));
 n = swap(s,i,j);
 if f(n) < f(s)
 s := n;
 else
 break;
}
return s;

Thursday, 13 June 13

Transition Abstractions
‣Key idea

– store the transitions, not the states

10

Thursday, 13 June 13

Transition Abstractions
‣Key idea

– store the transitions, not the states

‣Consider car-sequencing
– a move swaps two slots ai and bi

– the tabu list then keep pairs (ai,bi) to denote that
slots ai and bi have been swapped in step i

– a configuration n in N(s) is tabu if n can be
obtained by swapping a pair (ai,bi) in the tabu-list

10

Thursday, 13 June 13

Transition Abstractions
‣How to implement this

– keep an iteration counter it
– keep a data structure tabu[i,j] which stores the

next iteration when pair (i,j) can be swapped
• an iteration number
• not legal to swap this pair before

– assume that the tabu list of size L

11

Thursday, 13 June 13

Transition Abstractions
‣How to implement this

– keep an iteration counter it
– keep a data structure tabu[i,j] which stores the

next iteration when pair (i,j) can be swapped
• an iteration number
• not legal to swap this pair before

– assume that the tabu list of size L

‣When is a move (i,j) tabu?
– when tabu[i,j] > it

11

Thursday, 13 June 13

Transition Abstractions
‣How to implement this

– keep an iteration counter it
– keep a data structure tabu[i,j] which stores the

next iteration when pair (i,j) can be swapped
• an iteration number
• not legal to swap this pair before

– assume that the tabu list of size L

‣When is a move (i,j) tabu?
– when tabu[i,j] > it

‣What happens when applying a move?
– tabu[i,j] becomes it + L

11

Thursday, 13 June 13

Illustration: Car Sequencing

12

s := some initial configuration;
s* := s;
it := 0;
for(int i = 1; i <= n; i++)
 for(int j = 1; j <= n; j++)
 tabu[i,j] := 0;
while (violations(s) > 0) {
 N := { <i,j> | violations(i) > 0 & i != j };
 NotTabu := { <i,j> in N | tabu[i,j] <= it};
 if (|NotTabu| > 0)
 <i,j> := argmin(<i,j> in NotTabu) f(swap(s,i,j));
 s = swap(s,i,j);
 tabu[i,j] := it + L;
 tabu[j,i] := it + L;
if (f(s) < f(s*))
 s* := s;

 it++;
}
return s*;

‣Tabu search: quadratic neighborhood

Thursday, 13 June 13

Transition Abstractions
‣What happens if all moves are tabu

– the counter is still incremented and hence at
some point, some move will not be tabu any
more.

13

Thursday, 13 June 13

Transition Abstractions
‣What happens if all moves are tabu

– the counter is still incremented and hence at
some point, some move will not be tabu any
more.

‣ In practice
– the implementation does not perform the swaps

to find the best ones;
– the effect of the potential moves is computed

incrementally (differentiation)
– important since tabu-search is (almost always)

greedy

13

Thursday, 13 June 13

Transition Abstractions
‣Too strong or too weak?

– a bit of both

14

Thursday, 13 June 13

Transition Abstractions
‣Too strong or too weak?

– a bit of both

‣Too weak
– they cannot prevent cycling since they only

consider a suffix

14

Thursday, 13 June 13

Transition Abstractions
‣Too strong or too weak?

– a bit of both

‣Too weak
– they cannot prevent cycling since they only

consider a suffix

‣Too strong
– they may prevent us from going to configurations

that have not yet been visited.
– the swaps would produce different configurations

but they are forbidden by the tabu list

14

Thursday, 13 June 13

Transition Abstractions
‣Strengthening the abstraction

– store the transitions and the objective values

15

Thursday, 13 June 13

Transition Abstractions
‣Strengthening the abstraction

– store the transitions and the objective values

‣Consider car-sequencing
– a move swaps two slots ai and bi

– the tabu list then keep pairs (ai,bi fi,fi+1) to denote
that slots ai and bi have been swapped in step i
moving from an objective value fi to fi+1

– a configuration n in N(s) is tabu if n can be
obtained by swapping a pair (ai,bi) in the tabu-list
and f(s)= fi and f(n)=fi+1

15

Thursday, 13 June 13

Illustration: Car Sequencing

16

s := some initial configuration;
s* := s;
it := 0;
for(int i = 1; i <= n; i++)
 for(int j = 1; j <= n; j++)
 tabu[i,j] := 0;
while (violations(s) > 0) {
 select i such that violations(i) > 0;
 N := { <i,j> | i != j };
 NotTabu := { <i,j> in N | tabu[i,j] <= it};
 if (|NotTabu| > 0)
 <i,j> := argmin(<i,j> in NotTabu) f(swap(s,i,j));
 s = swap(s,i,j);
 tabu[i,j] := it + L;
if (f(s) < f(s*))
 s* := s;

 it++;
}
return s*;

‣Tabu search: linear neighborhood

Thursday, 13 June 13

Queens Problem

17

Thursday, 13 June 13

Queens Problem
‣Move

– assign the value of a variable

17

Thursday, 13 June 13

Queens Problem
‣Move

– assign the value of a variable

‣What is the transition abstraction?
– the variable cannot be assigned its old value

17

Thursday, 13 June 13

Queens Problem
‣Move

– assign the value of a variable

‣What is the transition abstraction?
– the variable cannot be assigned its old value

‣The tabu list should be viewed as
– storing pairs (x,v)

17

Thursday, 13 June 13

Illustration: The Queens

18

s := some initial configuration;
s* := s;
it := 0;
for(int c = 1; c <= n; c++)
 for(int r = 1; r <= n; r++)
 tabu[c,r] := 0;
while (violations(s) > 0) {
 select c such that violations(queens[c]) > 0;
 N := { <c,r> | queens[c] != r};
 NotTabu := { <c,r> in N | tabu[c,r] <= it};
 if (|NotTabu| > 0)
 <c,r> := argmin(<c,r> in NotTabu) f(s[queens[c]:=r]);
 tabu[i,queens[c]] := it + L;
 s = s[queens[c]:=r];
if (f(s) < f(s*))
 s* := s;

 it++;
}
return s*;

‣Tabu search: linear neighborhood

Thursday, 13 June 13

Queens Problem

19

Thursday, 13 June 13

Queens Problem
‣Transition abstraction may be even coarser

– more diversification

19

Thursday, 13 June 13

Queens Problem
‣Transition abstraction may be even coarser

– more diversification

‣Move
– assign the value of a variable

19

Thursday, 13 June 13

Queens Problem
‣Transition abstraction may be even coarser

– more diversification

‣Move
– assign the value of a variable

‣What is the transition abstraction?
– make the variable tabu!
– no move with this variable for a number of

iterations

19

Thursday, 13 June 13

Aspiration
‣What if the move is tabu but really good?

– e.g., f(n) < f(s*)
– this is possible since the tabu list is too strong

20

Thursday, 13 June 13

Aspiration
‣What if the move is tabu but really good?

– e.g., f(n) < f(s*)
– this is possible since the tabu list is too strong

‣Aspiration criterion
– override the tabu status
– NotTabu := { <i,j> in N | tabu[i,j] <= it or
 f(swap(s,i,j)) < f(s*)};

20

Thursday, 13 June 13

Long-Term Memory
‣ Intensification

– store high-quality solutions and return to them
periodically

21

Thursday, 13 June 13

Long-Term Memory
‣ Intensification

– store high-quality solutions and return to them
periodically

‣Diversification
– when the search is not producing improvement,

diversify the current state
• e.g., randomly change the values of some variables

21

Thursday, 13 June 13

Long-Term Memory
‣ Intensification

– store high-quality solutions and return to them
periodically

‣Diversification
– when the search is not producing improvement,

diversify the current state
• e.g., randomly change the values of some variables

‣Strategic oscillation
– change the percentage of time spent in the

feasible and infeasible regions

21

Thursday, 13 June 13

Final Remark
‣Techniques such as

– diversification
– intensification
– strategic oscillation

22

Thursday, 13 June 13

Final Remark
‣Techniques such as

– diversification
– intensification
– strategic oscillation

have also been used in simulated annealing

22

Thursday, 13 June 13

Until Next Time

23

Thursday, 13 June 13

