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Goal of the Lecture
‣Local search

– tabu-search
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Tabu Search
‣Key abstract idea

– maintain the sequence of nodes already visited
• tabu list and tabu nodes 
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‣Key abstract idea

– maintain the sequence of nodes already visited
• tabu list and tabu nodes 
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1. function LocalSearch(f,N, L, S, s1) {
2. s

⇤ := s1;
3. ⌧ := hsi;
4. for k := 1 to MaxTrials do

5. if satisfiable(s) ^ f(sk) < f(s⇤) then
6. s

⇤ := sk;
7. sk+1 := S(L(N(sk), ⌧), ⌧);
8. ⌧ := ⌧ :: sk+1;
9. return s

⇤;
10. }
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Tabu Search
‣Basic abstract tabu-search

– select the best configurations that is not tabu, 
i.e., has not been visited before
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‣Basic abstract tabu-search

– select the best configurations that is not tabu, 
i.e., has not been visited before
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1. function TabuSearch(f ,N ,s)
2. return LocalSearch(f ,N ,L-NotTabu,S-Best);

where

1. function L-NotTabu(N ,⌧)
2. return { n 2 N | n /2 ⌧ };
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Short-Term Memory
‣Key issue with tabu search

– expensive to maintain all the visited nodes
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Short-Term Memory
‣Key issue with tabu search

– expensive to maintain all the visited nodes

‣Short-term memory
– only keep a small suffix of visited nodes

• typically called the tabu list
– may increase or decrease the size of the list 

dynamically
• decrease when the selected node degrades the objective
• increase when the selected node improves the objective
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Short-Term Memory
‣Still too big?

– may still be too costly
• requires to store and compare entire solutions

– keep an abstraction of the suffix
• many possibilities
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Illustration: Car Sequencing
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‣Greedy local improvement
s := some initial configuration;

while (violations(s) > 0) {
  N := { <i,j> | violations(i) > 0 & i != j };
  <i,j> := argmin(<i,j> in N) f(swap(s,i,j));
  n = swap(s,i,j);
  if f(n) < f(s)
    s := n;
  else
    break;
}
return s;
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Transition Abstractions
‣Key idea

– store the transitions, not the states
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Transition Abstractions
‣Key idea

– store the transitions, not the states

‣Consider car-sequencing
– a move swaps two slots ai and bi

– the tabu list then keep pairs (ai,bi) to denote that 
slots ai and bi have been swapped in step i

– a configuration n in N(s) is tabu if n can be 
obtained by swapping a pair (ai,bi) in the tabu-list
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Transition Abstractions
‣How to implement this

– keep an iteration counter it 
– keep a data structure tabu[i,j] which stores the 

next iteration when pair (i,j) can be swapped
• an iteration number
• not legal to swap this pair before

– assume that the tabu list of size L
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– assume that the tabu list of size L

‣When is a move (i,j) tabu? 
– when tabu[i,j] > it
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Transition Abstractions
‣How to implement this

– keep an iteration counter it 
– keep a data structure tabu[i,j] which stores the 

next iteration when pair (i,j) can be swapped
• an iteration number
• not legal to swap this pair before

– assume that the tabu list of size L

‣When is a move (i,j) tabu? 
– when tabu[i,j] > it

‣What happens when applying a move?
– tabu[i,j] becomes it + L
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Illustration: Car Sequencing
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s := some initial configuration;
s* := s;
it := 0; 
for(int i = 1; i <= n; i++)
  for(int j = 1; j <= n; j++)
     tabu[i,j] := 0;
while (violations(s) > 0) {
  N := { <i,j> | violations(i) > 0 & i != j };
  NotTabu := { <i,j> in N | tabu[i,j] <= it};
  if (|NotTabu| > 0)
  <i,j> := argmin(<i,j> in NotTabu) f(swap(s,i,j));
  s = swap(s,i,j);
  tabu[i,j] := it + L;
  tabu[j,i] := it + L;
if (f(s) < f(s*))
  s* := s;

  it++;
}
return s*;

‣Tabu search: quadratic neighborhood
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Transition Abstractions
‣What happens if all moves are tabu

– the counter is still incremented and hence at 
some point, some move will not be tabu any 
more.
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Transition Abstractions
‣What happens if all moves are tabu

– the counter is still incremented and hence at 
some point, some move will not be tabu any 
more.

‣ In practice
– the implementation does not perform the swaps 

to find the best ones;
– the effect of the potential moves is computed 

incrementally (differentiation)
– important since tabu-search is (almost always) 

greedy
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Transition Abstractions
‣Too strong or too weak?

– a bit of both
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Transition Abstractions
‣Too strong or too weak?

– a bit of both

‣Too weak
– they cannot prevent cycling since they only 

consider a suffix

‣Too strong
– they may prevent us from going to configurations 

that have not yet been visited.
– the swaps would produce different configurations 

but they are forbidden by the tabu list
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Transition Abstractions
‣Strengthening the abstraction

– store the transitions and the objective values
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Transition Abstractions
‣Strengthening the abstraction

– store the transitions and the objective values

‣Consider car-sequencing
– a move swaps two slots ai and bi

– the tabu list then keep pairs (ai,bi fi,fi+1) to denote 
that slots ai and bi have been swapped in step i 
moving from an objective value fi to fi+1

– a configuration n in N(s) is tabu if n can be 
obtained by swapping a pair (ai,bi) in the tabu-list 
and f(s)= fi and f(n)=fi+1
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Illustration: Car Sequencing
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s := some initial configuration;
s* := s;
it := 0; 
for(int i = 1; i <= n; i++)
  for(int j = 1; j <= n; j++)
     tabu[i,j] := 0;
while (violations(s) > 0) {
  select i such that violations(i) > 0;
  N := { <i,j> | i != j };
  NotTabu := { <i,j> in N | tabu[i,j] <= it};
  if (|NotTabu| > 0)
  <i,j> := argmin(<i,j> in NotTabu) f(swap(s,i,j));
  s = swap(s,i,j);
  tabu[i,j] := it + L;
if (f(s) < f(s*))
  s* := s;

  it++;
}
return s*;

‣Tabu search: linear neighborhood
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Queens Problem
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Queens Problem
‣Move

– assign the value of a variable
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Queens Problem
‣Move

– assign the value of a variable

‣What is the transition abstraction?
– the variable cannot be assigned its old value

‣The tabu list should be viewed as 
– storing pairs (x,v)
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Illustration: The Queens
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s := some initial configuration;
s* := s;
it := 0; 
for(int c = 1; c <= n; c++)
  for(int r = 1; r <= n; r++)
     tabu[c,r] := 0;
while (violations(s) > 0) {
  select c such that violations(queens[c]) > 0;
  N := { <c,r> | queens[c] != r};
  NotTabu := { <c,r> in N | tabu[c,r] <= it};
  if (|NotTabu| > 0)
  <c,r> := argmin(<c,r> in NotTabu) f(s[queens[c]:=r]);
  tabu[i,queens[c]] := it + L;
  s = s[queens[c]:=r];
if (f(s) < f(s*))
  s* := s;

  it++;
}
return s*;

‣Tabu search: linear neighborhood
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Queens Problem
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Queens Problem
‣Transition abstraction may be even coarser

– more diversification
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Queens Problem
‣Transition abstraction may be even coarser

– more diversification

‣Move
– assign the value of a variable

‣What is the transition abstraction?
– make the variable tabu!
– no move with this variable for a number of 

iterations
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Aspiration
‣What if the move is tabu but really good?

– e.g., f(n) < f(s*)
– this is possible since the tabu list is too strong
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Aspiration
‣What if the move is tabu but really good?

– e.g., f(n) < f(s*)
– this is possible since the tabu list is too strong

‣Aspiration criterion
– override the tabu status
– NotTabu := { <i,j> in N | tabu[i,j] <= it or 
                          f(swap(s,i,j)) < f(s*)};
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Long-Term Memory
‣ Intensification

– store high-quality solutions and return to them 
periodically
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‣Diversification
– when the search is not producing improvement, 

diversify the current state
• e.g., randomly change the values of some variables
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Long-Term Memory
‣ Intensification

– store high-quality solutions and return to them 
periodically

‣Diversification
– when the search is not producing improvement, 

diversify the current state
• e.g., randomly change the values of some variables

‣Strategic oscillation
– change the percentage of time spent in the 

feasible and infeasible regions
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Final Remark
‣Techniques such as

– diversification
– intensification
– strategic oscillation
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Final Remark
‣Techniques such as

– diversification
– intensification
– strategic oscillation

have also been used in simulated annealing
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Until Next Time
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