Discrete
Optimization

Local Search: Part VI

Goal of the Lecture

» Local search
— meta-heuristics
— multi-start search
—simulated annealing
—tabu search

Escaping Local Minima

Escaping Local Minima

Iterated Local Search

Iterated Local Search

Iterated Local Search

Iterated Local Search

Iterated Local Search

Iterated Local Search

Iterated Local Search

Iterated Local Search

Iterated Local Search

lterated Local Search

lterated Local Search

lterated Local Search

> Execute multiple local search from different
starting configuration
—generic

e can be combined with other metaheuristics
e multistarts or restarts

lterated Local Search

> Execute multiple local search from different
starting configuration

—generic
e can be combined with other metaheuristics
e multistarts or restarts

function ITERATEDLOCALSEARCH(f, N, L, S) {

S := GENERATEINITIALSOLUTION();
s* = s;
for k£ :=1 to MaxSearches do

s := LOCALSEARCH(f, N, L, S, s);

if f(s) < f(s") then

s = s;:

S := GENERATENEWSOLUTION(S);

return s™;

= L XN O =

.O .

}

Metropolis Heuristic

» Basic idea

—accept a move if it improves the objective value
or, in case it does not, with some probability

—the probability depends on how “bad” the move Is
—Inspired by statistical physics

Metropolis Heuristic

» Basic idea

—accept a move if it improves the objective value
or, in case it does not, with some probability

—the probability depends on how “bad” the move Is
—Inspired by statistical physics

> How Is the probability chosen?
—t Is a temperature

— Alis the difference f(n) - f(s)
—a degrading move Is accepted with probability,

“A
—)

exp(

Metropolis Heuristic

1.
2.
3.
4.
D.
0.
7.
8.

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f ())
return n;

else
return s;

/

Thursday, 13 June 13

Metropolis Heuristic

1.
2.
3.
4.
D.
0.
7.
8.

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f ())
return n;

else
return s;

>» What happens for a large A = f(n) — f(s) ?

Metropolis Heuristic

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f ())
return n;

else
return s;

S I NN e

>» What happens for a large A = f(n) — f(s) ?

—the probability of accepting the move becomes
very small

Metropolis Heuristic

1.
2.
3.
4.
D.
0.
7.
8.

> What happens for a large t 7

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f ())
return n;

else
return s;

Metropolis Heuristic

1.
2.
3.
4.
D.
0.
7.
8.

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f ())
return n;

else
return s;

> What happens for a large t 7

—the probability of accepting a
degrading move is large

Metropolis Heuristic

1.
2.
3.
4.
D.
0.
7.
8.

> What happens for a small t ?

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f ())
return n;

else
return s;

Metropolis Heuristic

1.
2.
3.
4.
D.
0.
7.
8.

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f ())
return n;

else
return s;

> What happens for a small t ?

—the probability of accepting a
degrading move is small

Simulated Annealing

» Based on statistical physics

—heating and cooling schedules to produce
crystals with few defects

Simulated Annealing

» Based on statistical physics

—heating and cooling schedules to produce
crystals with few defects

> Key idea

Simulated Annealing

» Based on statistical physics

—heating and cooling schedules to produce
crystals with few defects

> Key idea

— Use Metropolis algorithm but adjust the
temperature dynamically

Simulated Annealing

» Based on statistical physics

—heating and cooling schedules to produce
crystals with few defects

> Key idea

— Use Metropolis algorithm but adjust the
temperature dynamically

—start with a high temperature
e essentially a random walk

Simulated Annealing

» Based on statistical physics

—heating and cooling schedules to produce
crystals with few defects
> Key idea
— Use Metropolis algorithm but adjust the
temperature dynamically

—start with a high temperature
e essentially a random walk

—decrease the temperature progressively

Simulated Annealing

» Based on statistical physics

—heating and cooling schedules to produce
crystals with few defects
> Key idea
— Use Metropolis algorithm but adjust the
temperature dynamically

—start with a high temperature
e essentially a random walk

— decrease the temperature progressively

—when the temperature is low
e essentially a local improvement search

Simulated Annealing

function SIMULATEDANNEALING(f, N) {
S := GENERATEINITIALSOLUTION();
t1 := INITTEMPERATURE(S);
s = s;
for £ :=1 to MaxSearches do
s := LOCALSEARCH(f,N,L-ALL,S-METROPOLIS|tL],s);
if f(s) < f(s™) then
s = s:
tk+1 := UPDATETEMPERATURE(S,t1);
return s*;

— 2P 0N ots W=

O

9

Thursday, 13 June 13

Simulated Annealing

» guaranteed to converge to a global optimum
—connected neighborhood

—slow schedule
e slower than exhaustive search

10

Simulated Annealing

» guaranteed to converge to a global optimum
—connected neighborhood

—slow schedule
e slower than exhaustive search

> In practice

—some excellent results on some hard
benchmarks
e e.g., I'TP, minimizing tardiness in scheduling

—reasonably fast schedule

tk+1 = O Tk

10

Simulated Annealing

» VVarious additional techniques
—restarts
—reheats
—see also tabu search later

11

Simulated Annealing

» VVarious additional techniques
—restarts
—reheats
—see also tabu search later

> Restarts
—like In multi-start procedure

11

11

Simulated Annealing

» VVarious additional techniques
—restarts
—reheats
—see also tabu search later
> Restarts
—like In multi-start procedure

» Reheat
—Increase the temperature

Tabu Search

12

Tabu Search

12

Tabu Search

12

Tabu Search

12

Tabu Search

12

Tabu Search

13

Tabu Search

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

Tabu node @ : node | have already visited

13

Tabu Search

» Key abstract idea

—maintain the sequence of nodes already visited
e tabu list and tabu nodes

function LOCALSEARCH(f, N, L, S, s1) {

s* = s1;
ri= (s1)
for £k :=1 to MaxI'rials do

if satisfiable(s) A f(sk) < f(s™) then
™ 1= Sk:
Sk+1 = S(L(N(sk),T), T);
T i= T I Sgp41;
return s™;

= L O NSO =

0. }

14

Thursday, 13 June 13

Tabu Search

» Basic abstract tabu-search

— select the best configurations that is not tabu,
l.e., has not been visited before

15

Tabu Search

» Basic abstract tabu-search

— select the best configurations that is not tabu,
l.e., has not been visited before

1. function TABUSEARCH(f,N,s)
2. return LOCALSEARCH(f,N,L-NOTTABU,S-BEST);

where

1. function L-NOTTABU(N,T)
2. return { ne N | né¢ 71 };

15

Tabu Search

].OO | | | | I I I
Objective

80 | -
. 60 | -
-
S
=
S
=

O | | | | | | | |
0 20000 40000 60000 80000 100000 120000 140000 160000 130000

[terations

16

Thursday, 13 June 13

Tabu Search

50

Violations

I
Objective

0
150000

17

Thursday, 13 June 13

152000

154000

156000

153000

[terations

160000

162000

164000

Tabu Search

60 I I I I I

I
Objective

40 | -

30 r -

Violations

0 500000 le+06 1.5e+06 2e+00 2.5e+00 3e+00 3.0e+00

[terations

18

Thursday, 13 June 13

Metaheuristics

> Many others
—variable neighborhood search
—qguided local search
— ant-colony optimization
— hybrid evolutionary algorithms
— scatter search

19

Until Next Time

20

