
Discrete
Optimization
Local Search: Part VIII

Thursday, 13 June 13

Goal of the Lecture
‣Local search

– meta-heuristics
– multi-start search
– simulated annealing
– tabu search

2

Thursday, 13 June 13

Escaping Local Minima

3

Thursday, 13 June 13

Escaping Local Minima

3

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search

4

Thursday, 13 June 13

Iterated Local Search
‣Execute multiple local search from different

starting configuration
– generic

• can be combined with other metaheuristics
• multistarts or restarts

5

Thursday, 13 June 13

Iterated Local Search
‣Execute multiple local search from different

starting configuration
– generic

• can be combined with other metaheuristics
• multistarts or restarts

5

1. function IteratedLocalSearch(f,N, L, S) {
2. s := generateInitialSolution();
3. s

⇤ := s;
4. for k := 1 to MaxSearches do

5. s := LocalSearch(f,N, L, S, s);
6. if f(s) < f(s⇤) then
7. s

⇤ := s;
8. s := generateNewSolution(s);
9. return s

⇤;
10. }

Thursday, 13 June 13

Metropolis Heuristic
‣Basic idea

– accept a move if it improves the objective value
or, in case it does not, with some probability

– the probability depends on how “bad” the move is
– inspired by statistical physics

6

Thursday, 13 June 13

exp(

��

t
)

Metropolis Heuristic
‣Basic idea

– accept a move if it improves the objective value
or, in case it does not, with some probability

– the probability depends on how “bad” the move is
– inspired by statistical physics

‣How is the probability chosen?
– t is a temperature
– is the difference f(n) - f(s)
– a degrading move is accepted with probability,

6

�

Thursday, 13 June 13

Metropolis Heuristic

7

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t)

6. return n;

7. else

8. return s;

Thursday, 13 June 13

Metropolis Heuristic

7

‣What happens for a large ?

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t)

6. return n;

7. else

8. return s;

� = f(n)� f(s)

Thursday, 13 June 13

Metropolis Heuristic

7

‣What happens for a large ?
– the probability of accepting the move becomes

very small

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t)

6. return n;

7. else

8. return s;

� = f(n)� f(s)

Thursday, 13 June 13

Metropolis Heuristic

7

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t)

6. return n;

7. else

8. return s;

‣What happens for a large t ?

Thursday, 13 June 13

Metropolis Heuristic

7

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t)

6. return n;

7. else

8. return s;

‣What happens for a large t ?
– the probability of accepting a

degrading move is large

Thursday, 13 June 13

Metropolis Heuristic

7

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t)

6. return n;

7. else

8. return s;

‣What happens for a small t ?

Thursday, 13 June 13

Metropolis Heuristic

7

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t)

6. return n;

7. else

8. return s;

‣What happens for a small t ?
– the probability of accepting a

degrading move is small

Thursday, 13 June 13

Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce
crystals with few defects

8

Thursday, 13 June 13

Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce
crystals with few defects

‣Key idea

8

Thursday, 13 June 13

Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce
crystals with few defects

‣Key idea
– Use Metropolis algorithm but adjust the

temperature dynamically

8

Thursday, 13 June 13

Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce
crystals with few defects

‣Key idea
– Use Metropolis algorithm but adjust the

temperature dynamically
– start with a high temperature

• essentially a random walk

8

Thursday, 13 June 13

Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce
crystals with few defects

‣Key idea
– Use Metropolis algorithm but adjust the

temperature dynamically
– start with a high temperature

• essentially a random walk
– decrease the temperature progressively

8

Thursday, 13 June 13

Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce
crystals with few defects

‣Key idea
– Use Metropolis algorithm but adjust the

temperature dynamically
– start with a high temperature

• essentially a random walk
– decrease the temperature progressively
– when the temperature is low

• essentially a local improvement search

8

Thursday, 13 June 13

Simulated Annealing

9

1. function SimulatedAnnealing(f,N) {
2. s := generateInitialSolution();
3. t1 := initTemperature(s);
4. s

⇤ := s;
5. for k := 1 to MaxSearches do

6. s := LocalSearch(f ,N ,L-All,S-Metropolis[tk],s);
7. if f(s) < f(s⇤) then
8. s

⇤ := s;
9. tk+1 := updateTemperature(s,tk);
10. return s

⇤;
11. }

Thursday, 13 June 13

Simulated Annealing
‣guaranteed to converge to a global optimum

– connected neighborhood
– slow schedule

• slower than exhaustive search

10

Thursday, 13 June 13

Simulated Annealing
‣guaranteed to converge to a global optimum

– connected neighborhood
– slow schedule

• slower than exhaustive search

‣ In practice
– some excellent results on some hard

benchmarks
• e.g., TTP, minimizing tardiness in scheduling

– reasonably fast schedule

10

tk+1 = ↵ tk

Thursday, 13 June 13

Simulated Annealing
‣Various additional techniques

– restarts
– reheats
– see also tabu search later

11

Thursday, 13 June 13

Simulated Annealing
‣Various additional techniques

– restarts
– reheats
– see also tabu search later

‣Restarts
– like in multi-start procedure

11

Thursday, 13 June 13

Simulated Annealing
‣Various additional techniques

– restarts
– reheats
– see also tabu search later

‣Restarts
– like in multi-start procedure

‣Reheat
– increase the temperature

11

Thursday, 13 June 13

Tabu Search

12

Thursday, 13 June 13

Tabu Search

12

Thursday, 13 June 13

Tabu Search

12

Thursday, 13 June 13

Tabu Search

12

Thursday, 13 June 13

Tabu Search

12

Thursday, 13 June 13

Tabu Search

13

Thursday, 13 June 13

Tabu Search

13

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search

13

Tabu node : node I have already visited

Thursday, 13 June 13

Tabu Search
‣Key abstract idea

– maintain the sequence of nodes already visited
• tabu list and tabu nodes

14

1. function LocalSearch(f,N, L, S, s1) {
2. s

⇤ := s1;
3. ⌧ := hs1i;
4. for k := 1 to MaxTrials do

5. if satisfiable(s) ^ f(sk) < f(s⇤) then
6. s

⇤ := sk;
7. sk+1 := S(L(N(sk), ⌧), ⌧);
8. ⌧ := ⌧ :: sk+1;
9. return s

⇤;
10. }

Thursday, 13 June 13

Tabu Search
‣Basic abstract tabu-search

– select the best configurations that is not tabu,
i.e., has not been visited before

15

Thursday, 13 June 13

Tabu Search
‣Basic abstract tabu-search

– select the best configurations that is not tabu,
i.e., has not been visited before

15

1. function TabuSearch(f ,N ,s)
2. return LocalSearch(f ,N ,L-NotTabu,S-Best);

where

1. function L-NotTabu(N ,⌧)
2. return { n 2 N | n /2 ⌧ };

Thursday, 13 June 13

Tabu Search

16

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

V
io

la
ti

on
s

Iterations

Objective

Thursday, 13 June 13

Tabu Search

17

0

10

20

30

40

50

150000 152000 154000 156000 158000 160000 162000 164000

V
io

la
ti

on
s

Iterations

Objective

Thursday, 13 June 13

Tabu Search

18

0

10

20

30

40

50

60

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06

V
io

la
ti

on
s

Iterations

Objective

Thursday, 13 June 13

Metaheuristics
‣Many others

– variable neighborhood search
– guided local search
– ant-colony optimization
– hybrid evolutionary algorithms
– scatter search
– ...

19

Thursday, 13 June 13

Until Next Time

20

Thursday, 13 June 13

