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Goal of the Lecture
‣Local search

– meta-heuristics
– multi-start search
– simulated annealing
– tabu search
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Escaping Local Minima
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Iterated Local Search
‣Execute multiple local search from different 

starting configuration
– generic

• can be combined with other metaheuristics
• multistarts or restarts
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Iterated Local Search
‣Execute multiple local search from different 

starting configuration
– generic

• can be combined with other metaheuristics
• multistarts or restarts
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1. function IteratedLocalSearch(f,N, L, S) {
2. s := generateInitialSolution();
3. s

⇤ := s;
4. for k := 1 to MaxSearches do

5. s := LocalSearch(f,N, L, S, s);
6. if f(s) < f(s⇤) then
7. s

⇤ := s;
8. s := generateNewSolution(s);
9. return s

⇤;
10. }

Thursday, 13 June 13



Metropolis Heuristic
‣Basic idea

– accept a move if it improves the objective value 
or, in case it does not, with some probability

– the probability depends on how “bad” the move is
– inspired by statistical physics
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Metropolis Heuristic
‣Basic idea

– accept a move if it improves the objective value 
or, in case it does not, with some probability

– the probability depends on how “bad” the move is
– inspired by statistical physics

‣How is the probability chosen?
– t is a temperature
–     is the difference f(n) - f(s)
– a degrading move is accepted with probability,
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Metropolis Heuristic
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1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t )

6. return n;

7. else

8. return s;
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Metropolis Heuristic
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‣What happens for a large                          ? 

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t )

6. return n;

7. else

8. return s;

� = f(n)� f(s)

Thursday, 13 June 13



Metropolis Heuristic
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‣What happens for a large                          ? 
– the probability of accepting the move becomes 

very small

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t )

6. return n;

7. else

8. return s;

� = f(n)� f(s)
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1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;
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�(f(n)�f(s))
t )

6. return n;

7. else

8. return s;

‣What happens for a large t ? 

Thursday, 13 June 13



Metropolis Heuristic
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1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t )

6. return n;

7. else

8. return s;

‣What happens for a large t ? 
– the probability of accepting a         

degrading move is large
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Metropolis Heuristic

7

1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t )

6. return n;

7. else

8. return s;

‣What happens for a small t ? 
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Metropolis Heuristic
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1. function S-Metropolis[t](N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n)  f(s) then

4. return n;

5. else with probability exp(

�(f(n)�f(s))
t )

6. return n;

7. else

8. return s;

‣What happens for a small t ? 
– the probability of accepting a 

degrading move is small
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Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce 
crystals with few defects
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Simulated Annealing
‣Based on statistical physics

– heating and cooling schedules to produce 
crystals with few defects

‣Key idea
– Use Metropolis algorithm but adjust the 

temperature dynamically
– start with a high temperature

• essentially a random walk
– decrease the temperature progressively
– when the temperature is low

•  essentially a local improvement search
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Simulated Annealing
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1. function SimulatedAnnealing(f,N) {
2. s := generateInitialSolution();
3. t1 := initTemperature(s);
4. s

⇤ := s;
5. for k := 1 to MaxSearches do

6. s := LocalSearch(f ,N ,L-All,S-Metropolis[tk],s);
7. if f(s) < f(s⇤) then
8. s

⇤ := s;
9. tk+1 := updateTemperature(s,tk);
10. return s

⇤;
11. }
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Simulated Annealing
‣guaranteed to converge to a global optimum

– connected neighborhood
– slow schedule 

• slower than exhaustive search

10

Thursday, 13 June 13



Simulated Annealing
‣guaranteed to converge to a global optimum

– connected neighborhood
– slow schedule 

• slower than exhaustive search

‣ In practice
– some excellent results on some hard 

benchmarks
• e.g., TTP, minimizing tardiness in scheduling

– reasonably fast schedule
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tk+1 = ↵ tk
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Simulated Annealing
‣Various additional techniques

– restarts
– reheats
– see also tabu search later
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Simulated Annealing
‣Various additional techniques

– restarts
– reheats
– see also tabu search later

‣Restarts
– like in multi-start procedure

‣Reheat
– increase the temperature 
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Tabu Search
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Tabu Search
‣Key abstract idea

– maintain the sequence of nodes already visited
• tabu list and tabu nodes 
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1. function LocalSearch(f,N, L, S, s1) {
2. s

⇤ := s1;
3. ⌧ := hs1i;
4. for k := 1 to MaxTrials do

5. if satisfiable(s) ^ f(sk) < f(s⇤) then
6. s

⇤ := sk;
7. sk+1 := S(L(N(sk), ⌧), ⌧);
8. ⌧ := ⌧ :: sk+1;
9. return s

⇤;
10. }
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Tabu Search
‣Basic abstract tabu-search

– select the best configurations that is not tabu, 
i.e., has not been visited before
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‣Basic abstract tabu-search

– select the best configurations that is not tabu, 
i.e., has not been visited before
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1. function TabuSearch(f ,N ,s)
2. return LocalSearch(f ,N ,L-NotTabu,S-Best);

where

1. function L-NotTabu(N ,⌧)
2. return { n 2 N | n /2 ⌧ };
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Tabu Search

16

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

V
io

la
ti

on
s

Iterations

Objective

Thursday, 13 June 13



Tabu Search

17

0

10

20

30

40

50

150000 152000 154000 156000 158000 160000 162000 164000

V
io

la
ti

on
s

Iterations

Objective

Thursday, 13 June 13



Tabu Search
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Metaheuristics
‣Many others

– variable neighborhood search
– guided local search
– ant-colony optimization
– hybrid evolutionary algorithms
– scatter search 
– ...
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Until Next Time
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