Discrete
Optimization

Local Search: Part VI



Goal of the Lecture

» Local search
— meta-heuristics
— multi-start search
—simulated annealing
—tabu search
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lterated Local Search

> Execute multiple local search from different
starting configuration

—generic
e can be combined with other metaheuristics
e multistarts or restarts

function ITERATEDLOCALSEARCH(f, N, L, S) {

S := GENERATEINITIALSOLUTION( );
s* = s;
for k£ :=1 to MaxSearches do

s := LOCALSEARCH(f, N, L, S, s);

if f(s) < f(s") then

s = s;:

S := GENERATENEWSOLUTION(S);

return s™;
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» Basic idea

—accept a move if it improves the objective value
or, in case it does not, with some probability

—the probability depends on how “bad” the move Is
—Inspired by statistical physics

> How Is the probability chosen?
—t Is a temperature

— Alis the difference f(n) - f(s)
—a degrading move Is accepted with probability,

“A
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exp(
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function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f () )
return n;

else
return s;
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function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f () )
return n;

else
return s;
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>» What happens for a large A = f(n) — f(s) ?

—the probability of accepting the move becomes
very small
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> What happens for a small t ?

function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f () )
return n;

else
return s;
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function S-METROPOLIS[t](N,s)

select n € N with probability 1/#N;

if f(n) < f(s) then
return n;

else with probability exp(=Y ("’)t_f () )
return n;

else
return s;

> What happens for a small t ?

—the probability of accepting a
degrading move is small
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Simulated Annealing

» Based on statistical physics

—heating and cooling schedules to produce
crystals with few defects
> Key idea
— Use Metropolis algorithm but adjust the
temperature dynamically

—start with a high temperature
e essentially a random walk

— decrease the temperature progressively

—when the temperature is low
e essentially a local improvement search



Simulated Annealing

function SIMULATEDANNEALING(f, N) {
S := GENERATEINITIALSOLUTION( );
t1 := INITTEMPERATURE(S);
s = s;
for £ :=1 to MaxSearches do
s := LOCALSEARCH( f,N,L-ALL,S-METROPOLIS|tL],s);
if f(s) < f(s™) then
s = s:
tk+1 := UPDATETEMPERATURE(S,t1);
return s*;

— 2P 0N ots W=
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Simulated Annealing

» guaranteed to converge to a global optimum
—connected neighborhood

—slow schedule
e slower than exhaustive search
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Simulated Annealing

» guaranteed to converge to a global optimum
—connected neighborhood

—slow schedule
e slower than exhaustive search

> In practice

—some excellent results on some hard
benchmarks
e e.g., I'TP, minimizing tardiness in scheduling

—reasonably fast schedule

tk+1 = O Tk
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Simulated Annealing

» VVarious additional techniques
—restarts
—reheats
—see also tabu search later
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Simulated Annealing

» VVarious additional techniques
—restarts
—reheats
—see also tabu search later
> Restarts
—like In multi-start procedure

» Reheat
—Increase the temperature
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Tabu Search

» Key abstract idea

—maintain the sequence of nodes already visited
e tabu list and tabu nodes

function LOCALSEARCH(f, N, L, S, s1) {

s* = s1;
ri= (s1)
for £k :=1 to MaxI'rials do

if satisfiable(s) A f(sk) < f(s™) then
™ 1= Sk:
Sk+1 = S(L(N(sk),T), T);
T i= T I Sgp41;
return s™;

= L O NSO =

0. }
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Tabu Search

» Basic abstract tabu-search

— select the best configurations that is not tabu,
l.e., has not been visited before
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Tabu Search

» Basic abstract tabu-search

— select the best configurations that is not tabu,
l.e., has not been visited before

1. function TABUSEARCH(f,N,s)
2. return LOCALSEARCH(f,N,L-NOTTABU,S-BEST);

where

1. function L-NOTTABU(N,T)
2. return { ne N | né¢ 71 };
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Tabu Search
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Metaheuristics

> Many others
—variable neighborhood search
—qguided local search
— ant-colony optimization
— hybrid evolutionary algorithms
— scatter search
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Until Next Time
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