Discrete
Optimization

Local Search: Part VI

Goal of the Lecture

» | ocal search

—more systematic presentation
* beyond neighborhood

— heuristics versus meta-heuristics
— heuristics

Local Search

> States
— either solutions or configurations

Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s

Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s

>» Some neighbors are legal; others are not
—L(N(s),s): set of legal neighbors

Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s

>» Some neighbors are legal; others are not
—L(N(s),s): set of legal neighbors

» Select one of the legal neighbors
— S(L(N(s),s),s); selection function

Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s

>» Some neighbors are legal; others are not
—L(N(s),s): set of legal neighbors

» Select one of the legal neighbors
— S(L(N(s),s),s); selection function

> Objective function
— minimizing f(s)

The Basic Local Search

1.
2.
3.
4.
D.
0.
7.
8.
9.

function LOCALSEARCH(f, N, L, S) {
S := GENERATEINITIALSOLUTION();
s = s;
for k:=1 to MaxTrials do
if satisfiable(s) N f(s) < f(s*) then
s 1= s:
s:=S(L(N(s),s),s);

return s”;

}

4

Thursday, 13 June 13

N e
O
i
O
O

%

O
O
O

i)

£
)
O

a8
o
= (Gl

_l

N e
O
i
O
O

%

O
O
O

i)

£
)
O

a8
o
= (Gl

_l

The Basic Local Search

N e
O
i
O
O

%

O
O
O

i)

£
)
O

a8
o
= (Gl

_l

N e
O
i
O
O

%

O
O
O

i)

£
)
O

a8
o
= (Gl

_l

N e
O
i
O
O

%

O
O
O

i)

£
)
O

a8
o
= (Gl

_l

A Example of Local Search

> Legal moves: local improvements
—L(N,s) ={nin NI f(n) <f(s) }

A Example of Local Search

> Legal moves: local improvements
—L(N,s) ={nin NI f(n) <f(s) }

» Selection function: greedy selection
—S(L,s) = arg-min(n in L) f(n)

Heuristics and Metaheuristics

> Heuristics
—choose the next neighbor

—use local information:
* the state s and its neighborhood

—drive the search towards a local minimum

Heuristics and Metaheuristics

> Heuristics
—choose the next neighbor

—use local information:
* the state s and its neighborhood

—drive the search towards a local minimum

> Metaheuristics
—aim at escaping local minima
—drive the search towards a global minimum
—typically include some memory or learning

Properties of the Neighbors

> |_egal neighbors
— Conditions on the value of the objective function

Properties of the Neighbors

> |_egal neighbors
— Conditions on the value of the objective function

> Local improvement
—L(N,s) ={nin NI f(n) <f(s) }

Properties of the Neighbors

> |_egal neighbors
— Conditions on the value of the objective function

> Local improvement

—L(N,s) ={nin NI f(n) <f(s) }
>» No degradation

—L(N,s) ={nin N | f(n) <=1(s) }

Properties of the Neighbors

> |_egal neighbors
— Conditions on the value of the objective function

> Local improvement

—L(N,s) ={nin NI f(n) <f(s) }
>» No degradation

—L(N,s) ={nin NI f(n) <=1(s) }

> Potential degradation
—L(N,s) =N

Selecting a Neighbor

» How to select the neighbor?
—exploring the whole or part of the neighborhood

Selecting a Neighbor

» How to select the neighbor?
—exploring the whole or part of the neighborhood

> Best neighbor
—select “the” best neighbor in the neighborhood

Selecting a Neighbor

» How to select the neighbor?
—exploring the whole or part of the neighborhood

> Best neighbor
—select “the” best neighbor in the neighborhood

> First neighbor
—select the first “legal” neighbor in the neighborhood

Selecting a Neighbor

» How to select the neighbor?
—exploring the whole or part of the neighborhood
> Best neighbor
—select “the” best neighbor in the neighborhood
> First neighbor
—select the first “legal” neighbor in the neighborhood
> Multi-stage selection

—first select one “part” of neighbor
—second select the remaining “part” of the neighbor

Best Neighbor

10

Best Neighbor

>» Randomization is often important in local search
—more on this soon

10

Best Neighbor

>» Randomization is often important in local search
—more on this soon

» Best neighbor

1. function S-BEST(N,s)
2. N*:={neN | f(n)=minsen f(s) };
3. return n € N* with probability 1/#N";

10

10

Best Neighbor

>» Randomization is often important in local search
—more on this soon

» Best neighbor

L.
2.
3.

function S-BEST(N,s)
N*:={neN | f(n)=minsen f(s) };
return n € N* with probability 1/#N";

» Best Improvement

L.
2.

function BESTIMPROVEMENT(S)
return LOCALSEARCH(f,N,L-IMPROVEMENT,S-BEST);

First Neighbor

11

First Neighbor

> First neighbor (in some lexicographic order)
—avoid scanning the entire neighborhood

11

First Neighbor

> First neighbor (in some lexicographic order)
—avoid scanning the entire neighborhood

> First neighbor

1. function S-FIRST(N,S)
2. return n € N minimizing lex(n);

11

11

First Neighbor

> First neighbor (in some lexicographic order)
—avoid scanning the entire neighborhood

> First neighbor

1. function S-FIRST(N,S)
2. return n € N minimizing lex(n);

> First iImprovement

1. function FIRSTIMPROVEMENT(S)
2. return LOCALSEARCH(f,N,L-IMPROVEMENT,S-FIRST);

Multi-Stage Heuristics

> Motivation
—avoid scanning the entire neighborhood
— still keep a greedy flavor

12

12

Multi-Stage Heuristics

> Motivation
—avoid scanning the entire neighborhood
— still keep a greedy flavor

O O 4 O 4

< NN

Multi-Stage Heuristics

» Max/Min-Confict

— select the variable with the most violations
e first stage: greedy

—select the value with the fewest resulting violations
* Second stage: greedy

13

Multi-Stage Heuristics

» Max/Min-Confict

— select the variable with the most violations
e first stage: greedy

—select the value with the fewest resulting violations
* Second stage: greedy

» Min-conflict heuristic

—randomly select a variable with some violations
o first-stage: randomized

— select the value with the fewest resulting violations
e sSecond stage: greedy

13

Multi-Stage Heuristics

» \What was the alternative?

—N(s): {s[q «V] | qin Queens & v in Rows }
* 5[q +V] Is the solution s where queens g Is assigned to v;

14

Multi-Stage Heuristics

>»\What was the alternative?
—N(s):{s[g «V] | qin Queens & v in Rows }
* 5[q +V] Is the solution s where queens g Is assigned to v;
» Complexity

— quadratic: all pairs (c,r) where c is a column and r is
a row

—O(n2) where n is the number of queens

14

Multi-Stage Heuristics

» \What was the alternative?

—N(s): {s[q «V] | qin Queens & v in Rows }
* 5[q +V] Is the solution s where queens g Is assigned to v;

» Complexity

— quadratic: all pairs (c,r) where c is a column and r is
a row

—O(n2) where n is the number of queens

» Complexity of min-conflict
—O(n) where n is the number of queens

14

Multi-Stage in Car Sequencing

| 5 Demand
Class 1

Class 2
Class 2 Class 3

ClaSS 3 Class 4

C| 4 Class 5
222 Class 6

Class 1

Option 1
Option 2
Option 3
Option 4

16

Multi-Stage in Car Sequencing

| 5 Demand
Class 1

Class 2
Class 2 Class 3

ClaSS 3 Class 4

C| 4 Class 5
222 Class 6

Class 1

Option 1
Option 2
Option 3
Option 4

Multi-Stage Heuristics

» Quadratic neighborhood
—consider all possible swaps
—quadratic in the size of the assembly line

16

Multi-Stage Heuristics

» Quadratic neighborhood
—consider all possible swaps
—quadratic in the size of the assembly line

> Multi-stage neighborhood
—select a slot s whose car induces some violations
—swap slot s with all other slots
—linear in the size of the assembly line

16

Random Walks

» Randomization
—select a neighbor at random

17

Random Walks

» Randomization
—select a neighbor at random

» Decide whether to accept it
—random improvement
— Metropolis algorithm

17

Random Walks

» Randomization
—select a neighbor at random

>» Random improvement

>» Random improvement search

18

Random Walks

» Randomization
—select a neighbor at random

>» Random improvement

function S-RANDOMIMPROVEMENT(N,S)
select n € N with probability 1/#N;
if f(n) < f(s) then
return n;
else
return s;

AR o e

>» Random improvement search

18

Random Walks

» Randomization
—select a neighbor at random

>» Random improvement

function S-RANDOMIMPROVEMENT(N,S)
select n € N with probability 1/#N;
if f(n) < f(s) then
return n;
else
return s;

AR o e

>» Random improvement search

1. function RANDOMIMPROVEMENT(S)
2. return LOCALSEARCH(f,N,L-ALL,S-RANDOMIMPROVEMENT);

18

The Traveling Tournament

19

Thursday, 13 June 13

The Traveling Tournament

A1z + doq + dy5+ dsgq + dy3 + d3q + A1 + dp;
+ ... +

de1 + d14+ dys5 + dsg + dgz + A3+ dg2 + dog

19

Thursday, 13 June 13

The Neighborhood

> A number of moves
—swap homes
—swap rounds
—swap teams
— partial swap rounds
—partial swap teams

20

Swap Teams

Swap Teams

21

Thursday, 13 June 13

Swap Teams

22

Thursday, 13 June 13

Swap Teams

22

Thursday, 13 June 13

Swap Teams

@2
e 2. 38 5. 8 7. B 15
6 4 3 @4 @3 @6

4

@3 6

@4 @1 4

3 @3
@2 @1 2
@1 4 1

22

Thursday, 13 June 13

Until Next Time

23

