
Discrete
Optimization
Local Search: Part VII

Thursday, 13 June 13

Goal of the Lecture
‣Local search

– more systematic presentation
• beyond neighborhood

– heuristics versus meta-heuristics
– heuristics

2

Thursday, 13 June 13

Local Search
‣States

– either solutions or configurations

3

Thursday, 13 June 13

Local Search
‣States

– either solutions or configurations

‣Moving from state s to one of its neighbors
– N(s): neighborhood of s

3

Thursday, 13 June 13

Local Search
‣States

– either solutions or configurations

‣Moving from state s to one of its neighbors
– N(s): neighborhood of s

‣Some neighbors are legal; others are not
– L(N(s),s): set of legal neighbors

3

Thursday, 13 June 13

Local Search
‣States

– either solutions or configurations

‣Moving from state s to one of its neighbors
– N(s): neighborhood of s

‣Some neighbors are legal; others are not
– L(N(s),s): set of legal neighbors

‣Select one of the legal neighbors
– S(L(N(s),s),s); selection function

3

Thursday, 13 June 13

Local Search
‣States

– either solutions or configurations

‣Moving from state s to one of its neighbors
– N(s): neighborhood of s

‣Some neighbors are legal; others are not
– L(N(s),s): set of legal neighbors

‣Select one of the legal neighbors
– S(L(N(s),s),s); selection function

‣Objective function
– minimizing f(s)

3

Thursday, 13 June 13

The Basic Local Search

4

1. function LocalSearch(f,N, L, S) {
2. s := generateInitialSolution();
3. s

⇤ := s;
4. for k := 1 to MaxTrials do

5. if satisfiable(s) ^ f(s) < f(s⇤) then
6. s

⇤ := s;
7. s := S(L(N(s), s), s);
8. return s

⇤;
9. }

Thursday, 13 June 13

The Basic Local Search

5

Thursday, 13 June 13

The Basic Local Search

5

s

Thursday, 13 June 13

The Basic Local Search

5

N(s)

s

Thursday, 13 June 13

The Basic Local Search

5

N(s)

L(N(s),s)

s

Thursday, 13 June 13

The Basic Local Search

5

N(s)

L(N(s),s)

S(L(N(s),s),s)

s

Thursday, 13 June 13

The Basic Local Search

5

s

Thursday, 13 June 13

The Basic Local Search

5

N(s)
s

Thursday, 13 June 13

The Basic Local Search

5

N(s)

L(N(s),s)

s

Thursday, 13 June 13

The Basic Local Search

5

N(s)

L(N(s),s)

S(L(N(s),s),s)

s

Thursday, 13 June 13

The Basic Local Search

5

s

Thursday, 13 June 13

The Basic Local Search

5

s

Thursday, 13 June 13

A Example of Local Search
‣Legal moves: local improvements

– L(N,s) = { n in N | f(n) < f(s) }

6

Thursday, 13 June 13

A Example of Local Search
‣Legal moves: local improvements

– L(N,s) = { n in N | f(n) < f(s) }

‣Selection function: greedy selection
– S(L,s) = arg-min(n in L) f(n)

6

Thursday, 13 June 13

Heuristics and Metaheuristics
‣Heuristics

– choose the next neighbor
– use local information:

• the state s and its neighborhood
– drive the search towards a local minimum

7

Thursday, 13 June 13

Heuristics and Metaheuristics
‣Heuristics

– choose the next neighbor
– use local information:

• the state s and its neighborhood
– drive the search towards a local minimum

‣Metaheuristics
– aim at escaping local minima
– drive the search towards a global minimum
– typically include some memory or learning

7

Thursday, 13 June 13

Properties of the Neighbors
‣Legal neighbors

– Conditions on the value of the objective function

8

Thursday, 13 June 13

Properties of the Neighbors
‣Legal neighbors

– Conditions on the value of the objective function

‣Local improvement
– L(N,s) = { n in N | f(n) < f(s) }

8

Thursday, 13 June 13

Properties of the Neighbors
‣Legal neighbors

– Conditions on the value of the objective function

‣Local improvement
– L(N,s) = { n in N | f(n) < f(s) }

‣No degradation
– L(N,s) = { n in N | f(n) <= f(s) }

8

Thursday, 13 June 13

Properties of the Neighbors
‣Legal neighbors

– Conditions on the value of the objective function

‣Local improvement
– L(N,s) = { n in N | f(n) < f(s) }

‣No degradation
– L(N,s) = { n in N | f(n) <= f(s) }

‣Potential degradation
– L(N,s) = N

8

Thursday, 13 June 13

Selecting a Neighbor
‣How to select the neighbor?

– exploring the whole or part of the neighborhood

9

Thursday, 13 June 13

Selecting a Neighbor
‣How to select the neighbor?

– exploring the whole or part of the neighborhood

‣Best neighbor
– select “the” best neighbor in the neighborhood

9

Thursday, 13 June 13

Selecting a Neighbor
‣How to select the neighbor?

– exploring the whole or part of the neighborhood

‣Best neighbor
– select “the” best neighbor in the neighborhood

‣First neighbor
– select the first “legal” neighbor in the neighborhood

9

Thursday, 13 June 13

Selecting a Neighbor
‣How to select the neighbor?

– exploring the whole or part of the neighborhood

‣Best neighbor
– select “the” best neighbor in the neighborhood

‣First neighbor
– select the first “legal” neighbor in the neighborhood

‣Multi-stage selection
– first select one “part” of neighbor
– second select the remaining “part” of the neighbor

9

Thursday, 13 June 13

Best Neighbor

10

Thursday, 13 June 13

Best Neighbor
‣Randomization is often important in local search

– more on this soon

10

Thursday, 13 June 13

Best Neighbor
‣Randomization is often important in local search

– more on this soon

‣Best neighbor

10

1. function S-Best(N,s)
2. N⇤

:= { n 2 N | f(n) = mins2N f(s) };
3. return n 2 N⇤

with probability 1/#N⇤
;

Thursday, 13 June 13

Best Neighbor
‣Randomization is often important in local search

– more on this soon

‣Best neighbor

‣Best improvement

10

1. function S-Best(N,s)
2. N⇤

:= { n 2 N | f(n) = mins2N f(s) };
3. return n 2 N⇤

with probability 1/#N⇤
;

1. function BestImprovement(s)

2. return LocalSearch(f ,N ,L-Improvement,S-Best);

Thursday, 13 June 13

First Neighbor

11

Thursday, 13 June 13

First Neighbor
‣First neighbor (in some lexicographic order)

– avoid scanning the entire neighborhood

11

Thursday, 13 June 13

First Neighbor
‣First neighbor (in some lexicographic order)

– avoid scanning the entire neighborhood

‣First neighbor

11

1. function S-First(N,s)
2. return n 2 N minimizing lex(n);

Thursday, 13 June 13

First Neighbor
‣First neighbor (in some lexicographic order)

– avoid scanning the entire neighborhood

‣First neighbor

‣First improvement

11

1. function S-First(N,s)
2. return n 2 N minimizing lex(n);

1. function FirstImprovement(s)

2. return LocalSearch(f ,N ,L-Improvement,S-First);

Thursday, 13 June 13

Multi-Stage Heuristics
‣Motivation

– avoid scanning the entire neighborhood
– still keep a greedy flavor

12

Thursday, 13 June 13

Multi-Stage Heuristics
‣Motivation

– avoid scanning the entire neighborhood
– still keep a greedy flavor

12

Thursday, 13 June 13

Multi-Stage Heuristics
‣Max/Min-Confict

– select the variable with the most violations
• first stage: greedy

– select the value with the fewest resulting violations
• second stage: greedy

13

Thursday, 13 June 13

Multi-Stage Heuristics
‣Max/Min-Confict

– select the variable with the most violations
• first stage: greedy

– select the value with the fewest resulting violations
• second stage: greedy

‣Min-conflict heuristic
– randomly select a variable with some violations

• first-stage: randomized
– select the value with the fewest resulting violations

• second stage: greedy

13

Thursday, 13 June 13

Multi-Stage Heuristics
‣What was the alternative?

– N(s): { s[q ←v] | q in Queens & v in Rows }
• s[q ←v] is the solution s where queens q is assigned to v;

14

Thursday, 13 June 13

Multi-Stage Heuristics
‣What was the alternative?

– N(s): { s[q ←v] | q in Queens & v in Rows }
• s[q ←v] is the solution s where queens q is assigned to v;

‣Complexity
– quadratic: all pairs (c,r) where c is a column and r is

a row
– O(n2) where n is the number of queens

14

Thursday, 13 June 13

Multi-Stage Heuristics
‣What was the alternative?

– N(s): { s[q ←v] | q in Queens & v in Rows }
• s[q ←v] is the solution s where queens q is assigned to v;

‣Complexity
– quadratic: all pairs (c,r) where c is a column and r is

a row
– O(n2) where n is the number of queens

‣Complexity of min-conflict
– O(n) where n is the number of queens

14

Thursday, 13 June 13

Multi-Stage in Car Sequencing

1516

Options 1 2 3 4 5 Demand

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

yes yes yes 1

yes 1

yes yes 2

yes yes 2

yes yes 2

yes yes 2

Capacity 1/2 2/3 1/3 2/5 1/5

Setup 1 2 3 4 5 6 7 8 9 10 Capacity
Option 1
Option 2
Option 3
Option 4
Option 5

1/2
2/3
1/3
2/5
1/5

Slots 1 2 3 4 5 6 7 8 9 10 Demand
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

1
1
2
2
2
2

3
2
2
2
3

Thursday, 13 June 13

Multi-Stage in Car Sequencing

1516

Options 1 2 3 4 5 Demand

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

yes yes yes 1

yes 1

yes yes 2

yes yes 2

yes yes 2

yes yes 2

Capacity 1/2 2/3 1/3 2/5 1/5

Setup 1 2 3 4 5 6 7 8 9 10 Capacity
Option 1
Option 2
Option 3
Option 4
Option 5

1/2
2/3
1/3
2/5
1/5

Slots 1 2 3 4 5 6 7 8 9 10 Demand
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

1
1
2
2
2
2

3
2
2
2
3

Thursday, 13 June 13

Multi-Stage Heuristics
‣Quadratic neighborhood

– consider all possible swaps
– quadratic in the size of the assembly line

16

Thursday, 13 June 13

Multi-Stage Heuristics
‣Quadratic neighborhood

– consider all possible swaps
– quadratic in the size of the assembly line

‣Multi-stage neighborhood
– select a slot s whose car induces some violations
– swap slot s with all other slots
– linear in the size of the assembly line

16

Thursday, 13 June 13

Random Walks
‣Randomization

– select a neighbor at random

17

Thursday, 13 June 13

Random Walks
‣Randomization

– select a neighbor at random

‣Decide whether to accept it
– random improvement
– Metropolis algorithm

17

Thursday, 13 June 13

Random Walks
‣Randomization

– select a neighbor at random

‣Random improvement

‣Random improvement search

18

Thursday, 13 June 13

Random Walks
‣Randomization

– select a neighbor at random

‣Random improvement

‣Random improvement search

18

1. function S-RandomImprovement(N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n) < f(s) then
4. return n;
5. else

6. return s;

Thursday, 13 June 13

1. function RandomImprovement(s)

2. return LocalSearch(f ,N ,L-All,S-RandomImprovement);

Random Walks
‣Randomization

– select a neighbor at random

‣Random improvement

‣Random improvement search

18

1. function S-RandomImprovement(N,s)

2. select n 2 N with probability 1/#N ;

3. if f(n) < f(s) then
4. return n;
5. else

6. return s;

Thursday, 13 June 13

The Traveling Tournament

19

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 1 @3 @6 4 3 6 @4 @1 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 @2 1 5 2 @6 @3
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Thursday, 13 June 13

The Traveling Tournament

19

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 1 @3 @6 4 3 6 @4 @1 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 @2 1 5 2 @6 @3
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

d12 + d21 + d15 + d54 + d43 + d31 + d16 + d61

+ ... +

d61 + d14 + d45 + d56 + d63 + d36 + d62 + d26

Thursday, 13 June 13

The Neighborhood
‣A number of moves

– swap homes
– swap rounds
– swap teams
– partial swap rounds
– partial swap teams

20

Thursday, 13 June 13

Swap Teams

21

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 1 @3 @6 4 3 6 @4 @1 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 @2 1 5 2 @6 @3
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 2 1 5 @2 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Thursday, 13 June 13

Swap Teams

21

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 1 @3 @6 4 3 6 @4 @1 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 @2 1 5 2 @6 @3
5 @2 @3 6 4 1 @6 @4 @1 3 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 2 1 5 @2 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Thursday, 13 June 13

Swap Teams

22

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 2 1 5 @2 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Thursday, 13 June 13

Swap Teams

22

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 2 1 5 @2 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Thursday, 13 June 13

Swap Teams

22

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @5 4 3 @2 @4 @3 2 5 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 2 5 @1 6 @5 1 @6 @2 4
4 3 6 @1 @2 @5 1 2 5 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @2 5 @3 2 @5 3 4 1

T-R 1 2 3 4 5 6 7 8 9 10
1 6 @2 4 3 @5 @4 @3 5 2 @6
2 5 @3 6 4 1 @6 @4 @1 3 @5
3 @4 5 2 @1 6 @2 1 @6 @5 4
4 3 6 @1 @5 2 1 5 @2 @6 @3
5 @2 1 @3 @6 4 3 6 @4 @1 2
6 @1 @4 @5 2 @3 5 @2 3 4 1

Thursday, 13 June 13

Until Next Time

23

Thursday, 13 June 13

