Discrete
Optimization

Local Search: Part VI



Goal of the Lecture

» | ocal search

—more systematic presentation
* beyond neighborhood

— heuristics versus meta-heuristics
— heuristics



Local Search

> States
— either solutions or configurations



Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s



Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s

>» Some neighbors are legal; others are not
—L(N(s),s): set of legal neighbors



Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s

>» Some neighbors are legal; others are not
—L(N(s),s): set of legal neighbors

» Select one of the legal neighbors
— S(L(N(s),s),s); selection function



Local Search

> States
— either solutions or configurations

> Moving from state s to one of its neighbors
—N(s): neighborhood of s

>» Some neighbors are legal; others are not
—L(N(s),s): set of legal neighbors

» Select one of the legal neighbors
— S(L(N(s),s),s); selection function

> Objective function
— minimizing f(s)



The Basic Local Search

1.
2.
3.
4.
D.
0.
7.
8.
9.

function LOCALSEARCH(f, N, L, S) {
S := GENERATEINITIALSOLUTION( );
s = s;
for k:=1 to MaxTrials do
if satisfiable(s) N f(s) < f(s*) then
s 1= s:
s:=S(L(N(s),s),s);

return s”;

}
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A Example of Local Search

> Legal moves: local improvements
—L(N,s) ={nin NI f(n) <f(s) }



A Example of Local Search

> Legal moves: local improvements
—L(N,s) ={nin NI f(n) <f(s) }

» Selection function: greedy selection
—S(L,s) = arg-min(n in L) f(n)
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> Heuristics
—choose the next neighbor

—use local information:
* the state s and its neighborhood

—drive the search towards a local minimum



Heuristics and Metaheuristics

> Heuristics
—choose the next neighbor

—use local information:
* the state s and its neighborhood

—drive the search towards a local minimum

> Metaheuristics
—aim at escaping local minima
—drive the search towards a global minimum
—typically include some memory or learning
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Properties of the Neighbors

> |_egal neighbors
— Conditions on the value of the objective function

> Local improvement

—L(N,s) ={nin NI f(n) <f(s) }
>» No degradation

—L(N,s) ={nin NI f(n) <=1(s) }

> Potential degradation
—L(N,s) =N
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Selecting a Neighbor

» How to select the neighbor?
—exploring the whole or part of the neighborhood
> Best neighbor
—select “the” best neighbor in the neighborhood
> First neighbor
—select the first “legal” neighbor in the neighborhood
> Multi-stage selection

—first select one “part” of neighbor
—second select the remaining “part” of the neighbor



Best Neighbor
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Best Neighbor

>» Randomization is often important in local search
—more on this soon

» Best neighbor

1. function S-BEST(N,s)
2. N*:={neN | f(n)=minsen f(s) };
3. return n € N* with probability 1/#N";
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Best Neighbor

>» Randomization is often important in local search
—more on this soon

» Best neighbor

L.
2.
3.

function S-BEST(N,s)
N*:={neN | f(n)=minsen f(s) };
return n € N* with probability 1/#N";

» Best Improvement

L.
2.

function BESTIMPROVEMENT(S)
return LOCALSEARCH(f,N,L-IMPROVEMENT,S-BEST);



First Neighbor
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First Neighbor

> First neighbor (in some lexicographic order)
—avoid scanning the entire neighborhood
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First Neighbor

> First neighbor (in some lexicographic order)
—avoid scanning the entire neighborhood

> First neighbor

1. function S-FIRST(N,S)
2. return n € N minimizing lex(n);
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First Neighbor

> First neighbor (in some lexicographic order)
—avoid scanning the entire neighborhood

> First neighbor

1. function S-FIRST(N,S)
2. return n € N minimizing lex(n);

> First iImprovement

1. function FIRSTIMPROVEMENT(S)
2. return LOCALSEARCH(f,N,L-IMPROVEMENT,S-FIRST);



Multi-Stage Heuristics

> Motivation
—avoid scanning the entire neighborhood
— still keep a greedy flavor
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Multi-Stage Heuristics

> Motivation
—avoid scanning the entire neighborhood
— still keep a greedy flavor
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Multi-Stage Heuristics

» Max/Min-Confict

— select the variable with the most violations
e first stage: greedy

—select the value with the fewest resulting violations
* Second stage: greedy

13



Multi-Stage Heuristics

» Max/Min-Confict

— select the variable with the most violations
e first stage: greedy

—select the value with the fewest resulting violations
* Second stage: greedy

» Min-conflict heuristic

—randomly select a variable with some violations
o first-stage: randomized

— select the value with the fewest resulting violations
e sSecond stage: greedy

13



Multi-Stage Heuristics

» \What was the alternative?

—N(s): {s[q «V] | qin Queens & v in Rows }
* 5[q +V] Is the solution s where queens g Is assigned to v;
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Multi-Stage Heuristics

» \What was the alternative?

—N(s): {s[q «V] | qin Queens & v in Rows }
* 5[q +V] Is the solution s where queens g Is assigned to v;

» Complexity

— quadratic: all pairs (c,r) where c is a column and r is
a row

—O(n2) where n is the number of queens

» Complexity of min-conflict
—O(n) where n is the number of queens
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Multi-Stage in Car Sequencing

| 5 Demand
Class 1

Class 2
Class 2 Class 3

ClaSS 3 Class 4

C| 4 Class 5
222 Class 6

Class 1

Option 1
Option 2
Option 3
Option 4
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Multi-Stage Heuristics

» Quadratic neighborhood
—consider all possible swaps
—quadratic in the size of the assembly line
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Multi-Stage Heuristics

» Quadratic neighborhood
—consider all possible swaps
—quadratic in the size of the assembly line

> Multi-stage neighborhood
—select a slot s whose car induces some violations
—swap slot s with all other slots
—linear in the size of the assembly line
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Random Walks

» Randomization
—select a neighbor at random
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Random Walks

» Randomization
—select a neighbor at random

» Decide whether to accept it
—random improvement
— Metropolis algorithm
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Random Walks

» Randomization
—select a neighbor at random

>» Random improvement

>» Random improvement search
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Random Walks

» Randomization
—select a neighbor at random

>» Random improvement

function S-RANDOMIMPROVEMENT(N,S)
select n € N with probability 1/#N;
if f(n) < f(s) then
return n;
else
return s;

AR o e

>» Random improvement search
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Random Walks

» Randomization
—select a neighbor at random

>» Random improvement

function S-RANDOMIMPROVEMENT(N,S)
select n € N with probability 1/#N;
if f(n) < f(s) then
return n;
else
return s;

AR o e

>» Random improvement search

1. function RANDOMIMPROVEMENT(S)
2. return LOCALSEARCH(f,N,L-ALL,S-RANDOMIMPROVEMENT);
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The Traveling Tournament
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The Traveling Tournament

A1z + doq + dy5+ dsgq + dy3 + d3q + A1 + dp;
+ ... +

de1 + d14+ dys5 + dsg + dgz + A3+ dg2 + dog
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The Neighborhood

> A number of moves
—swap homes
—swap rounds
—swap teams
— partial swap rounds
—partial swap teams

20
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Swap Teams
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Swap Teams

@2
e 2. 38 5. 8 7. B 15
6 4 3 @4 @3 @6

4

@3 6

@4 @1 4

3 @3
@2 @1 2
@1 4 1
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Until Next Time
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