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Goals of the Lecture
‣Local search

– optimization under constraints
– graph coloring
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Coloring a Map
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Graph Coloring
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Graph Coloring
‣Two aspects

– optimization
• reducing the number of colors

– feasibility: 
• two adjacent vertices must be colored differently
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Graph Coloring
‣Two aspects

– optimization
• reducing the number of colors

– feasibility: 
• two adjacent vertices must be colored differently

‣How to combine them in local search?
– sequence of feasibility problems
– staying in the space of solutions
– considering feasible and infeasible configurations
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Optimization as Feasibility
‣Sequence of feasibility problems

– find an initial solution with k colors
• greedy algorithms

– remove one color, say k.
• reassign randomly all vertices colored with k with a color in 

the range 1..k-1
– find a feasible solution with k-1 colors
– repeat
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Optimization as Feasibility
‣Sequence of feasibility problems

– find an initial solution with k colors
• greedy algorithms

– remove one color, say k.
• reassign randomly all vertices colored with k with a color in 

the range 1..k-1
– find a feasible solution with k-1 colors
– repeat

‣How to find a solution with k-1 colors
– we have seen that in the first two lectures
– just minimize the violations

6

Thursday, 13 June 13



Staying in the Feasible Space
‣Neighborhood

– change the color of a vertex
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Staying in the Feasible Space
‣Neighborhood

– change the color of a vertex

‣Objective function
– minimizing the number of colors
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Staying in the Feasible Space
‣Neighborhood

– change the color of a vertex

‣Objective function
– minimizing the number of colors

‣How to guide the search?
– changing the color of a vertex typically does not 

change the number of colors
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Staying in the Feasible Space
‣Color classes

– Ci is the set of vertices colored with i
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Staying in the Feasible Space
‣Color classes

– Ci is the set of vertices colored with i

‣How to drive the search?
– use a proxy as objective function
– favor large color classes
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Staying in the Feasible Space
‣Color classes

– Ci is the set of vertices colored with i

‣How to drive the search?
– use a proxy as objective function
– favor large color classes

‣The objective function becomes
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maximize

nX
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Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains

9

Ci Cj

v

Thursday, 13 June 13



Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains

9

Ci Cj

v

Thursday, 13 June 13



Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains

9

Ci Cj

v

Thursday, 13 June 13



Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains

9

Ci Cj

v

Thursday, 13 June 13



Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains

10

Ci Cj

v

Thursday, 13 June 13



Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains

11

Ci Cj

v

Thursday, 13 June 13



Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains

11

Ci Cj

v

Thursday, 13 June 13



Staying in the Feasible Space
‣Richer neighborhoods

– exploiting problem structure better

‣Kemp Chains
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Exploring both Feasible and Infeasible Colorings
‣Explore both feasible and infeasible colorings

– the search must focus on reducing the number of 
colors and on ensuring feasibility.
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Exploring both Feasible and Infeasible Colorings
‣Explore both feasible and infeasible colorings

– the search must focus on reducing the number of 
colors and on ensuring feasibility.

‣How to combine optimization and feasibility
– make sure that local optima are feasible
– use an objective function that balances feasibility 

and optimality
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Exploring both Feasible and Infeasible Colorings
‣Neighborhood

– change the color of a vertex
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Exploring both Feasible and Infeasible Colorings
‣Neighborhood

– change the color of a vertex

‣Bad edges
– a bad edge is an edge whose adjacent vertices 

have the same color
– Bi is the set of bad edges between vertices 

colored with i
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Exploring both Feasible and Infeasible Colorings
‣Neighborhood

– change the color of a vertex

‣Decreasing the number of colors
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Exploring both Feasible and Infeasible Colorings
‣Neighborhood

– change the color of a vertex

‣Decreasing the number of colors

‣Removing violations
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Exploring both Feasible and Infeasible Colorings
‣Neighborhood

– change the color of a vertex

‣Decreasing the number of colors

‣Removing violations
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Exploring both Feasible and Infeasible Colorings
‣Neighborhood

– change the color of a vertex

‣Decreasing the number of colors

‣Removing violations

‣How to combine them?

15

maximize

nX

i=1

|Ci|2

minimize
nX

i=1

|Bi|
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The Combined Objective Function
‣Neighborhood

– change the color of a vertex

‣Objective function
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The Combined Objective Function
‣Neighborhood

– change the color of a vertex

‣Objective function

‣Why?
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The Combined Objective Function
‣Neighborhood

– change the color of a vertex

‣Objective function

‣Why?

local minima of this objective are legal colorings
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Local Minima are Legal Colorings
‣Consider a coloring C1,...,Ck 

– assume that Bi is not empty
– we show that this coloring is not a local minimum
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‣Consider an additional color k+1
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Local Minima are Legal Colorings
‣Consider a coloring C1,...,Ck 

– assume that Bi is not empty
– we show that this coloring is not a local minimum

‣Consider an additional color k+1
– select an edge in Bi and color one of its vertices 

with k+1 (instead of i)

‣Consider the objective

‣How does it vary?
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Local Minima are Legal Colorings
‣Consider a coloring C1,...,Ck 
‣Consider an additional color k+1

– Select an edge in Bi and color one vertex with k+1 

‣How does the objective vary?
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Local Minima are Legal Colorings
‣Consider a coloring C1,...,Ck 
‣Consider an additional color k+1

– Select an edge in Bi and color one vertex with k+1 

‣How does the objective vary?
– the left term decreases by  
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‣Consider a coloring C1,...,Ck 
‣Consider an additional color k+1

– Select an edge in Bi and color one vertex with k+1 

‣How does the objective vary?
– the left term decreases by  

– the right term increases by
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Local Minima are Legal Colorings
‣Consider a coloring C1,...,Ck 
‣Consider an additional color k+1

– Select an edge in Bi and color one vertex with k+1 

‣How does the objective vary?
– the left term decreases by  

– the right term increases by

– Overall, the objective decreases by at least 2
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Until Next Time
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