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Goals of the Lecture
‣Local search

– optimization
– warehouse location
– traveling salesman problem
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Warehouse Location
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Warehouse Location
‣Given 

– a set of warehouses W, each warehouse with a 
fixed cost fw

– a set of customers C
– a transportation cost tw,c from warehouse w to 

customer c

‣Find which warehouses to open to minimize 
the fixed and transportation costs
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‣What are the decision variables?
– ow: whether warehouse w is open (0/1)
– a[c]: the warehouse assigned to customer c
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‣What are the decision variables?
– ow: whether warehouse w is open (0/1)
– a[c]: the warehouse assigned to customer c

‣What are the constraints?
– no constraints 

‣What is the objective?

Warehouse Location
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minimize
X

w2W

fwow +
X

c2C

ta[c],c
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‣Key observation
– once the warehouse locations have been 

chosen, the problem is easy
– it suffices to assign a customer to the open 

warehouse minimizing its transportation cost

Warehouse Location
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‣Key observation
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chosen, the problem is easy
– it suffices to assign a customer to the open 

warehouse minimizing its transportation cost

‣What is the objective?
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X

w2W
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X
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t
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Warehouse Location
‣Neighborhood

– many possibilities
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Warehouse Location
‣Neighborhood

– many possibilities

‣Simplest neighborhood
– open and close warehouses
– that is, flip the value of ow
‣Union of neighborhoods

– open and close a warehouse
– swap two warehouses

• close one and open the other
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Traveling Salesman Problem
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Traveling Salesman Problem
‣Given

– a set C of cities to visit
– a symmetric distance matrix d between 

every two cities
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Traveling Salesman Problem
‣Given

– a set C of cities to visit
– a symmetric distance matrix d between 

every two cities

‣Find 
– a tour of minimal cost visiting each city 

exactly once

‣The traveling salesman problem 
(TSP) is probably the most studied 
combinatorial problem
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Traveling Salesman Problem
‣Decision variables

– like in the Euler tour
– specify where to go next for every city
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range Cities = 1..n;
int distance[Cities,Cities] = ...;
var{int} next[Cities] in Cities;
minimize
    sum(c in Cities) d[c,next[c]]
subject to
    circuit(next);
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‣2-OPT neighborhood for the TSP
– stay feasible, that is always 

maintain a tour
– select two edges and replace them 

by two other edges

Local Search for the TSP
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‣2-OPT neighborhood for the TSP
– stay feasible, that is always 

maintain a tour
– select two edges and replace them 

by two other edges

a ! b ! c ! d ! g ! f ! e ! h ! a

a

b
c

d

e f

g

h

Local Search for the TSP
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‣2-OPT
– the neighborhood is the set of all 

tours that can be reached by 
swapping two edges 

– select two edges and replace them 
by two other edges

Local Search for the TSP
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‣2-OPT
– the neighborhood is the set of all 

tours that can be reached by 
swapping two edges 

– select two edges and replace them 
by two other edges

‣3-OPT
– the neighborhood is the set of all 

tours that can be reached by 
swapping three edges

Local Search for the TSP
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2-OPT
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2-OPT
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3-OPT
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3-OPT

23

Thursday, 13 June 13



‣2-OPT
– the neighborhood is the set of all 

tours that can be reached by 
swapping two edges 

– select two edges and replace them 
by two other edges

Local Search for the TSP
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‣2-OPT
‣3-OPT

– the neighborhood is the set of all 
tours that can be reached by 
swapping three edges

– much better than 2-OPT in quality 
but more expensive

‣4-OPT
– often marginally better but much 

more expensive

4-OPT
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‣K-OPT
– replace the notion of one favorable 

swaps by a search of a favorable 
sequence of swaps

– do not search for the entire set of 
sequences but build one 
incrementally

K-OPT
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‣K-OPT
– find a good k dynamically at a 

fraction of the cost
– explore a sequence of swaps of 

increasing sizes

K-OPT
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‣K-OPT
– choose a vertex t1 and its edge x1 = 

(t1,t2)
– choose an edge x2 = (t2,t3) with 

d(x2) < d(x1)
– if none exist, restart with another 

vertex
– else we have a solution by 

removing the edge (t4,t3) and 
connecting (t1,t4)

K-OPT
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K-OPT (first iteration)
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K-OPT (first iteration)
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‣K-OPT
– choose a vertex t1 and its edge x1 = 

(t1,t2)
– choose an edge x2 = (t2,t3) with 

d(x2) < d(x1)
– if none exist, restart with another 

vertex
– else we have a solution by 

removing the edge (t4,t3) and 
connecting (t1,t4)

– compute the cost but do not 
connect

K-OPT
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‣K-OPT
– choose a vertex t1 and its edge x1 = (t1,t2)
– choose an edge x2 = (t2,t3) with d(x2) < 

d(x1)
– if none exist, restart with another vertex
– else we have a solution by removing the 

edge (t4,t3) and connecting (t1,t4)
– compute the cost but do not connect
– instead restart with t1 and its (pretended) 

edge  (t1,t4)

K-OPT
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K-OPT (first iteration)
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‣K-OPT
– choose a vertex t1 and its edge y1 = (t1,t4)
– choose an edge x2 = (t4,t5) with d(y2) < 

d(y1)
– if none exist, restart with another vertex
– else we have a solution by removing the 

edge (t6,t5) and connecting (t1,t6)
– compute the cost but do not connect
– instead restart with t1 and its (pretended) 

edge  (t1,t6)

K-OPT
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K-OPT (first iteration)
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K-OPT (second iteration)
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K-OPT (second iteration)
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K-OPT (second iteration)
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Until Next Time
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