Discrete
Optimization

Local Search: Part Il



Goals of the Lecture

» Local search
— optimization
—warehouse location
—traveling salesman problem



Warehouse Location

O - Warehouse ® - Customer



Warehouse Location

=
)

O - Warehouse ® - Customer



Warehouse Location

O - Warehouse ® - Customer



Warehouse Location

Oy O

O - Warehouse ® - Customer



Warehouse Location

» (Given

— a set of warehouses W, each warehouse with a
fixed cost fw

—a set of customers C

—a transportation cost twc from warehouse w to
customer c

> FInd which warehouses to open to minimize
the fixed and transportation costs
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Warehouse Location

» \What are the decision variables?
—ow: Whether warehouse w is open (0/1)
—a[c]: the warehouse assigned to customer c

» \What are the constraints?
—No constraints (U

> \What is the objective?

minimize Z JwOw + Z talcl,c

weW ceC
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Warehouse Location

> Neighborhood
—many possibilities
» Simplest neighborhood

—open and close warehouses
—that is, flip the value of ow

> Union of neighborhoods
—open and close a warehouse

—swap two warehouses
* close one and open the other
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—a set C of cities to visit
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every two cities
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Traveling Salesman Problem

» Given
—a set C of cities to visit

—a symmetric distance matrix d between
every two cities

» Find

—a tour of minimal cost visiting each city
exactly once

> The traveling salesman problem
(TSP) is probably the most studied
combinatorial problem
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Traveling Salesman Problem

» Decision variables
—like In the Euler tour
— specify where to go next for every city

range Cities = 1..n;
int distance[Cities,Cities] = ...;
var{int} next[Cities] in Cities;
minimize

sum(c 1n Cities) d[c,next|[c]]
subject to

circuit (next) ;
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»2-OPT neighborhood for the TSP

— stay feasible, that is always
maintain a tour

—select two edges and replace them
by two other edges
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L ocal Search for the TSP

»2-OPT neighborhood for the TSP

— stay feasible, that is always
maintain a tour

—select two edges and replace them
by two other edges

a—>b—>c—>dArAe—>f—>q9AAh—a a—+b—c—d—g—f—e—h—a
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tours that can be reached by
swapping two edges

—select two edges and replace them
by two other edges
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> 2-OPT

—the neighborhood is the set of all
tours that can be reached by
swapping two edges

—select two edges and replace them
by two other edges

»3-OPT

—the neighborhood is the set of all
tours that can be reached by
swapping three edges
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4-OPT

»2-OPT
>3-OPT
—the neighborhood is the set of all

tours that can be reached by
swapping three edges

—much better than 2-OPT in quality
but more expensive

> 4-OPT

— often marginally better but much
more expensive
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> K-OPT

—replace the notion of one favorable
swaps by a search of a favorable
sequence of swaps

—do not search for the entire set of
sequences but build one
Incrementally
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> K-OPT

—replace the notion of one favorable
swaps by a search of a favorable
sequence of swaps
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sequences but build one
Incrementally
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K-OPT

> K-OPT

—find a good k dynamically at a
fraction of the cost

—eXplore a sequence of swaps of
INncreasing sizes

Improvement
A\

 /
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K-OPT

> K-OPT
—choose a vertex t1 and its edge X1 =
(t1,12)
—choose an edge x2 = (to,t3) with
d(x2) < d(X1)
—If none exist, restart with another
vertex

—else we have a solution by
removing the edge (i4,t3) and
connecting (t1,t4)
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K-OPT

> K-OPT
—choose a vertex t1 and its edge x1 =
(t1,12)
—choose an edge x2 = (to,13) with
d(x2) < d(x1)
—If none exist, restart with another
vertex

—else we have a solution by
removing the edge (t4,t3) and
connecting (t1,t4)

—compute the cost but do not
connect
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K-OPT

» K-OPT
—choose a vertex t1 and its edge x1 = (t1,t2)

—choose an edge xo = (to,t3) with d(x2) <
d(x1)

—If none exist, restart with another vertex

—else we have a solution by removing the
edge (14,t3) and connecting (t1,t4)

—compute the cost but do not connect

—instead restart with t1 and its (pretended)
edge (t1,t4)
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K-OPT

» K-OPT
—choose a vertex t1 and its edge y1 = (t1,t4)

—choose an edge xo = (4,t5) with d(y2) <
d(y1)
—If none exist, restart with another vertex

—else we have a solution by removing the
edge (ts,t5) and connecting (t1,ts)

—compute the cost but do not connect

—instead restart with t1 and its (pretended)
edge (t1,1s)
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K-OPT (first iteration)
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K-OPT (first iteration)
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K-OPT (second iteration)
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K-OPT (second iteration)
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Until Next Time
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