
Discrete
Optimization
Local Search: Part III

Thursday, 13 June 13

Goals of the Lecture
‣Local search

– optimization
– warehouse location
– traveling salesman problem

2

Thursday, 13 June 13

Warehouse Location

3

- Warehouse - Customer

Thursday, 13 June 13

Warehouse Location

4

- Warehouse - Customer

Thursday, 13 June 13

Warehouse Location

5

- Warehouse - Customer

Thursday, 13 June 13

Warehouse Location

6

- Warehouse - Customer

Thursday, 13 June 13

Warehouse Location
‣Given

– a set of warehouses W, each warehouse with a
fixed cost fw

– a set of customers C
– a transportation cost tw,c from warehouse w to

customer c

‣Find which warehouses to open to minimize
the fixed and transportation costs

7

Thursday, 13 June 13

‣What are the decision variables?
– ow: whether warehouse w is open (0/1)
– a[c]: the warehouse assigned to customer c

Warehouse Location

8

Thursday, 13 June 13

‣What are the decision variables?
– ow: whether warehouse w is open (0/1)
– a[c]: the warehouse assigned to customer c

‣What are the constraints?

Warehouse Location

8

Thursday, 13 June 13

‣What are the decision variables?
– ow: whether warehouse w is open (0/1)
– a[c]: the warehouse assigned to customer c

‣What are the constraints?
– no constraints

Warehouse Location

8

Thursday, 13 June 13

‣What are the decision variables?
– ow: whether warehouse w is open (0/1)
– a[c]: the warehouse assigned to customer c

‣What are the constraints?
– no constraints

‣What is the objective?

Warehouse Location

8

Thursday, 13 June 13

‣What are the decision variables?
– ow: whether warehouse w is open (0/1)
– a[c]: the warehouse assigned to customer c

‣What are the constraints?
– no constraints

‣What is the objective?

Warehouse Location

8

minimize
X

w2W

fwow +
X

c2C

ta[c],c

Thursday, 13 June 13

‣Key observation
– once the warehouse locations have been

chosen, the problem is easy
– it suffices to assign a customer to the open

warehouse minimizing its transportation cost

Warehouse Location

9

Thursday, 13 June 13

‣Key observation
– once the warehouse locations have been

chosen, the problem is easy
– it suffices to assign a customer to the open

warehouse minimizing its transportation cost

‣What is the objective?

Warehouse Location

9

Thursday, 13 June 13

‣Key observation
– once the warehouse locations have been

chosen, the problem is easy
– it suffices to assign a customer to the open

warehouse minimizing its transportation cost

‣What is the objective?

Warehouse Location

9

minimize
X

w2W

f

w

o

w

+
X

c2C

min
w2W :ow=1

t

w,c

Thursday, 13 June 13

Warehouse Location
‣Neighborhood

– many possibilities

10

Thursday, 13 June 13

Warehouse Location
‣Neighborhood

– many possibilities

‣Simplest neighborhood
– open and close warehouses
– that is, flip the value of ow

10

Thursday, 13 June 13

Warehouse Location
‣Neighborhood

– many possibilities

‣Simplest neighborhood
– open and close warehouses
– that is, flip the value of ow
‣Union of neighborhoods

– open and close a warehouse
– swap two warehouses

• close one and open the other

10

Thursday, 13 June 13

Traveling Salesman Problem

11

Thursday, 13 June 13

Traveling Salesman Problem

12

Thursday, 13 June 13

Traveling Salesman Problem

13

Thursday, 13 June 13

Traveling Salesman Problem
‣Given

– a set C of cities to visit
– a symmetric distance matrix d between

every two cities

14

Thursday, 13 June 13

Traveling Salesman Problem
‣Given

– a set C of cities to visit
– a symmetric distance matrix d between

every two cities

‣Find
– a tour of minimal cost visiting each city

exactly once

14

Thursday, 13 June 13

Traveling Salesman Problem
‣Given

– a set C of cities to visit
– a symmetric distance matrix d between

every two cities

‣Find
– a tour of minimal cost visiting each city

exactly once

‣The traveling salesman problem
(TSP) is probably the most studied
combinatorial problem

14

Thursday, 13 June 13

Traveling Salesman Problem
‣Decision variables

– like in the Euler tour
– specify where to go next for every city

15

range Cities = 1..n;
int distance[Cities,Cities] = ...;
var{int} next[Cities] in Cities;
minimize
 sum(c in Cities) d[c,next[c]]
subject to
 circuit(next);

Thursday, 13 June 13

‣2-OPT neighborhood for the TSP
– stay feasible, that is always

maintain a tour
– select two edges and replace them

by two other edges

Local Search for the TSP

16

Thursday, 13 June 13

‣2-OPT neighborhood for the TSP
– stay feasible, that is always

maintain a tour
– select two edges and replace them

by two other edges

a

b
c

d

e f

g

h

Local Search for the TSP

16

a ! b ! c ! d ! e ! f ! g ! h ! a

Thursday, 13 June 13

‣2-OPT neighborhood for the TSP
– stay feasible, that is always

maintain a tour
– select two edges and replace them

by two other edges

a

b
c

d

e f

g

h

Local Search for the TSP

16

a ! b ! c ! d 6! e ! f ! g 6! h ! a

Thursday, 13 June 13

‣2-OPT neighborhood for the TSP
– stay feasible, that is always

maintain a tour
– select two edges and replace them

by two other edges

a

b
c

d

e f

g

h

Local Search for the TSP

16

a ! b ! c ! d 6! e ! f ! g 6! h ! a a! b! c! d 6! g f e 6! h! a

Thursday, 13 June 13

‣2-OPT neighborhood for the TSP
– stay feasible, that is always

maintain a tour
– select two edges and replace them

by two other edges

a ! b ! c ! d ! g ! f ! e ! h ! a

a

b
c

d

e f

g

h

Local Search for the TSP

16

a ! b ! c ! d 6! e ! f ! g 6! h ! a

Thursday, 13 June 13

‣2-OPT
– the neighborhood is the set of all

tours that can be reached by
swapping two edges

– select two edges and replace them
by two other edges

Local Search for the TSP

17

Thursday, 13 June 13

‣2-OPT
– the neighborhood is the set of all

tours that can be reached by
swapping two edges

– select two edges and replace them
by two other edges

‣3-OPT
– the neighborhood is the set of all

tours that can be reached by
swapping three edges

Local Search for the TSP

17

Thursday, 13 June 13

2-OPT

18

Thursday, 13 June 13

2-OPT

19

Thursday, 13 June 13

2-OPT

20

Thursday, 13 June 13

2-OPT

20

Thursday, 13 June 13

3-OPT

21

Thursday, 13 June 13

3-OPT

22

Thursday, 13 June 13

3-OPT

22

Thursday, 13 June 13

3-OPT

23

Thursday, 13 June 13

‣2-OPT
– the neighborhood is the set of all

tours that can be reached by
swapping two edges

– select two edges and replace them
by two other edges

Local Search for the TSP

24

Thursday, 13 June 13

‣2-OPT
– the neighborhood is the set of all

tours that can be reached by
swapping two edges

– select two edges and replace them
by two other edges

‣3-OPT
– the neighborhood is the set of all

tours that can be reached by
swapping three edges

– much better than 2-OPT in quality
but more expensive

Local Search for the TSP

24

Thursday, 13 June 13

‣2-OPT
‣3-OPT

– the neighborhood is the set of all
tours that can be reached by
swapping three edges

– much better than 2-OPT in quality
but more expensive

4-OPT

25

Thursday, 13 June 13

‣2-OPT
‣3-OPT

– the neighborhood is the set of all
tours that can be reached by
swapping three edges

– much better than 2-OPT in quality
but more expensive

‣4-OPT
– often marginally better but much

more expensive

4-OPT

25

Thursday, 13 June 13

‣K-OPT
– replace the notion of one favorable

swaps by a search of a favorable
sequence of swaps

– do not search for the entire set of
sequences but build one
incrementally

K-OPT

26

Thursday, 13 June 13

‣K-OPT
– replace the notion of one favorable

swaps by a search of a favorable
sequence of swaps

– do not search for the entire set of
sequences but build one
incrementally

K-OPT

26

1 2 3 4 5 6 7 8 9 10 11 12
Swaps

Im
pr
ov
em

en
t

Thursday, 13 June 13

‣K-OPT
– replace the notion of one favorable

swaps by a search of a favorable
sequence of swaps

– do not search for the entire set of
sequences but build one
incrementally

K-OPT

26

1 2 3 4 5 6 7 8 9 10 11 12
Swaps

Im
pr
ov
em

en
t

Thursday, 13 June 13

‣K-OPT
– replace the notion of one favorable

swaps by a search of a favorable
sequence of swaps

– do not search for the entire set of
sequences but build one
incrementally

K-OPT

26

K

1 2 3 4 5 6 7 8 9 10 11 12
Swaps

Im
pr
ov
em

en
t

Thursday, 13 June 13

‣K-OPT
– find a good k dynamically at a

fraction of the cost
– explore a sequence of swaps of

increasing sizes

K-OPT

27

1 2 3 4 5 6 7 8 9 10 11 12

K

Swaps

Im
pr
ov
em

en
t

Thursday, 13 June 13

‣K-OPT
– choose a vertex t1 and its edge x1 =

(t1,t2)
– choose an edge x2 = (t2,t3) with

d(x2) < d(x1)
– if none exist, restart with another

vertex
– else we have a solution by

removing the edge (t4,t3) and
connecting (t1,t4)

K-OPT

28

Thursday, 13 June 13

K-OPT (first iteration)

29

t1 t2

Thursday, 13 June 13

K-OPT (first iteration)

29

t1 t2

t3

t4

Thursday, 13 June 13

K-OPT (first iteration)

29

t1 t2

t3

t4

Thursday, 13 June 13

K-OPT (first iteration)

29

t1 t2

t3

t4

Thursday, 13 June 13

K-OPT (first iteration)

30

t1 t2

t3

t4

Thursday, 13 June 13

‣K-OPT
– choose a vertex t1 and its edge x1 =

(t1,t2)
– choose an edge x2 = (t2,t3) with

d(x2) < d(x1)
– if none exist, restart with another

vertex
– else we have a solution by

removing the edge (t4,t3) and
connecting (t1,t4)

– compute the cost but do not
connect

K-OPT

31

Thursday, 13 June 13

‣K-OPT
– choose a vertex t1 and its edge x1 = (t1,t2)
– choose an edge x2 = (t2,t3) with d(x2) <

d(x1)
– if none exist, restart with another vertex
– else we have a solution by removing the

edge (t4,t3) and connecting (t1,t4)
– compute the cost but do not connect
– instead restart with t1 and its (pretended)

edge (t1,t4)

K-OPT

32

Thursday, 13 June 13

K-OPT (first iteration)

33

t1 t2

t3

t4
t5

t6

Thursday, 13 June 13

K-OPT (first iteration)

33

t1 t2

t3

t4
t5

t6

Thursday, 13 June 13

K-OPT (first iteration)

33

t1 t2

t3

t4
t5

t6

Thursday, 13 June 13

K-OPT (first iteration)

33

t1 t2

t3

t4
t5

t6

Thursday, 13 June 13

‣K-OPT
– choose a vertex t1 and its edge y1 = (t1,t4)
– choose an edge x2 = (t4,t5) with d(y2) <

d(y1)
– if none exist, restart with another vertex
– else we have a solution by removing the

edge (t6,t5) and connecting (t1,t6)
– compute the cost but do not connect
– instead restart with t1 and its (pretended)

edge (t1,t6)

K-OPT

34

Thursday, 13 June 13

K-OPT (first iteration)

35

t1 t2

t3

t4
t5

t6

Thursday, 13 June 13

K-OPT (first iteration)

35

t1 t2

t3

t4
t5

t6

t7

t8

Thursday, 13 June 13

K-OPT (first iteration)

36

t1 t2

t3

t4
t5

t6

t7

t8

Thursday, 13 June 13

K-OPT (first iteration)

36

t1 t2

t3

t4
t5

t6

t7

t8

Thursday, 13 June 13

K-OPT (second iteration)

37

Thursday, 13 June 13

K-OPT (second iteration)

37

t1

t2

t3 t4

Thursday, 13 June 13

K-OPT (second iteration)

38

t1

t2

t3 t4

t5

t6

Thursday, 13 June 13

K-OPT (second iteration)

39

t1

t2

t3 t4

t5

t6

Thursday, 13 June 13

K-OPT (second iteration)

40

Thursday, 13 June 13

Until Next Time

41

Thursday, 13 June 13

