Discrete
Optimization

Constraint Programming: Part X

Goals of the lecture

» Search in constraint programming
— Introduction
— active research area

Search in constraint programming

> Key idea
— use feasibility information for branching

Search in constraint programming

> Key idea
— use feasibility information for branching
> First-fail principle
—try first where you are the most likely to fall

Search in constraint programming

> Key idea

— use feasibility information for branching
> First-fail principle

—try first where you are the most likely to fall
> Why the first-fail principle?

—do not spend time doing easy stuff first and
avoid redoing the difficult part

Search in constraint programming

> Key idea

— use feasibility information for branching
> First-fail principle

—try first where you are the most likely to fall
> Why the first-fail principle?

—do not spend time doing easy stuff first and
avoid redoing the difficult part

> The ultimate goal
—creating small search trees

How to approximate the first-fail principle?

B
B EEEN
L R

B -
ENNEN BN
EEEEE =
B NEEN |
| NN N

Coloring a Map

Coloring a Map

Fuler Knight

> The problem

—use a knight to visit all positions of a
chessboard exactly once

> Puzzle with links
—vehicle routing problems

Fuler Knight

range Board = 1..64;
var{int} jump[i in Board] in Knightmoves (i) ;

/

Thursday, 13 June 13

Euler Knight

range Board = 1..64;
var{int} jump[i in Board] in Knightmoves (i) ;

function set{int} Knightmoves (int 1) {
set{int} S;
if (1 % 8 == 1)
S = {1-15,1-6,1+10,1i+17};
else if (1 % 8 == 2)
S = {i-17,1-15,1i-6,1+10,i+4+15,1i+17};

else if (i % 8 == 7)

S = {1-17,i-15,i-10,i+4+6,i+15,1+17};
else if (i % 8 == 0)

S = {i-17,i-10,i+6,1+15};
else

S = {1-17,1-15,1-10,1i-6,1i+6,1+10,1+15,1+17};
return filter(v in S) (v >= 1 && v <= 64);

/

Thursday, 13 June 13

Fuler Knight

> First-fail principle on the Euler Knight
—where do we start?

Fuler Knight

Fuler Knight

Fuler Knight

> First-fail principle on the Euler Knight
—where do we go next?

10

11

Fuler Knight

11

Fuler Knight

11

Fuler Knight

NUEEEED)
RSN
A\ A
ﬂuﬂlllﬂl

“U““.ﬂ“ﬂ
— -
EC2atGod
AL 1\ \ N SN AT
AR NN

Fuler Knight

ngwgmﬂnn
LCoGATO
A U

n)_vgnru
BLH& ‘ﬂg

12

A search procedure for the 8-queens problem

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (3 - 1i);
row[i] # row[]j] - (3 - 1i);
}
}
using {
forall(r in R)
tryall (v in R)
row[r] = v;

Thursday, 13 June 13

A search procedure for the 8-queens problem

row[]j];

i<73J) {

row[j] + (J - 1);

row[j] - (J - 1),

range R = 1..8;
var{int} row|[R] in R;
solve {
forall(i in R,j in R:
row[i] #
row[i] #
row[i] #
}
}
using {
| forall (r in R)
" tryall(v in R)
row[r] = v;
}

12

Thursday, 13 June 13

iterate over all

queens

12

A search procedure for the 8-queens problem

range R = 1..8;
var{int} row[R] in R;

solve {
forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (3 - 1i);
row[i] # row[]j] - (3 - 1i);
}
}
using {

forall(r in R)

nondeterministically
explore all values

Thursday, 13 June 13

A search procedure for the 8-queens problem

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R:
row[i] # row[]]:

}
}
using {
forall(r in R)

i<73J) {

row[i] # row[j] + (3 - 1i);
row[i] # row[]j] - (3 - 1i);

12

Thursday, 13 June 13

add a constraint to
the constraint store

Computational Paradigm

Constraint
Store

13

Computational Paradigm

X =5 p—>

Constraint

Store

13

Computational Paradigm

X =5 p—>

Constraint

Store

(—[Success

13

Computational Paradigm

X =5 p—>
Y # 2 >

Constraint

Store

(—[Success

13

Computational Paradigm

X =5 p—>
Y # 2 >

Constraint
Store

(—[Success
<«— Failure

13

Nondeterministic choice

>»\When a constraint fails

—that is, when adding a constraint to the
constraint store returns a failure

>the solver goes back to the last tryall

—and assigns a value that has not been tried
before

—if no such value is left, the system
backtracks to an earlier nondeterministic
Instruction

14

15

Understanding nondeterministic computations

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (3 - 1i);
row[i] # row[]j] - (3 - 1i);

tryall (v in R)
rowl[r] = v;

Thursday, 13 June 13

Understanding nondeterministic computations

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (3 - 1i);
row[i] # row[]j] - (3 - 1i);

} } iterate over all
using { queens
' forall (r in R) :

tryall (v in R)
rowl[r] = v;

15

Thursday, 13 June 13

Understanding nondeterministic computations

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: 1 < j) {
row[i] # row[]j];
row[i] # row[j] + (jJ - 1)
row[i] # row[j] - (3 - 1)
}
}

using {
tryall (v in R) row[l] = v;
tryall (v in R) row[2] = v;
tryall (v in R) row[3] = v;
tryall (v in R) row[4] = v;
tryall (v in R) row[5] = v;
tryall (v in R) row[6] = v;
tryall (v in R) row[7] = v;
tryall (v in R) row[8] = v;

16

Thursday, 13 June 13

17

Understanding nondeterministic computations

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: 1 < j) {
row[i] # row[]];
row[i] # row[j] + (3 - 1i);

row[i] # zrow[]j] - (3 - i)
}
}
using {
forall(r in R) ________
. tryall (v in R) |
"~ rowl[r] = v;
}

Thursday, 13 June 13

17

Understanding nondeterministic computations

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: 1 < j) {
row[i] # row[]];
row[i] # row[j] + (3 - 1i);
row[i] # zrow[]j] - (3 - i)

}
} nondeterministically
using { | explore all values
forall(r in R) . . . __

‘-

Thursday, 13 June 13

Understanding nondeterministic computations

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i1 < j) {
row[i] # row[j]:;
row[i] # row[]j] + (J - 1i);
row[i] # row[j] - (3 - 1i);
}
}
using {
forall(r in R)
try rowl[r]
| row|[r]
| row|[r]
| row|[r]
| row|[r]
| row|[r]
| row|[r]
I
e

coOJdJoOUrdWDNBK

e N e D TP D 'Y D Y N o D Y oo

row|[r]
ndtry;

18

Thursday, 13 June 13

Understanding nondeterministic computations

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: 1 < j) {
row[i] # row[j];
row[i] # row[j] + (3 - 1i);
row[i] # =row[]j] - (3 - i)
}
}
using {
forall(r in R)

try row[r] = 1;

| row[r] = 2; :::::==’
| row[r] = 3;12:::=="
| row[r] = 4; ——
| row[r] = 5. 4—m
| row[r] = 6; —m
| row[r] = 7; g
| row[r] = 8;

endtry;

18

Thursday, 13 June 13

19

Searching in constraint programming

> variable/value labeling

> value/variable labeling

» domain splitting

> focusing on the objective

> symmetry breaking during search
> randomization and restarts

Variable/Value Labeling

> Two steps
—choose the variable to assign next
—choose the value to assign

20

Variable/Value Labeling

> Two steps
—choose the variable to assign next
—choose the value to assign
> First-fail principle
—choose the variable with the smallest domain

20

Variable/Value Labeling

> Two steps
—choose the variable to assign next
—choose the value to assign
> First-fail principle
—choose the variable with the smallest domain
> The variable ordering Is dynamic
—reconsider the selection after each choice

20

Variable/Value Labeling

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i1 < j) {
row[i] # row[j];
row[i] # row[j] + (3 - 1i);
row[i] # row[]j] - (3 - 1i);

--

‘

--

tryall (v in R)
rowl[r] = v;

21

Thursday, 13 June 13

Variable/Value Labeling

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (3 - 1i);
row[i] # row[]j] - (3 - 1i);

‘

tryall (v in R)
rowl[r] = v;

--

--

21

Thursday, 13 June 13

select first the
variable with the
smallest domain

Variable/Value Labeling

> Two steps
—choose the variable to assign next
—choose the value to assign
> First-fail principle
—choose the variable with the smallest domain
—choose the most constrained variable

22

Variable/Value Labeling

> Two steps
—choose the variable to assign next
—choose the value to assign
> First-fail principle
—choose the variable with the smallest domain
—choose the most constrained variable

» Use a lexicographic criterion
—first the domain size
—next the proximity to the middle of the board

22

Lexicographic ordering

range R = 1. .8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (J - 1i);

row[i] # row[]j] - (3 - 1i);
}

}
e 2 S

forall(r in R)

by (row[r].getSize(),h abs(r- n/2))
""" tryall(v in R) T
rowl[r] = v;

}

23

Thursday, 13 June 13

24

Dynamic orderings for variable and value choices

range R 1..8;

range C 1..8;

var{int} row[C] in R;

var{int} col[R] in C

solve {

forall(i in R,j in R: i < j) {

row[i] # row[jl:;
row[i] # row[j] + (J - 1);
row[i] # zrow[]j] - (3 - 1i);

}

forall(i in C,jJ in C: 1 < 7j) {
col[i] # col[j]:
col[i] # col[j] + (3 - 1i);
col[i] # col[j] - (3 - 1i);

}

forall(r in R,c in C)
(row[c] = r) <=> (col[r] = c);

}
using {
forall(r in R) by row[r].getSize() ____
tryall (v in R) by col[v].getSize() :
""" row[r] = v
}

Thursday, 13 June 13

Variable/Value Labeling

> Variable ordering
—choose the most constrained variable
—e.d., smallest domain, variable that fails often

25

Variable/Value Labeling

> Variable ordering
—choose the most constrained variable
—e.d., smallest domain, variable that fails often

> Value ordering

—often choose a value that leaves as many
options as possible to the other variables

—this helps finding a solution

25

Feasibility versus Optimality

> strong focus on feasibility branching

—the pruning algorithm provides a lot of
information

26

Feasibility versus Optimality

> strong focus on feasibility branching

—the pruning algorithm provides a lot of
information

» may also focus on the objective function
—does not change the way search works

26

The ESDD Deployment Problem

» Generalized quadratic assignment problem
—f: the communication frequency matrix
—h: the distance matrix (in hops)
— X: the assignment vector (decision variables)
— C: sets of components
— Sep: separation constraints
— Col: colocation constraints
—objective function

;Ielg}z E E :fa,,b) h:z:a,,a:b

acC beC

28

The CP Model

minimize
sum(a in C,b in C: a !'= b) f[a,b]l*h[x[a],x[b]]
subject to {
forall (S in Col,cl in S,c2 in S: cl < c2)
xX[cl] = x[c2];
forall (S in Sep)
alldifferent(all(c in S) x|[c]);
}
using {
while ('bound(x))
selectMax (1 in C:!'x[1i] .bound(),J in C) (£[1,31]1)
tryall(n in N) by (min(l in x[]j] .memberOf(l)) h[n,1])
x[1i] = n;

29

Thursday, 13 June 13

The CP Model

minimize
sum(a in C,b in C: a !'= b) f[a,b]l*h[x[a],x[b]]
subject to {
forall (S in Col,cl in S,c2 in S: cl < c2)
xX[cl] = x[c2];
forall (S in Sep)
alldifferent(all(c in S) x|[c]);
}
using {
while ('bound(x))

tryall(n in N)\by (min(l in x[]j] .memberOf(l)) h[n,1])
x[1i] = n;

select a component |
to assign that has the

largest communication
frequency

29

Thursday, 13 June 13

The CP Model

minimize
sum(a in C,b in C: a !'= b) f[a,b]l*h[x[a],x[b]]
subject to {
forall (S in Col,cl in S,c2 in S: cl < c2)
xX[cl] = x[c2];
forall (S in Sep)
alldifferent(all(c in S) x|[c]);
}
using {
while ('bound(x))
selectMax (1 in C:!'x[1i] .bound(),J in C) (£[1,31]1)

--

‘

--

x[i] = n;

try the possible value
starting first with those

minimizing the
number of hops to |

29

Thursday, 13 June 13

