
Discrete
Optimization
Constraint Programming: Part IX

Thursday, 13 June 13

Goals of the lecture

‣Search in constraint programming
– introduction
– active research area

2

Thursday, 13 June 13

Search in constraint programming

‣Key idea
– use feasibility information for branching

3

Thursday, 13 June 13

Search in constraint programming

‣Key idea
– use feasibility information for branching

‣First-fail principle
– try first where you are the most likely to fail

3

Thursday, 13 June 13

Search in constraint programming

‣Key idea
– use feasibility information for branching

‣First-fail principle
– try first where you are the most likely to fail

‣Why the first-fail principle?
– do not spend time doing easy stuff first and

avoid redoing the difficult part

3

Thursday, 13 June 13

Search in constraint programming

‣Key idea
– use feasibility information for branching

‣First-fail principle
– try first where you are the most likely to fail

‣Why the first-fail principle?
– do not spend time doing easy stuff first and

avoid redoing the difficult part

‣The ultimate goal
– creating small search trees

3

Thursday, 13 June 13

4

How to approximate the first-fail principle?

Thursday, 13 June 13

Coloring a Map

5

France

Germany
Belgium

Netherlands

Denmark

Luxembourg

Thursday, 13 June 13

Coloring a Map

5

Thursday, 13 June 13

Euler Knight

‣The problem
– use a knight to visit all positions of a

chessboard exactly once

‣Puzzle with links
– vehicle routing problems

6

Thursday, 13 June 13

Euler Knight

7

range Board = 1..64;
var{int} jump[i in Board] in Knightmoves(i);
solve {
 circuit(jump);
}

Thursday, 13 June 13

Euler Knight

7

range Board = 1..64;
var{int} jump[i in Board] in Knightmoves(i);
solve {
 circuit(jump);
}

function set{int} Knightmoves(int i) {
 set{int} S;
 if (i % 8 == 1)
 S = {i-15,i-6,i+10,i+17};
 else if (i % 8 == 2)
 S = {i-17,i-15,i-6,i+10,i+15,i+17};
 else if (i % 8 == 7)
 S = {i-17,i-15,i-10,i+6,i+15,i+17};
 else if (i % 8 == 0)
 S = {i-17,i-10,i+6,i+15};
 else
 S = {i-17,i-15,i-10,i-6,i+6,i+10,i+15,i+17};
 return filter(v in S) (v >= 1 && v <= 64);
}

Thursday, 13 June 13

Euler Knight

‣First-fail principle on the Euler Knight
– where do we start?

8

Thursday, 13 June 13

Euler Knight

9

Thursday, 13 June 13

Euler Knight

9

Thursday, 13 June 13

Euler Knight

‣First-fail principle on the Euler Knight
– where do we go next?

10

Thursday, 13 June 13

Euler Knight

11

Thursday, 13 June 13

Euler Knight

11

Thursday, 13 June 13

Euler Knight

11

Thursday, 13 June 13

Euler Knight

11

Thursday, 13 June 13

A search procedure for the 8-queens problem

12

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
}

Thursday, 13 June 13

A search procedure for the 8-queens problem

12

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
}

iterate over all
queens

Thursday, 13 June 13

A search procedure for the 8-queens problem

12

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
}

nondeterministically
explore all values

Thursday, 13 June 13

A search procedure for the 8-queens problem

12

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
} add a constraint to

the constraint store

Thursday, 13 June 13

13

Computational Paradigm

Search Constraint
Store

Thursday, 13 June 13

13

Computational Paradigm

X = 5

Search Constraint
Store

Thursday, 13 June 13

13

Computational Paradigm

Success

X = 5

Search Constraint
Store

Thursday, 13 June 13

13

Computational Paradigm

Success

X = 5

Y 6= 2

Search Constraint
Store

Thursday, 13 June 13

13

Computational Paradigm

Failure

Success

X = 5

Y 6= 2

Search Constraint
Store

Thursday, 13 June 13

Nondeterministic choice

‣When a constraint fails
– that is, when adding a constraint to the

constraint store returns a failure

‣ the solver goes back to the last tryall
– and assigns a value that has not been tried

before
– if no such value is left, the system

backtracks to an earlier nondeterministic
instruction

14

Thursday, 13 June 13

Understanding nondeterministic computations

15

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
}

Thursday, 13 June 13

Understanding nondeterministic computations

15

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
}

iterate over all
queens

Thursday, 13 June 13

Understanding nondeterministic computations

16

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 tryall(v in R) row[1] = v;
 tryall(v in R) row[2] = v;
 tryall(v in R) row[3] = v;
 tryall(v in R) row[4] = v;
 tryall(v in R) row[5] = v;
 tryall(v in R) row[6] = v;
 tryall(v in R) row[7] = v;
 tryall(v in R) row[8] = v;
}

Thursday, 13 June 13

17

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
}

Understanding nondeterministic computations

Thursday, 13 June 13

17

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 tryall(v in R)
 row[r] = v;
}

Understanding nondeterministic computations

nondeterministically
explore all values

Thursday, 13 June 13

Understanding nondeterministic computations

18

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 try row[r] = 1;
 | row[r] = 2;
 | row[r] = 3;
 | row[r] = 4;
 | row[r] = 5;
 | row[r] = 6;
 | row[r] = 7;
 | row[r] = 8;
 endtry;
}

Thursday, 13 June 13

Understanding nondeterministic computations

18

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 try row[r] = 1;
 | row[r] = 2;
 | row[r] = 3;
 | row[r] = 4;
 | row[r] = 5;
 | row[r] = 6;
 | row[r] = 7;
 | row[r] = 8;
 endtry;
}

Thursday, 13 June 13

Searching in constraint programming

‣variable/value labeling
‣value/variable labeling
‣domain splitting
‣ focusing on the objective
‣symmetry breaking during search
‣ randomization and restarts

19

Thursday, 13 June 13

Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

20

Thursday, 13 June 13

Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain

20

Thursday, 13 June 13

Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain

‣The variable ordering is dynamic
– reconsider the selection after each choice

20

Thursday, 13 June 13

Variable/Value Labeling

21

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R) by row[r].getSize()
 tryall(v in R)
 row[r] = v;
}

Thursday, 13 June 13

Variable/Value Labeling

21

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R) by row[r].getSize()
 tryall(v in R)
 row[r] = v;
}

select first the
variable with the
smallest domain

Thursday, 13 June 13

Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain
– choose the most constrained variable

22

Thursday, 13 June 13

Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain
– choose the most constrained variable

‣Use a lexicographic criterion
– first the domain size
– next the proximity to the middle of the board

22

Thursday, 13 June 13

Lexicographic ordering

23

range R = 1..8;
var{int} row[R] in R;
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
}
using {
 forall(r in R)
 by (row[r].getSize(),abs(r-n/2))
 tryall(v in R)
 row[r] = v;
}

Thursday, 13 June 13

Dynamic orderings for variable and value choices

24

range R = 1..8;
range C = 1..8;
var{int} row[C] in R;
var{int} col[R] in C
solve {
 forall(i in R,j in R: i < j) {
 row[i] ≠ row[j];
 row[i] ≠ row[j] + (j - i);
 row[i] ≠ row[j] - (j - i);
 }
 forall(i in C,j in C: i < j) {
 col[i] ≠ col[j];
 col[i] ≠ col[j] + (j - i);
 col[i] ≠ col[j] - (j - i);
 }
 forall(r in R,c in C)
 (row[c] = r) <=> (col[r] = c);
}
using {
 forall(r in R) by row[r].getSize()
 tryall(v in R) by col[v].getSize()
 row[r] = v;
}

Thursday, 13 June 13

Variable/Value Labeling

‣Variable ordering
– choose the most constrained variable
– e.g., smallest domain, variable that fails often

25

Thursday, 13 June 13

Variable/Value Labeling

‣Variable ordering
– choose the most constrained variable
– e.g., smallest domain, variable that fails often

‣Value ordering
– often choose a value that leaves as many

options as possible to the other variables
– this helps finding a solution

25

Thursday, 13 June 13

Feasibility versus Optimality

‣strong focus on feasibility branching
– the pruning algorithm provides a lot of

information

26

Thursday, 13 June 13

Feasibility versus Optimality

‣strong focus on feasibility branching
– the pruning algorithm provides a lot of

information

‣may also focus on the objective function
– does not change the way search works

26

Thursday, 13 June 13

The ESDD Deployment Problem

‣Generalized quadratic assignment problem
– f: the communication frequency matrix
– h: the distance matrix (in hops)
– x: the assignment vector (decision variables)
– C: sets of components
– Sep: separation constraints
– Col: colocation constraints
– objective function

28

Thursday, 13 June 13

The CP Model

29

minimize
 sum(a in C,b in C: a != b) f[a,b]*h[x[a],x[b]]
subject to {
 forall(S in Col,c1 in S,c2 in S: c1 < c2)
 x[c1] = x[c2];
 forall(S in Sep)
 alldifferent(all(c in S) x[c]);
}
using {
 while (!bound(x))
 selectMax(i in C:!x[i].bound(),j in C)(f[i,j])
 tryall(n in N) by (min(l in x[j].memberOf(l)) h[n,l])
 x[i] = n;
}

Thursday, 13 June 13

The CP Model

29

minimize
 sum(a in C,b in C: a != b) f[a,b]*h[x[a],x[b]]
subject to {
 forall(S in Col,c1 in S,c2 in S: c1 < c2)
 x[c1] = x[c2];
 forall(S in Sep)
 alldifferent(all(c in S) x[c]);
}
using {
 while (!bound(x))
 selectMax(i in C:!x[i].bound(),j in C)(f[i,j])
 tryall(n in N) by (min(l in x[j].memberOf(l)) h[n,l])
 x[i] = n;
}

select a component i
to assign that has the
largest communication

frequency

Thursday, 13 June 13

The CP Model

29

minimize
 sum(a in C,b in C: a != b) f[a,b]*h[x[a],x[b]]
subject to {
 forall(S in Col,c1 in S,c2 in S: c1 < c2)
 x[c1] = x[c2];
 forall(S in Sep)
 alldifferent(all(c in S) x[c]);
}
using {
 while (!bound(x))
 selectMax(i in C:!x[i].bound(),j in C)(f[i,j])
 tryall(n in N) by (min(l in x[j].memberOf(l)) h[n,l])
 x[i] = n;
}

try the possible value
starting first with those

minimizing the
number of hops to j

Thursday, 13 June 13

