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Goals of the lecture

‣Search in constraint programming
– introduction
– active research area
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3

Thursday, 13 June 13



Search in constraint programming

‣Key idea
– use feasibility information for branching

‣First-fail principle
– try first where you are the most likely to fail

3

Thursday, 13 June 13



Search in constraint programming

‣Key idea
– use feasibility information for branching

‣First-fail principle
– try first where you are the most likely to fail

‣Why the first-fail principle?
– do not spend time doing easy stuff first and 

avoid redoing the difficult part

3

Thursday, 13 June 13



Search in constraint programming

‣Key idea
– use feasibility information for branching

‣First-fail principle
– try first where you are the most likely to fail

‣Why the first-fail principle?
– do not spend time doing easy stuff first and 

avoid redoing the difficult part

‣The ultimate goal
– creating small search trees
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How to approximate the first-fail principle?
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Coloring a Map
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France

Germany
Belgium

Netherlands

Denmark

Luxembourg
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Coloring a Map
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Euler Knight

‣The problem
– use a knight to visit all positions of a 

chessboard exactly once

‣Puzzle with links
– vehicle routing problems
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Euler Knight

7

range Board = 1..64;
var{int} jump[i in Board] in Knightmoves(i);
solve {
   circuit(jump);
}
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Euler Knight

7

range Board = 1..64;
var{int} jump[i in Board] in Knightmoves(i);
solve {
   circuit(jump);
}

function set{int} Knightmoves(int i) {
   set{int} S;
   if (i % 8 == 1) 
      S = {i-15,i-6,i+10,i+17};
   else if (i % 8 == 2)
      S = {i-17,i-15,i-6,i+10,i+15,i+17};      
   else if (i % 8 == 7) 
      S = {i-17,i-15,i-10,i+6,i+15,i+17};            
   else if (i % 8 == 0) 
      S = {i-17,i-10,i+6,i+15};            
   else
      S = {i-17,i-15,i-10,i-6,i+6,i+10,i+15,i+17};            
   return filter(v in S) (v >= 1 && v <= 64);
}
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Euler Knight

‣First-fail principle on the Euler Knight
– where do we start?
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Euler Knight
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Euler Knight
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Euler Knight

‣First-fail principle on the Euler Knight
– where do we go next?
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Euler Knight
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Euler Knight

11

Thursday, 13 June 13



Euler Knight
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Euler Knight
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A search procedure for the 8-queens problem

12

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R)
      tryall(v in R)
         row[r] = v;
}
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A search procedure for the 8-queens problem

12

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R)
      tryall(v in R)
         row[r] = v;
} add a constraint to 

the constraint store
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Computational Paradigm

Search Constraint
Store
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Computational Paradigm

X = 5

Search Constraint
Store
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Success
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Computational Paradigm

Failure

Success

X = 5

Y 6= 2

Search Constraint
Store
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Nondeterministic choice

‣When a constraint fails
– that is, when adding a constraint to the 

constraint store returns a failure

‣ the solver goes back to the last tryall
– and assigns a value that has not been tried 

before
– if no such value is left, the system 

backtracks to an earlier nondeterministic 
instruction
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Understanding nondeterministic computations

15

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R)
      tryall(v in R)
         row[r] = v;
}
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Understanding nondeterministic computations
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range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   tryall(v in R) row[1] = v;
   tryall(v in R) row[2] = v;
   tryall(v in R) row[3] = v;
   tryall(v in R) row[4] = v;
   tryall(v in R) row[5] = v;
   tryall(v in R) row[6] = v;
   tryall(v in R) row[7] = v;
   tryall(v in R) row[8] = v;
}
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range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R)
      tryall(v in R)
         row[r] = v;
}
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range R = 1..8;
var{int} row[R] in R;
solve {
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      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R)
      tryall(v in R)
         row[r] = v;
}

Understanding nondeterministic computations

nondeterministically 
explore all values

Thursday, 13 June 13



Understanding nondeterministic computations

18

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R)
     try row[r] = 1;
     |   row[r] = 2;
     |   row[r] = 3;
     |   row[r] = 4;
     |   row[r] = 5;
     |   row[r] = 6;
     |   row[r] = 7;
     |   row[r] = 8;
     endtry;
}
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Understanding nondeterministic computations

18

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R)
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     |   row[r] = 4;
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     |   row[r] = 6;
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     |   row[r] = 8;
     endtry;
}
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Searching in constraint programming

‣variable/value labeling
‣value/variable labeling
‣domain splitting
‣ focusing on the objective
‣symmetry breaking during search
‣ randomization and restarts
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Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign
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Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain
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Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain

‣The variable ordering is dynamic
– reconsider the selection after each choice

20
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Variable/Value Labeling

21

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R) by row[r].getSize()
      tryall(v in R)
         row[r] = v;
}
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Variable/Value Labeling

21

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R) by row[r].getSize()
      tryall(v in R)
         row[r] = v;
}

select first the 
variable with the 
smallest domain
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Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain
– choose the most constrained variable
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Variable/Value Labeling

‣Two steps
– choose the variable to assign next
– choose the value to assign

‣First-fail principle
– choose the variable with the smallest domain
– choose the most constrained variable

‣Use a lexicographic criterion
– first the domain size
– next the proximity to the middle of the board

22
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Lexicographic ordering

23

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
using {
   forall(r in R) 
     by (row[r].getSize(),abs(r-n/2))
      tryall(v in R)
         row[r] = v;
}
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Dynamic orderings for variable and value choices

24

range R = 1..8;
range C = 1..8;
var{int} row[C] in R;
var{int} col[R] in C
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
   forall(i in C,j in C: i < j) {
      col[i] ≠  col[j];
      col[i] ≠  col[j] + (j - i);
      col[i] ≠  col[j] - (j - i);
   }
   forall(r in R,c in C)
      (row[c] = r) <=> (col[r] = c);
}
using {
   forall(r in R) by row[r].getSize()
      tryall(v in R) by col[v].getSize()
         row[r] = v;
}
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Variable/Value Labeling

‣Variable ordering
– choose the most constrained variable
– e.g., smallest domain, variable that fails often
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Variable/Value Labeling

‣Variable ordering
– choose the most constrained variable
– e.g., smallest domain, variable that fails often

‣Value ordering
– often choose a value that leaves as many 

options as possible to the other variables
– this helps finding a solution
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Feasibility versus Optimality

‣strong focus on feasibility branching
– the pruning algorithm provides a lot of 

information
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Feasibility versus Optimality

‣strong focus on feasibility branching
– the pruning algorithm provides a lot of 

information

‣may also focus on the objective function
– does not change the way search works
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The ESDD Deployment Problem

‣Generalized quadratic assignment problem
– f: the communication frequency matrix
– h: the distance matrix (in hops)
– x: the assignment vector (decision variables)
– C: sets of components
– Sep: separation constraints
– Col: colocation constraints
– objective function

28
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The CP Model

29

minimize 
    sum(a in C,b in C: a != b) f[a,b]*h[x[a],x[b]]
subject to {
   forall(S in Col,c1 in S,c2 in S: c1 < c2)        
     x[c1] = x[c2];    
   forall(S in Sep)       
     alldifferent(all(c in S) x[c]);
} 
using {  
 while (!bound(x))     
  selectMax(i in C:!x[i].bound(),j in C)(f[i,j])  
      tryall(n in N) by (min(l in x[j].memberOf(l)) h[n,l])            
       x[i] = n;
}
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The CP Model

29

minimize 
    sum(a in C,b in C: a != b) f[a,b]*h[x[a],x[b]]
subject to {
   forall(S in Col,c1 in S,c2 in S: c1 < c2)        
     x[c1] = x[c2];    
   forall(S in Sep)       
     alldifferent(all(c in S) x[c]);
} 
using {  
 while (!bound(x))     
  selectMax(i in C:!x[i].bound(),j in C)(f[i,j])  
      tryall(n in N) by (min(l in x[j].memberOf(l)) h[n,l])            
       x[i] = n;
}

select a component i 
to assign that has the 
largest communication 

frequency
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The CP Model

29

minimize 
    sum(a in C,b in C: a != b) f[a,b]*h[x[a],x[b]]
subject to {
   forall(S in Col,c1 in S,c2 in S: c1 < c2)        
     x[c1] = x[c2];    
   forall(S in Sep)       
     alldifferent(all(c in S) x[c]);
} 
using {  
 while (!bound(x))     
  selectMax(i in C:!x[i].bound(),j in C)(f[i,j])  
      tryall(n in N) by (min(l in x[j].memberOf(l)) h[n,l])            
       x[i] = n;
}

try the possible value 
starting first with those 

minimizing the 
number of hops to j
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