
Discrete 
Optimization
Constraint Programming: Part I

Thursday, 13 June 13



Goal of the Lecture
‣Basic introduction to constraint programming

2

Thursday, 13 June 13



3

Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– remove values that cannot appear in any solution

Thursday, 13 June 13



3

Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– remove values that cannot appear in any solution

‣Modeling methodology
– convey the structure of the problem as explicitly 

as possible
– express substructures of the problem
– give solvers as much information as possible

Thursday, 13 June 13



4

The 8-Queens Problem
‣Specification

– place 8 queens on a chessboard so that none 
of them attach each other 

– two queens attack each other if they are on 
the same column, row, or diagonal

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

!Failure!

The 8-Queens Problem

Thursday, 13 June 13



5

!

!

!

!Failure!

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



5

The 8-Queens Problem

Thursday, 13 June 13



6

Constraint Programming
‣Computational paradigm

• use constraints to reduce the set of values that each 
variable can take 

• make a choice when no more deduction can be 
performed

Thursday, 13 June 13



6

Constraint Programming
‣Computational paradigm

• use constraints to reduce the set of values that each 
variable can take 

• make a choice when no more deduction can be 
performed

‣What is a choice?
• there are many choices!
• for the moment, assume a choice assigns a value to a 

variable

Thursday, 13 June 13



6

Constraint Programming
‣Computational paradigm

• use constraints to reduce the set of values that each 
variable can take 

• make a choice when no more deduction can be 
performed

‣What is a choice?
• there are many choices!
• for the moment, assume a choice assigns a value to a 

variable

‣Choices can be wrong
• in optimization, they are often wrong :-(
• the solver then backtracks,                                                                                 

i.e., it tries another value

Thursday, 13 June 13



8

Coloring a Map
‣How to color this map with constraint programming?

– choose the decision variables
– express the constraints in terms of the decision variables

Thursday, 13 June 13



8

Coloring a Map
‣How to color this map with constraint programming?

– choose the decision variables
– express the constraints in terms of the decision variables

‣What are the decision variables?
– the color given to each country

Thursday, 13 June 13



8

Coloring a Map
‣How to color this map with constraint programming?

– choose the decision variables
– express the constraints in terms of the decision variables

‣What are the decision variables?
– the color given to each country

‣What are the domains of the decision variables?
– the domain is the set of values that a variable can take
– four different colors

Thursday, 13 June 13



8

Coloring a Map
‣How to color this map with constraint programming?

– choose the decision variables
– express the constraints in terms of the decision variables

‣What are the decision variables?
– the color given to each country

‣What are the domains of the decision variables?
– the domain is the set of values that a variable can take
– four different colors

‣How do you express the constraints?
– specify that two adjacent countries cannot be given the 

same color

Thursday, 13 June 13



Coloring a Map

9

enum Countries = { Belgium, Denmark, France, Germany,       
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
color[Belgium] ≠ color[France];
color[Belgium] ≠ color[Germany];
color[Belgium] ≠ color[Netherlands];
color[Belgium] ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}

Thursday, 13 June 13



Coloring a Map

10

France

Germany
Belgium

Netherlands

Denmark

Luxembourg

Thursday, 13 June 13



Coloring a Map

10

Thursday, 13 June 13



Coloring a Map

11

Thursday, 13 June 13



Coloring a Map

11

Thursday, 13 June 13



Coloring a Map

12

Thursday, 13 June 13



Coloring a Map

12

Thursday, 13 June 13



Coloring a Map

13

Thursday, 13 June 13



Coloring a Map

13

Thursday, 13 June 13



Coloring a Map

14

Thursday, 13 June 13



Coloring a Map

15

Thursday, 13 June 13



16

Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– make a choice when no more deduction can be 
performed

Thursday, 13 June 13



16

Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– make a choice when no more deduction can be 
performed

‣What does this mean for the coloring problem?

Thursday, 13 June 13



Coloring a Map

17

enum Countries = { Belgium, Denmark, France, Germany, 
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
color[Belgium] ≠ color[France];
color[Belgium] ≠ color[Germany];
color[Belgium] ≠ color[Netherlands];
color[Belgium] ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}

Thursday, 13 June 13



18

Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– make a choice when no more deduction can be 
performed

Thursday, 13 June 13



18

Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– make a choice when no more deduction can be 
performed

‣What does this mean for the coloring problem?
– no value can be removed initially,                                                                           

so the system must make a choice

Thursday, 13 June 13



Coloring a Map

19

Thursday, 13 June 13



Coloring a Map

20

Thursday, 13 June 13



Coloring a Map

21

enum Countries = { Belgium, Denmark, France, Germany, 
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
color[Belgium] ≠ color[France];
color[Belgium] ≠ color[Germany];
color[Belgium] ≠ color[Netherlands];
color[Belgium] ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}

Thursday, 13 June 13



Coloring a Map

22

enum Countries = { Belgium, Denmark, France, Germany, 
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
black ≠ color[France];
black ≠ color[Germany];
black ≠ color[Netherlands];
black ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}

Thursday, 13 June 13



Coloring a Map

23

Thursday, 13 June 13



Coloring a Map

23

Thursday, 13 June 13



Computational Paradigm
‣Branch and prune

– pruning
• reduce the search space as much as possible

– branching
• decompose the problem into subproblems and explore the 

subproblems

24

Thursday, 13 June 13



Computational Paradigm
‣Branch and prune

– pruning
• reduce the search space as much as possible

– branching
• decompose the problem into subproblems and explore the 

subproblems

‣Pruning
• use constraints to remove, from the variable domains, 

values that cannot belong to any solution

24

Thursday, 13 June 13



Computational Paradigm
‣Branch and prune

– pruning
• reduce the search space as much as possible

– branching
• decompose the problem into subproblems and explore the 

subproblems

‣Pruning
• use constraints to remove, from the variable domains, 

values that cannot belong to any solution

‣Branching
• e.g., try all the possible values of a variable until a solution 

is found or it can be proven that no solution exists

24

Thursday, 13 June 13



25

Computational Paradigm
‣Complete method, not a heuristic

–  given enough time, it will find a solution to a 
satisfaction problem

–  given enough time, it will find an optimal 
solution to an optimization problem

Thursday, 13 June 13



25

Computational Paradigm
‣Complete method, not a heuristic

–  given enough time, it will find a solution to a 
satisfaction problem

–  given enough time, it will find an optimal 
solution to an optimization problem

‣Focus on feasibility
– how to use constraints to prune the                                                                              

search space by eliminating values                                                                    
that cannot belong to any solution

Thursday, 13 June 13



26

Computational Paradigm

Constraint
Store

Search

Thursday, 13 June 13



26

Computational Paradigm

X = 5

Constraint
Store

Search

Thursday, 13 June 13



26

Computational Paradigm

Success

X = 5

Constraint
Store

Search

Thursday, 13 June 13



26

Computational Paradigm

Success

X = 5

Y 6= 2

Constraint
Store

Search

Thursday, 13 June 13



26

Computational Paradigm

Failure

Success

X = 5

Y 6= 2

Constraint
Store

Search

Thursday, 13 June 13



27

Computational Paradigm

Search

Constraint
Store

Domain
StoreC1

C2

C4 C5

Constraint

C3

Thursday, 13 June 13



28

Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

Thursday, 13 June 13



28

Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

‣Feasibility checking
–  a constraint checks if it can be satisfied given 

the values in the domains of its variables

Thursday, 13 June 13



28

Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

‣Feasibility checking
–  a constraint checks if it can be satisfied given 

the values in the domains of its variables

‣Pruning
–  if satisfiable, a constraint determines                                                                  

which values in the domains cannot                                                                  
be part of any solution

Thursday, 13 June 13



Computational Paradigm
‣The propagation engine

–  this is the core of any constraint-programming solver
–  a simple (fixpoint) algorithm

29

propagate()
{
  repeat
    select a constraint c;
    if c is infeasible given the domain store then
      return failure;
    else
      apply the pruning algorithm associated with c;
  until no constraint can remove any value from the 
  domain of its variables;
  return success;
}

Thursday, 13 June 13



Back to the 8-Queens Problem
‣What are the decision variables?

–  many possible modelings
• this is what makes optimization problems interesting :-)

30

Thursday, 13 June 13



Back to the 8-Queens Problem
‣What are the decision variables?

–  many possible modelings
• this is what makes optimization problems interesting :-)

‣Here is one modeling
–  associate a decision variable with each column

• the variable denotes the row of the queens placed in this column
• no two queens can be placed on the same column so this is valid

30

Thursday, 13 June 13



Back to the 8-Queens Problem
‣What are the decision variables?

–  many possible modelings
• this is what makes optimization problems interesting :-)

‣Here is one modeling
–  associate a decision variable with each column

• the variable denotes the row of the queens placed in this column
• no two queens can be placed on the same column so this is valid

‣What are the constraints?
–  the queens cannot be placed on the same,

• row
• upward diagonal 
• downward diagonal

30

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣Constraints

–  the queens cannot be placed on the same, 
• row
• upward diagonal
• downward diagonal

31

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣Constraints

–  the queens cannot be placed on the same, 
• row
• upward diagonal
• downward diagonal

31

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣Constraints

–  the queens cannot be placed on the same, 
• row
• upward diagonal
• downward diagonal

31

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣Constraints

–  the queens cannot be placed on the same, 
• row
• upward diagonal
• downward diagonal

31

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣Constraints

–  the queens cannot be placed on the same, 
• row
• upward diagonal
• downward diagonal

31

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem

32

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem

‣What happens when the queen in                                                   
column 1 is assigned the value 1

32

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem

‣What happens when the queen in                                                   
column 1 is assigned the value 1

32

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

      row[1] ≠  row[2];
      ...
      row[1] ≠  row[8];
      
      row[1] ≠  row[2] + 1;
      ...
      row[1] ≠  row[8] + 7;

      row[1] ≠  row[2] - 1;
      ...
      row[1] ≠  row[8] - 7;

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem

‣What happens when the queen in                                                   
column 1 is assigned the value 1

32

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

      row[1] ≠  row[2];
      ...
      row[1] ≠  row[8];
      
      row[1] ≠  row[2] + 1;
      ...
      row[1] ≠  row[8] + 7;

      row[1] ≠  row[2] - 1;
      ...
      row[1] ≠  row[8] - 7;

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem

‣What happens when the queen in                                                   
column 1 is assigned the value 1

32

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

      row[1] ≠  row[2];
      ...
      row[1] ≠  row[8];
      
      row[1] ≠  row[2] + 1;
      ...
      row[1] ≠  row[8] + 7;

      row[1] ≠  row[2] - 1;
      ...
      row[1] ≠  row[8] - 7;

Thursday, 13 June 13



A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem

‣What happens when the queen in                                                   
column 1 is assigned the value 1

32

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}

      row[1] ≠  row[2];
      ...
      row[1] ≠  row[8];
      
      row[1] ≠  row[2] + 1;
      ...
      row[1] ≠  row[8] + 7;

      row[1] ≠  row[2] - 1;
      ...
      row[1] ≠  row[8] - 7;

Thursday, 13 June 13



33

Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

Thursday, 13 June 13



33

Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

‣Feasibility checking
–  a constraint checks if it can be satisfied given 

the values in the domains of its variables

Thursday, 13 June 13



33

Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

‣Feasibility checking
–  a constraint checks if it can be satisfied given 

the values in the domains of its variables

‣Pruning
–  if satisfiable, a constraint determines which 

values in the domains cannot be part of any 
solution

Thursday, 13 June 13



34

Computational Paradigm
‣Consider two variables X, Y

– X can take the values 0,1,2
– Y can take the values 1,2,3

‣The domain of X is the set of                                                                  
values it can take

‣A short hand for ranges of integers

Thursday, 13 June 13



34

Computational Paradigm
‣Consider two variables X, Y

– X can take the values 0,1,2
– Y can take the values 1,2,3

‣The domain of X is the set of                                                                  
values it can take

‣A short hand for ranges of integers

X

Y

2 {0, 1, 2}

2 {1, 2, 3}

Thursday, 13 June 13



34

Computational Paradigm
‣Consider two variables X, Y

– X can take the values 0,1,2
– Y can take the values 1,2,3

‣The domain of X is the set of                                                                  
values it can take

X

Y

2 {0, 1, 2}

2 {1, 2, 3}

D(X) = {0, 1, 2}

Thursday, 13 June 13



34

Computational Paradigm
‣Consider two variables X, Y

– X can take the values 0,1,2
– Y can take the values 1,2,3

‣The domain of X is the set of                                                                  
values it can take

‣A short hand for ranges of integers

X

Y

2 {0, 1, 2}

2 {1, 2, 3}

D(X) = {0, 1, 2}

[1..5] = {1, 2, 3, 4, 5}

Thursday, 13 June 13



35

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Feasibility checking 

X

Y

2 {0, 1, 2}

2 {1, 2, 3}

Thursday, 13 June 13



35

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Feasibility checking 

X

Y

2 {0, 1, 2}

2 {1, 2, 3}
|D(X) [D(Y )| � 2

Thursday, 13 June 13



35

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Feasibility checking 

X

Y

2 {0, 1, 2}

2 {1, 2, 3}
|D(X) [D(Y )| � 2

|{0, 1, 2} [ {1, 2, 3}| � 2

Thursday, 13 June 13



35

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Feasibility checking 

X

Y

2 {0, 1, 2}

2 {1, 2, 3}
|D(X) [D(Y )| � 2

|{0, 1, 2} [ {1, 2, 3}| � 2

|{0, 1, 2, 3}| � 2

Thursday, 13 June 13



35

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Feasibility checking 

X

Y

2 {0, 1, 2}

2 {1, 2, 3}
|D(X) [D(Y )| � 2

|{0, 1, 2} [ {1, 2, 3}| � 2

|{0, 1, 2, 3}| � 2

4 � 2

Thursday, 13 June 13



36

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Pruning

X

Y

Thursday, 13 June 13



36

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Pruning

X

Y 2 {1, 2, 3}
D(X) = {1}

2 {1}

Thursday, 13 June 13



36

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Pruning

X

Y 2 {1, 2, 3}
D(X) = {1}

) D(Y ) \ {1}

2 {1}

Thursday, 13 June 13



36

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Pruning

X

Y

2 {0, 1, 2}

D(X) = {1}
) D(Y ) \ {1}

D(Y ) = {2}

2 {2}

Thursday, 13 June 13



36

Computational Paradigm
‣Consider constraint, X ≠ Y
‣Pruning

X

Y

2 {0, 1, 2}

D(X) = {1}
) D(Y ) \ {1}

D(Y ) = {2}
) D(X) \ {2}

2 {2}

Thursday, 13 June 13



Until Next Time

37

Thursday, 13 June 13


