Discrete
Optimization

Constraint Programming: Part |



Goal of the Lecture

» Basic introduction to constraint programming
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Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—remove values that cannot appear in any solution

> Modeling methodology

—convey the structure of the problem as explicitly
as possible

—express substructures of the problem
—give solvers as much information as possible



The 8-Queens Problem

» Specification

—place 8 queens on a chessboard so that none
of them attach each other

—two queens attack each other if they are on
the same column, row, or diagonal
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Constraint Programming

» Computational paradigm

e Use constraints to reduce the set of values that each
variable can take

e make a choice when no more deduction can be
performed

» \What is a choice?

* there are many choices!

 for the moment, assume a choice assigns a value to a
variable

> Choices can be wrong

* In optimization, they are often wrong :-(

e the solver then backtracks,
l.e., It tries another value
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Coloring a Map

» How to color this map with constraint programming?
—choose the decision variables
—eXxpress the constraints in terms of the decision variables

» What are the decision variables?
—the color given to each country

» \What are the domains of the decision variables?
—the domain iIs the set of values that a variable can take
—four different colors

>» How do you express the constraints?

— specify that two adjacent countries cannot be given the
same color



Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

solve {
color[Belgium]
color[Belgium]
color[Belgium]

color[France];
color[Germany] ;
color[Netherlands];
color [Belgium] color [Luxembourqg] ;
color [Denmark] color[Germany] ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];
color[Germany] # color[Luxembourq] ;

H oH W W W
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Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

solve {
color[Belgium]
color[Belgium]
color[Belgium]

color[France];
color[Germany] ;
color[Netherlands];
color [Belgium] color [Luxembourqg] ;
color [Denmark] color[Germany] ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];
color[Germany] # color[Luxembourq] ;

H oH W W W
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performed
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Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—make a choice when no more deduction can be
performed

» What does this mean for the coloring problem?

—no value can be removed Initially,
so the system must make a choice

18
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Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

----------------------------------------------------------

‘color [Belgium] # color[France];
color[Belgium] # color[Germany]; ,
:color[Belgium] # color[Netherlands];:
icolor [Belgium] # color[Luxembourg]; ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];
color[Germany] # color[Luxembourq] ;

}

21
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Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

---------------------------------------------

' black # color[France]; :
 black # color[Germany] ; '
 black # color[Netherlands];

i black # color[Luxembourg] ; ’5
color[Denmark] # color[Germany] ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];

color[Germany] # color[Luxembourq];

22
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Computational Paradigm

> Branch and prune
— pruning
e reduce the search space as much as possible

— branching

* decompose the problem into subproblems and explore the
subproblems
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> Branch and prune
— pruning
e reduce the search space as much as possible

—branching

* decompose the problem into subproblems and explore the
subproblems

> Pruning

e use constraints to remove, from the variable domains,
values that cannot belong to any solution

> Branching

* e.9., try all the possible values of a variable until a solution
Is found or it can be proven that no solution exists

24
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Computational Paradigm

» Complete method, not a heuristic

— given enough time, it will find a solution to a
satisfaction problem

— given enough time, it will find an optimal
solution to an optimization problem
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Computational Paradigm

» Complete method, not a heuristic

— given enough time, it will find a solution to a
satisfaction problem

— given enough time, it will find an optimal
solution to an optimization problem

> Focus on feasibility

—how to use constraints to prune the
search space by eliminating values
that cannot belong to any solution

25
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— feasibility checking
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Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

> Feasibility checking

— a constraint checks if it can be satisfied given
the values in the domains of its variables

> Pruning

— If satisfiable, a constraint determines
which values in the domains cannot
be part of any solution

28



Computational Paradigm

> The propagation engine
— this is the core of any constraint-programming solver
— a simple (fixpoint) algorithm

propagate ()
{
repeat
select a constraint c;
1f ¢ 1s i1infeasible given the domain store then
return failure;
else
apply the pruning algorithm associated with c;
until no constraint can remove any value from the
domain of its variables;
return success;

}

29
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— many possible modelings
* this Is what makes optimization problems interesting :-)

30



Back to the 8-Queens Problem

» \What are the decision variables?

— many possible modelings
* this is what makes optimization problems interesting :-)

» Here is one modeling

— assoclate a decision variable with each column

 the variable denotes the row of the queens placed in this column
* N0 two queens can be placed on the same column so this is valid

30



Back to the 8-Queens Problem

» \What are the decision variables?

— many possible modelings
* this is what makes optimization problems interesting :-)

» Here is one modeling

— associate a decision variable with each column
 the variable denotes the row of the queens placed in this column
* N0 two queens can be placed on the same column so this is valid

» \What are the constraints?

— the queens cannot be placed on the same,

* oW
* upward diagonal
 downward diagonal
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» Constraints

— the queens cannot be placed on the same,
°* TOW
* upward diagonal
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A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW
e upward diagonal
 downward diagonal

range R = 1. .8;
var{int} row[R] in R;
solve {
forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];
row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}

31
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A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW

e upward diagonal

 downward diagonal

range R = 1. .8;

var{int} row[R] in R;

solve {

forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];

row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}

31

Thursday, 13 June 13
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» Constraints

— the queens cannot be placed on the same,
°* TOW

e upward diagonal

 downward diagonal

range R = 1. .8;

var{int} row[R] in R;

solve {

forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];

row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}
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A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW
e upward diagonal
 downward diagonal

range R = 1. .8;

var{int} row[R] in R;

solve {

forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];
row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}
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A Constraint Program for the 8-Queens

> A simple model for the 8-queens problem

range R = 1..8;
var{int} row|[R]
solve {

in R;

forall(i in R,jJ in R: 1 < j) {

row[i] #
row[i] #
row[i] #
}
}

row[]j];
row[]J] + (3 - 1);
row[]] - (J - 1);




A Constraint Program for the 8-Queens

> A simple model for the 8-queens problem

> \What happens when the queen In
column 1 is assigned the value 1
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range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i1 < j) {
row[i] # row[j];
row[i] # row[j] + (5 - i);
row[i] # row[j] - (3 - 1i);
}
}
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A Constraint Program for the 8-Queens

range R = 1..8;
var{int} row[R] in R;
solve {

forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (5 - i);
row[i] # row[j] - (3 - 1i);
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> \What happens when the
column 1 Is assigned th

e value 1

row[1l]
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A Constraint Program for the 8-Queens

> A simple model for the 8-queens problem

gqueen in

range R = 1..8;
var{int} rowl[R]
solve {

in R;

forall(i in R,jJ in R: 1 < j) {

row[i] #
row[i] #
row[i] #

row[]];
row[j§] + (3 - i);
row[]] - (J - 1);
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Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

> Feasibility checking

— a constraint checks if it can be satisfied given
the values in the domains of its variables

> Pruning

— If satisfiable, a constraint determines which
values in the domains cannot be part of any
solution

33



Computational Paradigm

» Consider two variables X, Y
— X can take the values 0,1,2
—Y can take the values 1,2,3

» The domain of X is the set of
values it can take

> A short hand for ranges of integers
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Computational Paradigm

> Consider two variables X, Y - {O, 1, 2}

— X can take the values 0,1,2

—Y can take the values 1,2,3
{1, 2, 3)

» The domain of X is the set of
values it can take

D(X) =10, 1, 2}
> A short hand for ranges of integers

1.5] = {1, 2, 3, 4, 5}
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» Consider constraint, X #Y - {O, 1, 2}

> Feasibility checking

c {1, 2, 3}
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» Consider constraint, X #Y = {07 17 2}
> Feasibility checking

1, 2, 3
ID(X)UD(Y)| = 2 - }

{0, 1, 2} U{1, 2, 3}| > 2
{0, 1, 2, 3}[ > 2
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» Consider constraint, X #Y = {07 17 2}
> Feasibility checking

1, 2, 3
ID(X)UD(Y)| = 2 - }

{0, 1, 2} U{1, 2, 3}| > 2
{0, 1, 2, 3}| > 2
4 > 2
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» Consider constraint, X #Y

> Pruning
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Computational Paradigm

» Consider constraint, X #Y - {1}

> Pruning

c {1, 2, 3}
D(X) = {1}
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> Consider constraint, X # Y . - {1}

> Pruning
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» Consider constraint, X #Y - {O, 1, 2}

> Pruning

c {2}
D(X) = {1}
= D(Y) \ {1}

D(Y) =12
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Computational Paradigm

» Consider constraint, X #Y - {O, 1, }

> Pruning

c {2}

D(X) =1}
= DY)\ {1}
D(Y) =12}

= D(X) \ 2}

36



Until Next Time
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