Discrete
Optimization

Constraint Programming: Part |

Goal of the Lecture

» Basic introduction to constraint programming

Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—remove values that cannot appear in any solution

Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—remove values that cannot appear in any solution

> Modeling methodology

—convey the structure of the problem as explicitly
as possible

—express substructures of the problem
—give solvers as much information as possible

The 8-Queens Problem

» Specification

—place 8 queens on a chessboard so that none
of them attach each other

—two queens attack each other if they are on
the same column, row, or diagonal

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

Faiure! [T N
B Tl
OEEN BN
=l ||
B e

|7 |
|
g |]

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

The 8-Queens Problem

Constraint Programming

» Computational paradigm

e use constraints to reduce the set of values that each
variable can take

e make a choice when no more deduction can be
performed

Thursday, 13 June 13

Constraint Programming

» Computational paradigm

e Use constraints to reduce the set of values that each
variable can take

e make a choice when no more deduction can be
performed

» \What is a choice?

* there are many choices!

 for the moment, assume a choice assigns a value to a
variable

Thursday, 13 June 13

Constraint Programming

» Computational paradigm

e Use constraints to reduce the set of values that each
variable can take

e make a choice when no more deduction can be
performed

» \What is a choice?

* there are many choices!

 for the moment, assume a choice assigns a value to a
variable

> Choices can be wrong

* In optimization, they are often wrong :-(

e the solver then backtracks,
l.e., It tries another value

Thursday, 13 June 13

Coloring a Map

» How to color this map with constraint programming?
—choose the decision variables
—eXxpress the constraints in terms of the decision variables

Coloring a Map

» How to color this map with constraint programming?
—choose the decision variables
—eXxpress the constraints in terms of the decision variables

» What are the decision variables?
—the color given to each country

Coloring a Map

» How to color this map with constraint programming?
—choose the decision variables
—eXxpress the constraints in terms of the decision variables

» What are the decision variables?
—the color given to each country

» \What are the domains of the decision variables?
—the domain iIs the set of values that a variable can take
—four different colors

Coloring a Map

» How to color this map with constraint programming?
—choose the decision variables
—eXxpress the constraints in terms of the decision variables

» What are the decision variables?
—the color given to each country

» \What are the domains of the decision variables?
—the domain iIs the set of values that a variable can take
—four different colors

>» How do you express the constraints?

— specify that two adjacent countries cannot be given the
same color

Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

solve {
color[Belgium]
color[Belgium]
color[Belgium]

color[France];
color[Germany] ;
color[Netherlands];
color [Belgium] color [Luxembourqg] ;
color [Denmark] color[Germany] ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];
color[Germany] # color[Luxembourq] ;

H oH W W W

9

Thursday, 13 June 13

Coloring a Map

Coloring a Map

Coloring a Map

Thursday, 13 June 13

Coloring a Map

Thursday, 13 June 13

Coloring a Map

12 {}
Thursday, 13 June 13

Coloring a Map

12 {}
Thursday, 13 June 13

Coloring a Map

13 ﬂ
Thursday, 13 June 13

Coloring a Map

13 {}
Thursday, 13 June 13

Coloring a Map

Coloring a Map

Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—make a choice when no more deduction can be
performed

16

Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—make a choice when no more deduction can be
performed

» What does this mean for the coloring problem?

16

Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

solve {
color[Belgium]
color[Belgium]
color[Belgium]

color[France];
color[Germany] ;
color[Netherlands];
color [Belgium] color [Luxembourqg] ;
color [Denmark] color[Germany] ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];
color[Germany] # color[Luxembourq] ;

H oH W W W

17

Thursday, 13 June 13

Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—make a choice when no more deduction can be
performed

18

Constraint Programming

» Computational paradigm

— use constraints to reduce the set of values that
each variable can take

—make a choice when no more deduction can be
performed

» What does this mean for the coloring problem?

—no value can be removed Initially,
so the system must make a choice

18

Coloring a Map

Coloring a Map

Thursday, 13 June 13

Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

--

‘color [Belgium] # color[France];
color[Belgium] # color[Germany]; ,
:color[Belgium] # color[Netherlands];:
icolor [Belgium] # color[Luxembourg]; ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];
color[Germany] # color[Luxembourq] ;

}

21

Thursday, 13 June 13

Coloring a Map

enum Countries = { Belgium, Denmark, France, Germany,
Netherlands, Luxembourqg };
enum Colors = { black, yellow, red, blue };

var{Colors} color[Countries];

' black # color[France]; :
 black # color[Germany] ; '
 black # color[Netherlands];

i black # color[Luxembourg] ; ’5
color[Denmark] # color[Germany] ;
color[France] # color[Germany];
color[France] # color|[Luxembourqg];
color [Germany] # color[Netherlands];

color[Germany] # color[Luxembourq];

22

Thursday, 13 June 13

Coloring a Map

Thursday, 13 June 13

Coloring a Map

Thursday, 13 June 13

Computational Paradigm

> Branch and prune
— pruning
e reduce the search space as much as possible

— branching

* decompose the problem into subproblems and explore the
subproblems

24

Thursday, 13 June 13

Computational Paradigm

> Branch and prune
— pruning
e reduce the search space as much as possible

—branching

* decompose the problem into subproblems and explore the
subproblems

> Pruning

e use constraints to remove, from the variable domains,
values that cannot belong to any solution

24

Thursday, 13 June 13

Computational Paradigm

> Branch and prune
— pruning
e reduce the search space as much as possible

—branching

* decompose the problem into subproblems and explore the
subproblems

> Pruning

e use constraints to remove, from the variable domains,
values that cannot belong to any solution

> Branching

* e.9., try all the possible values of a variable until a solution
Is found or it can be proven that no solution exists

24

Thursday, 13 June 13

Computational Paradigm

» Complete method, not a heuristic

— given enough time, it will find a solution to a
satisfaction problem

— given enough time, it will find an optimal
solution to an optimization problem

25

Computational Paradigm

» Complete method, not a heuristic

— given enough time, it will find a solution to a
satisfaction problem

— given enough time, it will find an optimal
solution to an optimization problem

> Focus on feasibility

—how to use constraints to prune the
search space by eliminating values
that cannot belong to any solution

25

Computational Paradigm

Constraint
Store

26

Computational Paradigm

Constraint
Store

26

Computational Paradigm

Constraint

26

Computational Paradigm

Constraint

26

Computational Paradigm

Constraint

26

Computational Paradigm

Constraint @

Store @\/\ j

\
Constraint e

L»@ Domain

Store
_ %

Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

28

Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

> Feasibility checking

— a constraint checks if it can be satisfied given
the values in the domains of its variables

28

Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

> Feasibility checking

— a constraint checks if it can be satisfied given
the values in the domains of its variables

> Pruning

— If satisfiable, a constraint determines
which values in the domains cannot
be part of any solution

28

Computational Paradigm

> The propagation engine
— this is the core of any constraint-programming solver
— a simple (fixpoint) algorithm

propagate ()
{
repeat
select a constraint c;
1f ¢ 1s i1infeasible given the domain store then
return failure;
else
apply the pruning algorithm associated with c;
until no constraint can remove any value from the
domain of its variables;
return success;

}

29

Thursday, 13 June 13

Back to the 8-Queens Problem

» \What are the decision variables?

— many possible modelings
* this Is what makes optimization problems interesting :-)

30

Back to the 8-Queens Problem

» \What are the decision variables?

— many possible modelings
* this is what makes optimization problems interesting :-)

» Here is one modeling

— assoclate a decision variable with each column

 the variable denotes the row of the queens placed in this column
* N0 two queens can be placed on the same column so this is valid

30

Back to the 8-Queens Problem

» \What are the decision variables?

— many possible modelings
* this is what makes optimization problems interesting :-)

» Here is one modeling

— associate a decision variable with each column
 the variable denotes the row of the queens placed in this column
* N0 two queens can be placed on the same column so this is valid

» \What are the constraints?

— the queens cannot be placed on the same,

* oW
* upward diagonal
 downward diagonal

30

A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW
* upward diagonal
 downward diagonal

31

A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW
e upward diagonal
 downward diagonal

range R = 1. .8;
var{int} row[R] in R;
solve {
forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];
row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}

31

Thursday, 13 June 13

A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW

e upward diagonal

 downward diagonal

range R = 1. .8;

var{int} row[R] in R;

solve {

forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];

row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}

31

Thursday, 13 June 13

A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW

e upward diagonal

 downward diagonal

range R = 1. .8;

var{int} row[R] in R;

solve {

forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];

row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}

31

Thursday, 13 June 13

A Constraint Program for the 8-Queens

» Constraints

— the queens cannot be placed on the same,
°* TOW
e upward diagonal
 downward diagonal

range R = 1. .8;

var{int} row[R] in R;

solve {

forall(i in R,jJ in R: 1 < j) {
row[i] # row[j];
row[i] # row[j] + (jJ - 1);
row[i] # row[j] - (J - 1);

}

31

Thursday, 13 June 13

32

A Constraint Program for the 8-Queens

> A simple model for the 8-queens problem

range R = 1..8;
var{int} row|[R]
solve {

in R;

forall(i in R,jJ in R: 1 < j) {

row[i] #
row[i] #
row[i] #
}
}

row[]j];
row[]J] + (3 - 1);
row[]] - (J - 1);

A Constraint Program for the 8-Queens

> A simple model for the 8-queens problem

> \What happens when the queen In
column 1 is assigned the value 1

32

range R = 1..8;
var{int} row[R] in R;
solve {
forall(i in R,j in R: i1 < j) {
row[i] # row[j];
row[i] # row[j] + (5 - i);
row[i] # row[j] - (3 - 1i);
}
}

32

> A simple model for the 8-queens problem

> \What happens when the queen In
column 1 is assigned the value 1

A Constraint Program for the 8-Queens

row[1l]
row[1]
row|[1l]
row[1]
row|[1l]

row[1]

+

+

rowl[2];

row|[8];

row[2]
row|[8]
row|[2]

row|[8]

range R = 1..8;
var{int} rowl[R]
solve {

in R;

forall(i in R,jJ in R: 1 < j) {

row[i] #
row[i] #
row[i] #
}
}

row[]];
row[j§] + (3 - i);
row[]] - (J - 1);

A Constraint Program for the 8-Queens

> A simple model for the 8-queens problem

> \What happens when the queen In

column 1 is assigned the |
}

row[1l]
row[1]
row|[1l]
row[1]

row|[1l]

row[1]

+

+

+

rowl[2];

row|[8];

row[2]
row|[8]
row|[2]

row|[8]

32

range R = 1..8;
var{int} row[R] in R;
solve {

forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (5 - i);
row[i] # row[j] - (3 - 1i);

32

> A simple model for the 8-queens problem

> \What happens when the queen In

column 1 is assigned the

row[1l]
row[1]
row|[1l]
row[1]
row|[1l]

row[1]

rowl[2];

row|[8];

row[2]
row|[8]
row|[2]

row|[8]

A Constraint Program for the 8-Queens

range R = 1..8;
var{int} row[R] in R;
solve {

forall(i in R,j in R: i < j) {
row[i] # row[j];
row[i] # row[j] + (5 - i);
row[i] # row[j] - (3 - 1i);

32

> \What happens when the
column 1 Is assigned th

e value 1

row[1l]
row[1]
row|[1l]
row[1]
row|[1l]

row[1]

+

+

rowl[2];

row|[8];

row[2]
row|[8]
row|[2]

row|[8]

A Constraint Program for the 8-Queens

> A simple model for the 8-queens problem

gqueen in

range R = 1..8;
var{int} rowl[R]
solve {

in R;

forall(i in R,jJ in R: 1 < j) {

row[i] #
row[i] #
row[i] #

row[]];
row[j§] + (3 - i);
row[]] - (J - 1);

\

Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

33

Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

> Feasibility checking

— a constraint checks if it can be satisfied given
the values in the domains of its variables

33

Computational Paradigm

>» What does a constraint do?
— feasibility checking
— pruning

> Feasibility checking

— a constraint checks if it can be satisfied given
the values in the domains of its variables

> Pruning

— If satisfiable, a constraint determines which
values in the domains cannot be part of any
solution

33

Computational Paradigm

» Consider two variables X, Y
— X can take the values 0,1,2
—Y can take the values 1,2,3

» The domain of X is the set of
values it can take

> A short hand for ranges of integers

34

Computational Paradigm

> Consider two variables X, Y - {O, 1, 2}

— X can take the values 0,1,2

—Y can take the values 1,2,3
{1, 2, 3)

» The domain of X is the set of
values it can take

> A short hand for ranges of integers

34

Computational Paradigm

> Consider two variables X, Y - {O, 1, 2}

— X can take the values 0,1,2

—Y can take the values 1,2,3
{1, 2, 3)

» The domain of X is the set of
values it can take

D(X) =10, 1, 2}

34

Computational Paradigm

> Consider two variables X, Y - {O, 1, 2}

— X can take the values 0,1,2

—Y can take the values 1,2,3
{1, 2, 3)

» The domain of X is the set of
values it can take

D(X) =10, 1, 2}
> A short hand for ranges of integers

1.5] = {1, 2, 3, 4, 5}

34

Computational Paradigm

» Consider constraint, X #Y - {O, 1, 2}

> Feasibility checking

c {1, 2, 3}

35

Computational Paradigm

» Consider constraint, X #Y = {07 17 2}
> Feasibility checking

1, 2, 3
ID(X)UD(Y)| = 2 - }

35

Computational Paradigm

» Consider constraint, X #Y = {07 17 2}
> Feasibility checking

1, 2, 3
ID(X)UD(Y)| = 2 - }

{0, 1, 2} UA{L, 2, 3} > 2

35

Computational Paradigm

» Consider constraint, X #Y = {07 17 2}
> Feasibility checking

1, 2, 3
ID(X)UD(Y)| = 2 - }

{0, 1, 2} U{1, 2, 3}| > 2
{0, 1, 2, 3}[> 2

35

Computational Paradigm

» Consider constraint, X #Y = {07 17 2}
> Feasibility checking

1, 2, 3
ID(X)UD(Y)| = 2 - }

{0, 1, 2} U{1, 2, 3}| > 2
{0, 1, 2, 3}| > 2
4 > 2

35

Computational Paradigm

» Consider constraint, X #Y

> Pruning

36

Computational Paradigm

» Consider constraint, X #Y - {1}

> Pruning

c {1, 2, 3}
D(X) = {1}

36

Computational Paradigm

> Consider constraint, X # Y . - {1}

> Pruning

36

Computational Paradigm

» Consider constraint, X #Y - {O, 1, 2}

> Pruning

c {2}
D(X) = {1}
= D(Y) \ {1}

D(Y) =12

36

Computational Paradigm

» Consider constraint, X #Y - {O, 1, }

> Pruning

c {2}

D(X) =1}
= DY)\ {1}
D(Y) =12}

= D(X) \ 2}

36

Until Next Time

37

