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Goal of the Lecture
‣Basic introduction to constraint programming
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Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– remove values that cannot appear in any solution
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Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– remove values that cannot appear in any solution

‣Modeling methodology
– convey the structure of the problem as explicitly 

as possible
– express substructures of the problem
– give solvers as much information as possible
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The 8-Queens Problem
‣Specification

– place 8 queens on a chessboard so that none 
of them attach each other 

– two queens attack each other if they are on 
the same column, row, or diagonal
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Constraint Programming
‣Computational paradigm

• use constraints to reduce the set of values that each 
variable can take 

• make a choice when no more deduction can be 
performed
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• there are many choices!
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Constraint Programming
‣Computational paradigm

• use constraints to reduce the set of values that each 
variable can take 

• make a choice when no more deduction can be 
performed

‣What is a choice?
• there are many choices!
• for the moment, assume a choice assigns a value to a 

variable

‣Choices can be wrong
• in optimization, they are often wrong :-(
• the solver then backtracks,                                                                                 

i.e., it tries another value
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Coloring a Map
‣How to color this map with constraint programming?

– choose the decision variables
– express the constraints in terms of the decision variables
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Coloring a Map
‣How to color this map with constraint programming?

– choose the decision variables
– express the constraints in terms of the decision variables

‣What are the decision variables?
– the color given to each country

‣What are the domains of the decision variables?
– the domain is the set of values that a variable can take
– four different colors

‣How do you express the constraints?
– specify that two adjacent countries cannot be given the 

same color
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Coloring a Map

9

enum Countries = { Belgium, Denmark, France, Germany,       
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
color[Belgium] ≠ color[France];
color[Belgium] ≠ color[Germany];
color[Belgium] ≠ color[Netherlands];
color[Belgium] ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}
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Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 
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Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– make a choice when no more deduction can be 
performed

‣What does this mean for the coloring problem?
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Coloring a Map
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enum Countries = { Belgium, Denmark, France, Germany, 
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
color[Belgium] ≠ color[France];
color[Belgium] ≠ color[Germany];
color[Belgium] ≠ color[Netherlands];
color[Belgium] ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}
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Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 
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Constraint Programming
‣Computational paradigm

– use constraints to reduce the set of values that 
each variable can take 

– make a choice when no more deduction can be 
performed

‣What does this mean for the coloring problem?
– no value can be removed initially,                                                                           

so the system must make a choice
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Coloring a Map
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Coloring a Map
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enum Countries = { Belgium, Denmark, France, Germany, 
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
color[Belgium] ≠ color[France];
color[Belgium] ≠ color[Germany];
color[Belgium] ≠ color[Netherlands];
color[Belgium] ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}
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Coloring a Map
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enum Countries = { Belgium, Denmark, France, Germany, 
                   Netherlands, Luxembourg };
enum Colors = { black, yellow, red, blue };
var{Colors} color[Countries];

solve {
black ≠ color[France];
black ≠ color[Germany];
black ≠ color[Netherlands];
black ≠ color[Luxembourg];
color[Denmark] ≠ color[Germany];
color[France] ≠ color[Germany];
color[France] ≠ color[Luxembourg];
color[Germany] ≠ color[Netherlands];
color[Germany] ≠ color[Luxembourg];

}
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Computational Paradigm
‣Branch and prune

– pruning
• reduce the search space as much as possible

– branching
• decompose the problem into subproblems and explore the 

subproblems

24
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Computational Paradigm
‣Branch and prune

– pruning
• reduce the search space as much as possible

– branching
• decompose the problem into subproblems and explore the 

subproblems

‣Pruning
• use constraints to remove, from the variable domains, 

values that cannot belong to any solution

‣Branching
• e.g., try all the possible values of a variable until a solution 

is found or it can be proven that no solution exists

24
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Computational Paradigm
‣Complete method, not a heuristic

–  given enough time, it will find a solution to a 
satisfaction problem

–  given enough time, it will find an optimal 
solution to an optimization problem
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Computational Paradigm
‣Complete method, not a heuristic

–  given enough time, it will find a solution to a 
satisfaction problem

–  given enough time, it will find an optimal 
solution to an optimization problem

‣Focus on feasibility
– how to use constraints to prune the                                                                              

search space by eliminating values                                                                    
that cannot belong to any solution
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Computational Paradigm

Constraint
Store

Search
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Computational Paradigm
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Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning
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Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

‣Feasibility checking
–  a constraint checks if it can be satisfied given 

the values in the domains of its variables

‣Pruning
–  if satisfiable, a constraint determines                                                                  

which values in the domains cannot                                                                  
be part of any solution
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Computational Paradigm
‣The propagation engine

–  this is the core of any constraint-programming solver
–  a simple (fixpoint) algorithm

29

propagate()
{
  repeat
    select a constraint c;
    if c is infeasible given the domain store then
      return failure;
    else
      apply the pruning algorithm associated with c;
  until no constraint can remove any value from the 
  domain of its variables;
  return success;
}
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Back to the 8-Queens Problem
‣What are the decision variables?

–  many possible modelings
• this is what makes optimization problems interesting :-)

30
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Back to the 8-Queens Problem
‣What are the decision variables?

–  many possible modelings
• this is what makes optimization problems interesting :-)

‣Here is one modeling
–  associate a decision variable with each column

• the variable denotes the row of the queens placed in this column
• no two queens can be placed on the same column so this is valid

‣What are the constraints?
–  the queens cannot be placed on the same,

• row
• upward diagonal 
• downward diagonal

30
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A Constraint Program for the 8-Queens
‣Constraints

–  the queens cannot be placed on the same, 
• row
• upward diagonal
• downward diagonal

31
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A Constraint Program for the 8-Queens
‣Constraints

–  the queens cannot be placed on the same, 
• row
• upward diagonal
• downward diagonal

31

range R = 1..8;
var{int} row[R] in R;
solve {
   forall(i in R,j in R: i < j) {
      row[i] ≠  row[j];
      row[i] ≠  row[j] + (j - i);
      row[i] ≠  row[j] - (j - i);
   }
}
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A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem
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range R = 1..8;
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solve {
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A Constraint Program for the 8-Queens
‣A simple model for the 8-queens problem

‣What happens when the queen in                                                   
column 1 is assigned the value 1
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Computational Paradigm
‣What does a constraint do?

–  feasibility checking
–  pruning

‣Feasibility checking
–  a constraint checks if it can be satisfied given 

the values in the domains of its variables

‣Pruning
–  if satisfiable, a constraint determines which 

values in the domains cannot be part of any 
solution
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Computational Paradigm
‣Consider two variables X, Y

– X can take the values 0,1,2
– Y can take the values 1,2,3

‣The domain of X is the set of                                                                  
values it can take

‣A short hand for ranges of integers
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Computational Paradigm
‣Consider two variables X, Y

– X can take the values 0,1,2
– Y can take the values 1,2,3

‣The domain of X is the set of                                                                  
values it can take

X

Y

2 {0, 1, 2}

2 {1, 2, 3}

D(X) = {0, 1, 2}
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Computational Paradigm
‣Consider two variables X, Y

– X can take the values 0,1,2
– Y can take the values 1,2,3

‣The domain of X is the set of                                                                  
values it can take

‣A short hand for ranges of integers

X

Y

2 {0, 1, 2}

2 {1, 2, 3}

D(X) = {0, 1, 2}

[1..5] = {1, 2, 3, 4, 5}
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Computational Paradigm
‣Consider constraint, X ≠ Y
‣Feasibility checking 

X

Y

2 {0, 1, 2}

2 {1, 2, 3}
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‣Consider constraint, X ≠ Y
‣Feasibility checking 
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2 {1, 2, 3}
|D(X) [D(Y )| � 2
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Y
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Computational Paradigm
‣Consider constraint, X ≠ Y
‣Feasibility checking 

X

Y

2 {0, 1, 2}

2 {1, 2, 3}
|D(X) [D(Y )| � 2

|{0, 1, 2} [ {1, 2, 3}| � 2

|{0, 1, 2, 3}| � 2

4 � 2
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‣Consider constraint, X ≠ Y
‣Pruning

X

Y
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‣Consider constraint, X ≠ Y
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X

Y 2 {1, 2, 3}
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‣Consider constraint, X ≠ Y
‣Pruning

X
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Computational Paradigm
‣Consider constraint, X ≠ Y
‣Pruning

X

Y

2 {0, 1, 2}

D(X) = {1}
) D(Y ) \ {1}

D(Y ) = {2}

2 {2}
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Computational Paradigm
‣Consider constraint, X ≠ Y
‣Pruning

X

Y

2 {0, 1, 2}

D(X) = {1}
) D(Y ) \ {1}

D(Y ) = {2}
) D(X) \ {2}

2 {2}
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Until Next Time
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