Discrete
Optimization

Greedy Algorithms: Part |



Goals of the Lecture

»\What is a greedy algorithm
>» How do we go beyond greedy?



What is Greedy?

» Assume the it’s “easy” to build a feasible
solution

— We can focus on the objective function



What is Greedy?

» Assume the it's “easy” to build a feasible
solution

— We can focus on the objective function

> Key ldea:

— Build a solution by picking the value of one
decision variable at a time

— At each step, pick the value that is best for
the objective



What is Greedy?

» Assume the it's “easy” to build a feasible
solution

— We can focus on the objective function

> Key ldea:

— Build a solution by picking the value of one
decision variable at a time

— At each step, pick the value that is best for
the objective

» Called: greedy algorithms or heuristics



Greedy by Example

> The Traveling Salesman Problem (TSP)




TSP Solution 1




TSP Solution 2

o—

|

4—0/'

. f/\




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor

o —0




Greedy TSP

> [dea: Nearest Neighbor

L Ned




Greedy TSP

> [dea: Nearest Neighbor

L N\vs -




Greedy TSP

> [dea: Nearest Neighbor

L N\vs -




Greedy TSP

> [dea: Nearest Neighbor

L N\vs -

0———»0/‘



Greedy TSP

> [dea: Nearest Neighbor

L \v?

0———»0/




Greedy TSP

> [dea: Nearest Neighbor

N, N\

0———»0/



Greedy TSP

> [dea: Nearest Neighbor

TN )

0———»0/




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor

VAN I




Greedy TSP

> [dea: Nearest Neighbor

SNA e




Greedy TSP

> [dea: Nearest Neighbor

SNA e
S




Greedy TSP

> [dea: Nearest Neighbor
@

e




Greedy TSP

> [dea: Nearest Neighbor
@

~,_




Greedy TSP

> [dea: Nearest Neighbor
‘ / ‘\

~,_




Greedy TSP

> [dea: Nearest Neighbor




Greedy TSP

> [dea: Nearest Neighbor

~,_




Greedy TSP

> [dea: Nearest Neighbor

7

~,_



Greedy TSP

» |[dea:lnsertion method

10



Greedy TSP

» |[dea:lnsertion method

11



Greedy TSP

» |[dea:lnsertion method

12



Greedy TSP

» |[dea:lnsertion method

13



Greedy TSP

» |[dea:lnsertion method

14



Greedy Algorithms Overview

> For one problem, there are many possible
greedy algorithms.

—some will do better than others
—depends on the input!

15



Greedy Algorithms Overview

> For one problem, there are many possible
greedy algorithms.

—some will do better than others
—depends on the input!

» Advantages
—quick to design and implement
—can be very fast

15



Greedy Algorithms Overview

> For one problem, there are many possible
greedy algorithms.

—some will do better than others
—depends on the input!

» Advantages
—quick to design and implement
—can be very fast

> Problems
—no quality guarantees (in general)
—quality can vary widely on the input
— problem feasibly needs to be “easy”

15



The Essence of this Class

> We can always start with greedy

16



The Essence of this Class

> We can always start with greedy

> Going beyond greedy
— Constraint Programming
—Local Search
— Mixed Integer Programming

16



The Essence of this Class

> We can always start with greedy

> Going beyond greedy
— Constraint Programming
—Local Search
— Mixed Integer Programming

» \Ways to
—reliably find feasible solutions
—reliably build high-quality solutions

 robust to different inputs
—Ideally, proving those solutions are the best

16



Until Next Time

17



