Discrete
Optimization

Greedy Algorithms: Part |



Goals of the Lecture

»\What is a greedy algorithm
>» How do we go beyond greedy?
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What is Greedy?

» Assume the it's “easy” to build a feasible
solution

— We can focus on the objective function

> Key ldea:

— Build a solution by picking the value of one
decision variable at a time

— At each step, pick the value that is best for
the objective

» Called: greedy algorithms or heuristics



Greedy by Example

> The Traveling Salesman Problem (TSP)
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Greedy Algorithms Overview

> For one problem, there are many possible
greedy algorithms.

—some will do better than others
—depends on the input!

» Advantages
—quick to design and implement
—can be very fast

> Problems
—no quality guarantees (in general)
—quality can vary widely on the input
— problem feasibly needs to be “easy”
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The Essence of this Class

> We can always start with greedy

> Going beyond greedy
— Constraint Programming
—Local Search
— Mixed Integer Programming

» \Ways to
—reliably find feasible solutions
—reliably build high-quality solutions

 robust to different inputs
—Ideally, proving those solutions are the best
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Until Next Time
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