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The uniformity of the cortical architecture and the ability of functions to move to
different areas of cortex following early damage strongly suggests that there is a single
basic learning algorithm for extracting underlying structure from richly-structured, high-
dimensional sensory data. There have been many attempts to design such an algorithm,
but until recently they all suffered from serious computational weaknesses. This chapter
describes several of the proposed algorithms and shows how they can be combined to
produce hybrid methods that work efficiently in networks with many layers and millions
of adaptive connections.

Five strategies for learning multilayer networks

Half a century ago, Oliver Selfridge (Selfridge, 1958) proposed a pattern recognition
system called “Pandemonium” consisting of multiple layers of feature detectors. His
actual proposal contained a considerable amount of detail about what each of the layers
would compute but the basic idea was that each feature detector would be activated
by some familiar pattern of firing among the feature detectors in the layer below. This
would allow the layers to extract more and more complicated features culminating in a top
layer of detectors that would fire if and only if a familiar object was present in the visual
input. Over the next 25 years, many attempts were made to find a learning algorithm
that would be capable of discovering appropriate connection strengths (weights) for the
feature detectors in every layer. Learning the weights of a single feature detector is
quite easy if we are given both the inputs to the feature detector and its desired firing
behaviour, but learning is much more difficult if we are not told how the intermediate
layers of feature detectors ought to behave. These intermediate feature detectors are
called “hidden units” because their desired states cannot be observed. There are several
strategies for learning the incoming weights of the hidden units.

The first strategy is denial. If we assume that there is only one layer of hidden units,
it is often possible to set their incoming weights by hand using domain-specific knowl-
edge. So the problem of learning hidden units does not exist. Within neuroscience, the
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equivalent of using hand-coded features is to assume that the receptive fields of feature
detectors are specified innately – a view that is increasingly untenable (Merzenich et al.,
1983; Sharma et al., 2000; Karni et al., 1994). Most of the work on perceptrons (Rosen-
blatt, 1962; Minsky and Papert, 1969) used hand-coded feature detectors, so learning
only occurred for the weights from the feature detectors to the final decision units whose
desired states were known. To be fair to Rosenblatt, he was well aware of the limitations
of this approach – he just didn’t know how to learn multiple layers of features efficiently.
The current version of denial is called “support vector machines” (Vapnik, 2000). These
come with a fixed, non-adaptive recipe for converting a whole training image into a
feature and a clever optimization technique for deciding which training cases should be
turned into features and how these features should be weighted. Their main attraction
is that the optimization method is guaranteed to find the global minimum. They are
inadequate for tasks like 3-D object recognition that cannot be solved efficiently using a
single layer of feature detectors (LeCun et al., 2004) but they work undeniably well for
many of the simpler tasks that are used to evaluate machine learning algorithms (Decoste
and Schoelkopf, 2002).

The second strategy is based on an analogy with evolution – randomly jitter the
weights and save the changes that cause the performance of the whole network to improve.
This is attractive because it is easy to understand, easy to implement in hardware (Jabri
and Flower, 1992), and it works for almost any type of network. But it is hopelessly
inefficient when the number of weights is large. Even if we only change one weight at
a time, we still have to classify a large number of images to see if that single change
helps or hurts. Changing many weights at the same time is no more efficient because
the changes in other weights create noise that prevents each weight from detecting what
effect it has on the overall performance. The evolutionary strategy can be significantly
improved by applying the jitter to the activities of the feature detectors rather than to
the weights (Mazzoni et al., 1991; Seung, 2003), but it is still an extremely inefficient way
to discover gradients. Even blind evolution must have stumbled across a better strategy
than this.

The third strategy is procrastination. Instead of learning feature detectors that are
designed to be helpful in solving the classification problem, we can learn a layer of
feature detectors that capture interesting regularities in the input images and put off the
classification problem until later. This strategy can be applied recursively: We can learn
a second layer of feature detectors that capture interesting regularities in the patterns
of activation of the first layer detectors, and so on for as many layers as we like. The
hope is that the features in the higher layers will be much more useful for classification
than the raw inputs or the features in lower layers. As we shall see, this is not just
wishful thinking. The main difficulties with the layer-by-layer strategy are that we need
a quantitative definition of what it means for a regularity to be “interesting” and we need
a way of ensuring that different feature detectors within a layer learn to detect different
regularities even if they receive the same inputs.

The fourth strategy is to use calculus. To apply this strategy we need the output of
each hidden unit to be a smooth function of the inputs it receives from the layer below.
We also need a cost function that measures how poorly the network is performing. This
cost function must change smoothly with the weights, so the number of classification
errors is not the right function. For classification tasks, we can interpret the outputs
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of the top-level units as class probabilities and an appropriate cost function is then the
cross-entropy which is the negative log probability that the network assigns to the correct
class. Given appropriate hidden units and an appropriate cost function, the chain rule
can be used to compute how the cross-entropy changes as each weight in the network
is changed. This computation can be made very efficient by first computing, for each
hidden unit, how the cross-entropy changes as the activity of that hidden unit is changed.
This is known as backpropagation because the computation starts at the output layer
and proceeds backwards through the network one layer at a time. Once we know how
the activity of a hidden unit affects the cross-entropy on each training case we have a
surrogate for the desired state of the hidden unit and it is easy to change the incoming
weights to decrease the sum of the cross-entropies on all the training cases. Compared
with random jittering of the weights or feature activations, backpropagation is more
efficient by a factor of the number of weights or features in the network.

Backpropagation was discovered independently by several different researchers (Bryson
and Ho, 1975; Werbos, 1974; Parker, 1985; LeCun, 1985; Rumelhart et al., 1986) and it
was the first effective way to learn neural networks that had one or more layers of adaptive
hidden units. It works very well for tasks such as the recognition of handwritten digits
(LeCun et al., 1998; Simard et al., 2003), but it has two serious computational problems
that will be addressed in this chapter. First, it is necessary to choose initial random
values for all the weights. If these values are small, it is very difficult to learn deep net-
works because the gradients decrease multiplicatively as we backpropagate through each
hidden layer. If the initial values are large, we have randomly chosen a particular region
of the weight-space and we may well become trapped in a poor local optimum within
this region. Second, the amount of information that each training case provides about
the mapping between images and classes is at most the log of the number of possible
classes. This means that large networks require a large amount of labeled training data
if they are to learn weights that generalize well to novel test cases.

Many neuroscientists treat backpropagation with deep suspicion because it is not at
all obvious how to implement it in cortex. In particular, it is hard to see how a single
neuron can communicate both its activity and the deriviative of the cost function with
respect to its activity. It seems very unlikely, however, that hundreds of millions of years
of evolution have failed to find an effective way of tuning lower-level feature detectors so
that they provide the outputs that higher-level detectors need in order to make the right
decision.

The fifth and last strategy in this survey was designed to allow higher-level feature
detectors to communicate their needs to lower-level ones whilst also being easy to im-
plement in layered networks of stochastic, binary neurons that have activation states of
1 or 0 and turn on with a probability that is a smooth non-linear function of the total
input they receive:

p(sj = 1) =
1

1 + exp(−bj −
∑

i siwij)
(1)

where si and sj are the binary activities of units i and j, wij is the weight on the
connection from i to j, and bj is the bias of unit j. Imagine that the training data
was generated top-down by a multilayer “graphics” model of the type shown in figure
1. The binary state of a hidden unit that was actually used to generate an image top-
down could then be used as its desired state when learning the bottom-up “recognition”
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weights. At first sight, this idea of using top-down “generative” connections to provide
desired states for the hidden units does not appear to help because we now have to learn
a graphics model that can generate the training data. If, however, we already had some
good recognition connections we could use a bottom-up pass from the real training data
to activate the units in every layer and then we could learn the generative weights by
trying to reconstruct the activities in each layer from the activities in the layer above.
So we have a chicken-and-egg problem: Given the generative weights we can learn the
recognition weights and given the recognition weights we can learn the generative weights.
It turns out that we can learn both sets of weights by starting with small random values
and alternating between two phases of learning. In the “wake” phase, the recognition
weights are used to drive the units bottom-up, and the binary states of units in adjacent
layers can then be used to train the generative weights. In the “sleep” phase, the top-
down generative connections are used to drive the network, so it produces fantasies from
its generative model. The binary states of units in adjacent layers can then be used to
learn the bottom-up recognition connections (Hinton et al., 1995). The learning rules are
very simple. During the wake phase, a generative weight, gkj, is changed by

∆gkj = εsk(sj − pj) (2)

where unit k is in the layer above unit j, ε is a learning rate and pj is the probability
that unit j would turn on if it were being driven by the current states of the units in the
layer above using the current generative weights. During the sleep phase, a recognition
weight, wij, is changed by

∆wij = εsi(sj − qj) (3)

where qj is the probability that unit j would turn on if it were being driven by the current
states of the units in the layer below using the current recognition weights.

The rest of this chapter shows that the performance of both backpropagation (strategy
four) and the “wake-sleep” algorithm (strategy five) can be greatly improved by using a
“pre-training” phase in which unsupervised layer-by-layer learning is used to make the
hidden units in each layer represent regularities in the patterns of activity of units in
the layer below (strategy three). With this type of pretraining, it is finally possible to
learn deep, multilayer networks efficiently and to demonstrate that they are better at
classification than shallow methods.

Learning feature detectors with no supervision

Classification of isolated, normalized shapes like those shown in figure 2 has been one of
the paradigm tasks for demonstrating the pattern recognition abilities of artificial neural
networks. The connection weights in a multi-layer network are typically initialized by
using small random values which are then iteratively adjusted by backpropagating the
difference between the desired output of the network on each training case and the output
that it actually produces on that training case. To prevent the network from modeling
accidental regularities that arise from the random selection of training examples, it is
common to stop the training early or to impose a penalty on large connection weights.
This improves the final performance of the network on a test set, but it is not nearly as
effective as using a more intelligent strategy for initializing the weights.
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Figure 1: This shows a three-layer neural network. Activities in the bottom layer rep-
resent the sensory input and activities in higher layers learn to represent the causes of
the sensory input. The bottom-up “recognition” connections convert the sensory input
into an internal representation. They can be trained by assuming that they are trying to
invert a generative process (like computer graphics) that converts hidden causes into sen-
sory data. The assumed generative process is represented in the top-down “generative”
connections and it too is learned just by observing sensory data.

A discriminative training procedure like backpropagation ignores the structure in the
input and only tries to model the way in which the output depends on the input. This is
a bad idea if the input contains a lot of structure that can be modeled by latent variables
and the output is a class label that is more simply related to these latent variables than
it is to the raw input. Consider, for example, a set of images of a dog. Latent variables
such as the position, size, shape and color of the dog are a good way of explaining the
complicated, higher-order correlations between the individual pixel intensities, and some
of these latent variables are very good predictors of the class label. In cases like this,
it makes sense to start by using unsupervised learning to discover latent variables (i.e.
features) that model the structure in the ensemble of training images. Once a good set
of features has been found using unsupervised learning, discriminative learning can then
be used to model the dependence of the class label on the features and to fine-tune the
features so that they work better for discrimination. The features are then determined
mainly by the input images, which contain a lot of information, and only slightly by the
labels which typically contain much less information.

Learning one layer of feature detectors

Images composed of binary pixels can be modeled by using a “Restricted Boltzmann
machine” (RBM) that uses a layer of binary feature detectors to model the higher-
order correlations between pixels. If there are no direct interactions between the feature
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Figure 2: Some examples of real handwritten digits that are hard to recognize. A neural
network described at the end of this chapter gets all of these examples right, even though
it has never seen them before. However, it is not confident about its classification for
any of these examples. The true classes are arranged in standard scan order.

detectors and no direct interactions between the pixels, there is a simple and efficient
way to learn a good set of feature detectors from a set of training images (Hinton, 2002).
We start with zero weights on the symmetric connections between each pixel i and each
feature detector j. Then we repeatedly update each weight, wij, using the difference
between two measured, pairwise correlations

∆wij = ε(<sisj>data − <sisj>recon) (4)

where ε is a learning rate, < sisj >data is the frequency with which pixel i and feature
detector j are on together when the feature detectors are being driven by images from the
training set and <sisj>recon is the corresponding frequency when the feature detectors
are being driven by reconstructed images. A similar learning rule can be use dfor the
biases.

Given a training image, we set the binary state, sj, of each feature detector to be 1
with probability

p(sj = 1) =
1

1 + exp(−bj −
∑

i∈pixels siwij)
(5)

where bj is the bias of j and si is the binary state of pixel i. Once binary states have
been chosen for the hidden units we produce a “reconstruction” of the training image by
setting the state of each pixel to be 1 with probability

p(si = 1) =
1

1 + exp(−bi −
∑

j∈features sjwij)
(6)

On 28 × 28 pixel images of handwritten digits like those shown in figure 2, good
features can be found by using 100 passes through a training set of 50,000 images, with
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Figure 3: The receptive fields of some feature detectors. Each gray square shows the
incoming weights to one feature detector from all the pixels. Pure white means a positive
weight of at least 3 and pure black means a negative weight of at least −3. Most of the
feature detectors learn highly localized receptive fields.

the weights being updated after every 100 images using the pixel-feature correlations
measured on selected subset of the features that are learned. Some features have an
on-center off-surround structure (or the reverse) and these are a good way to model the
simple fact that if a pixel is on, nearby pixels tend to be on. Some features detect parts of
strokes, and they typically inhibit the region of the image that is further from the center
than the stroke fragment. Some features, which look more like fingerprints, encode the
phase and amplitude of high-frequency fourier components of a large part of the whole
image. These features tend to turn on about half the time and can be eliminated by
forcing features to only turn on rarely (Ranzato et al., 2007). The three features with
unnaturally sharp black lines capture the fact that if a pixel is on, pixels that are more
than 20 rows above or below it cannot be on because of the way the data was normalized.

The learned weights and biases of the features implicitly define a probability distri-
bution over all possible binary images. Sampling from this distribution is difficult, but it
can be done by using “alternating Gibbs sampling”. This starts with a random image and
then alternates between updating all of the features in parallel using Eq. 5 and updating
all of the pixels in parallel using Eq. 6. After Gibbs sampling for sufficiently long, the
network reaches “thermal equilibrium”. The states of pixels and features detectors still
change, but the probability of finding the system in any particular binary configuration
does not.
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A greedy learning algorithm for multiple hidden layers

A single layer of binary features is not the best way to model the structure in a set of
images. After learning the first layer of feature detectors, a second layer can be learned
in just the same way by treating the existing feature detectors, when they are being
driven by training images, as if they were data. To reduce noise in the learning signal,
the binary states of feature detectors (or pixels) in the “data” layer are replaced by their
real-valued probabilities of activation when learning the next layer of feature detectors,
but the new feature detectors have binary states to limit the amount of information
they can convey. This greedy, layer-by-layer learning can be repeated as many times as
desired. To justify this layer-by-layer approach, it would be good to show that adding an
extra layer of feature detectors always increases the probability that the overall generative
model would generate the training data. This is almost true: Provided the number of
feature detectors does not decrease and their weights are initialized correctly, adding an
extra layer is guaranteed to raise a lower bound on the log probability of the training
data (Hinton et al., 2006). So after learning several layers there is good reason to believe
that the feature detectors will have captured many of the statistical regularities in the
set of training images and we can now test the hypothesis that these feature detectors
will be useful for classification.

Using backpropagation for discriminative fine-tuning

After greedily learning layers of 500, 500, and 2000 feature detectors without using any
information about the class labels, gentle backpropagation was used to fine-tune the
weights for discrimination. This produced much better classification performance on test
data than using backpropagation without the initial, unsupervised phase of learning.
The MNIST data set used for these experiments has been used as a benchmark for many
years and many different researchers have tried using many different learning methods,
including variations of backpropagation in nets with different numbers of hidden layers
and different numbers of hidden units per layer.

There are several different versions of the MNIST learning task. In the most difficult
version, the learning algorithm is not given any prior knowledge of the geometry of images
and it is forbidden to increase the size of the training set by using small affine or elastic
distortions of the training images. Consequently, if the same random permutation is
applied to the pixels of every training and test image, the performance of the learning
algorithm will be unaffected. For this reason, this is called the “permutation invariant”
version of the task. So far as the learning algorithm is concerned, each 28×28 pixel image
is just a vector of 784 numbers that has to be given one of 10 labels. The best published
backpropagation error rate for this version of the task is 1.6% (Platt et. al.). Support
vector machines can achieve 1.4% (Decoste and Schoelkopf, 2002). Table 1 shows that
the error rate of backpropagation can be reduced to about 1.12% if it is only used for
fine-tuning features that are originally discovered by layer-by-layer pretraining.
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Details of the discriminative fine-tuning procedure

Using three different splits of the 60,000 image training set into 50,000 training examples
and 10,000 validation examples, the greedy learning algorithm was used to initialize the
weights and biases and gentle backpropagation was then used to fine-tune the weights.
After each sweep through the training set (which is called an “epoch”), the classification
error rate was measured on the validation set. Training was continued until two condi-
tions were satisfied. The first condition involved the average cross-entropy error on the
validation set. This is the quantity that is being minimized by the learning algorithm
so it always falls on the training data. On the validation data, however, it starts rising
as soon as overfitting occurs. There is strong tendency for the number of classification
errors to continue to fall after the cross-entropy has bottomed-out on the validation data,
so the first condition is that the learning must have already gone past the minimum of
the cross-entropy on the validation set. It is easy to detect when this condition is sat-
isfied because the cross-entropy changes very smoothly during the learning. The second
condition involved the number of errors on the validation set. This quantity fluctuates
unpredictably, so the criterion was that the minimum value observed so far should have
occurred at least 10 epochs ago. Once both conditions were satisfied, the weights and
biases were restored to the values they had when the number of validation set errors
was at its minimum, and performance on the 10,000 test cases was measured. As shown
in table 1, this gave test error rates of 1.22% 1.16% and 1.24% on the three different
splits. The fourth line of the table shows that these error rates can be reduced to 1.10%
by multiplying together the three probabilities that the three nets predict for each digit
class and picking the class with the maximum product.

Once the performance on the validation set has been used to find a good set of weights,
the cross-entropy error on the training set is recorded. Performance on the test data can
then be further improved by adding the validation set to the training set and continuing
the training until the cross-entropy on the expanded training set has fallen to the value
it had on the original training set for the weights selected by the validation procedure.
As shown in table 1 this eliminates about 8% of the errors. Combining the predictions
of all three models produces less improvement than before because each model has now
seen all of the training data. The final line of table 1 shows that backpropagation in this
relatively large network gives much worse results if no pretraining is used. For this last
experiment, the stopping criterion was set to be the average of the stopping criteria from
the previous experiments.

To avoid making large changes to the weights found by the pretraining, the back-
propagation stage of learning used a very small learning rate which made it very slow,
so a new trick was introduced which sped up the learning by about a factor of three.
Most of the computational effort is expended computing the almost non-existent gra-
dients for “easy” training cases that the network can already classify confidently and
correctly. It is tempting to make a note of these easy cases and then just ignore them,
checking every few epochs to see if the cross-entropy error on any of the ignored cases has
become significant. This can be done without changing the expected value of the overall
gradient by using a method called importance sampling. Instead of being completely
ignored, easy cases are selected with a probability of 0.1, but when they are selected, the
computed gradients are multiplied by 10. Using more extreme values like 0.01 and 100
is dangerous because a case that used to be easy might have developed a large gradient
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pre- backprop train train train valid. valid. test test
trained training epochs cost errs cost errs cost errs
network set size per 100 per 100 per 100
Neta 50,000 33 0.12 1 6.49 129 6.22 122
Netb 50,000 56 0.04 0 7.81 118 6.21 116
Netc 50,000 63 0.03 0 8.12 118 6.73 124
Combined 5.75 110
Neta 60,000 33+16 <0.12 1 5.81 113
Netb 60,000 56+28 <0.04 0 5.90 106
Netc 60,000 63+31 <0.03 0 5.93 118
Combined 5.40 106
not pre-
pretrained 60,000 119 <0.063 0 18.43 227

Table 1: Neta, Netb, and Netc were greedily pretrained on different, unlabeled, subsets of
the training data that were obtained by removing disjoint validation sets of 10,000 images.
After pretraining, they were trained on those same subsets using backpropagation. Then
the training was continued on the full training set until the cross-entropy error reached
the criterion explained in the text.

while it was being ignored, and multiplying this gradient by 100 could give the network
a shock. When using importance sampling, an “epoch” was redefined to be the time it
takes to sample as many training cases as the total number in the training set. So an
epoch typically involves several sweeps through the whole set of training examples, but
it is the same amount of computation as one sweep without importance sampling.

After the results in table 1 were obtained using the rather complicated version of
backpropagation described above, Ruslan Salakhutdinov discovered that similar results
can be obtained using a standard method called “conjugate gradient” which takes the
gradients delivered by backpropagation and uses them in a more intelligent way than
simply changing each weight in proportion to its gradient (Hinton and Salakhutdi-
nov, 2006). The MNIST data together with the Matlab code required for pretraining
and fine-tuning the network are available at http://www.cs.toronto.edu/~hinton/

MatlabForSciencePaper.html.

Using extra unlabeled data

Since the greedy pretraining algorithm does not require any labeled data, it should be a
very effective way to make use of unlabeled examples to improve performance on a small
labeled dataset. Learning with only a few labeled examples is much more characteristic
of human learning. We see many instances of many different types of object, but we are
very rarely told the name of an object. Preliminary experiments confirm that pretraining
on unlabeled data helps a lot, but for a proper comparison it will be necessary to use
networks of the appropriate size. When the number of labeled examples is small, it
is unfair to compare the performance of a large network that makes use of unlabeled
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examples with a network of the same size that does not make use of the unlabeled
examples.

Using geometric prior knowledge

The greedy pretraining improves the error rate of backpropagation by about the same
amount as methods that make use of prior knowledge about the geometry of images, such
as weight-sharing (LeCun et al., 1998) or enlarging the training set by using small affine or
elastic distortions of the training images. But pretraining can also be combined with these
other methods. If translations of up to 2 pixels are used to create 12 extra versions of each
training image, the error rate of the best support vector machine falls from 1.4% to 0.56%
(Decoste and Schoelkopf, 2002). The average error rate of the pretrained neural net falls
from 1.12% to 0.65%. The translated data is presumably less helpful to the multilayer
neural net because the pretraining can already capture some of the geometrical structure
even without the translations. The best published result for a single method is currently
0.4%, which was obtained using backpropagation in a multilayer neural net that uses
both weight-sharing and sophisticated, elastic distortions (Simard et al., 2003). The idea
of using unsupervised pretraining to improve the performance of backpropagation has
recently been applied to networks that use weight-sharing and it consistently reduces the
error rate by about 0.1% even when the error rate is already very low (Ranzato et al.,
2007).

Using contrastive wake-sleep for generative fine-tuning

Figure 4 shows a multilayer generative model in which the top two layers interact via
undirected connections and form an associative memory. At the start of learning, all
configurations of this top-level associative memory have roughly equal energy. Learning
sculpts the energy landscape and after learning the associative memory will settle into
low-energy states that represent images of digits. Valleys in the high-dimensional energy-
landscape represent digit classes. Directions along the valley floor represent the allowable
variations of a digit and directions up the side of a valley represent implausible variations
that make the image surprising to the network. Turning on one of the 10 label units
lowers one whole valley and raises the other valleys. The number of valleys and the
dimensionality of each valley floor are determined by the the set of training examples.

The states of the associative memory are just binary activity vectors that look nothing
like the images they represent, but it is easy to see what the associative memory has in
mind. First, the 500 hidden units that form part of the associative memory are used to
stochastically activate some of the units in the layer below via the top-down, generative
connections. Then these activated units are used to provide top-down input to the
pixels. Figure 5 shows some fantasies produced by the trained network when the top-
level associative memory is allowed to wander stochastically between low-energy states,
but with one of the label units clamped so that it tends to stay in the same valley. The
fact that it can generate a wide variety of slightly implausible versions of each type of
digit makes it very good at recognizing poorly written digits. A demonstration that
shows the network generating and recognizing digit images is available at http://www.
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Figure 4: A multilayer neural network that learns to model the joint distribution of
digit images and digit labels. The top two layers have symmetric connections and form
an associative memory. The layers below have directed, top-down, generative connec-
tions that can be used to map a state of the associative memory to an image. There
are also directed, bottom-up, recognition connections that are used to infer a factorial
representation in one layer from the binary activities in the layer below.

cs.toronto.edu/~hinton/digits.html. In this chapter, each training case consists of
an image and an explicit class label, but the same learning algorithm can be used if
the “labels” are replaced by a multilayer pathway whose inputs are spectrograms from
multiple different speakers saying isolated digits (Kaganov et al., 2006). The network
then learns to generate pairs that consist of an image and a spectrogram of the same
digit class.

The network was trained in two stages – pretraining and fine-tuning. The layer-by-
layer pretraining was the same as in the previous section, except that when training the
top layer of 2000 feature detectors, each “data” vector had 510 components. The first
500 were the activation probabilities of the 500 feature detectors in the penultimate layer
and the last 10 were the label values. The value of the correct label was set to 1 and the
remainder were set to 0. So the top layer of feature detectors learns to model the joint
distribution of the 500 penultimate features and the 10 labels.

At the end of the layer-by-layer pretraining, the weight between any two units in
adjacent layers is the same in both directions and we can view the result of the pretraining
as a set of three different RBM’s whose only interaction is that the data for the higher
RBM’s is provided by the feature activations of the lower RBM’s. It is possible, however,
to take a very different view of exactly the same system (Hinton et al., 2006). We can view
it as a single generative model that generates data by first letting the top-level RBM settle
to thermal equilibrium, which may take a very long time, and then performing a single
top-down pass to convert the 500 binary feature activations in the penultimate layer into
an image. When it is viewed as a single generative model, the weights between the top
two layers need to be symmetric, but the weights between lower layers do not. In the top-
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Figure 5: Each row shows 10 samples from the generative model with a particular label
clamped on. The top-level associative memory is run for 1000 iterations of alternating
Gibbs sampling between samples.

down, generative direction, these weights form part of the overall generative model, but
in the bottom-up, recognition direction they are not part of the model. They are merely
an efficient way of inferring what hidden states probably caused the observed image. If
the whole system is viewed as a single generative model, we can ask whether it is possible
to fine-tune the weights produced by the pretraining to make the overall generative model
more likely to generate the set of image-label pairs in the training data. The answer is
that the generative model can be significantly improved by using a contrastive form of
the wake-sleep algorithm. In the lower layers, this makes the recognition weights differ
from the generative weights. In addition to improving the overall generative model, the
generative fine-tuning makes the model much better at assigning labels to test images
using a method which will be described later.

In the standard wake-sleep algorithm, the network generates fantasies by starting with
a pattern of activation of the top-level units that is chosen stochastically using only the
generative bias of each top-level unit to influence its probability of being on. This way of
initiating fantasies cannot be used if the top-two layers of the generative model form an
associative memory because it will not produce samples from the generative model. The
obvious alternative is to use prolonged Gibbs sampling in the top two layers to sample
from the energy landscape defined by the associative memory, but this is much too slow.
A very effective alternative is to use the bottom-up recognition connections to convert a
image-label pair from the training set into a state of the associative memory and then to
perform brief alternating Gibbs sampling which allows the associative memory to produce
a “confabulation”that it prefers to its initial representation of the training pair. The top-
level associative memory is then trained as an RBM by using Eq. 4 to lower the energy
of the initial representation of the training pair and raise the energy of the confabulation.
The confabulation in the associative memory is also used to drive the system top-down,
and the states of all the hidden units that are produced by this generative, top-down pass
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are used as targets to train the bottom-up recognition connections. The “wake” phase is
just the same as in the standard wake-sleep algorithm: After the initial bottom-up pass,
the top-down, generative connections in the bottom two layers are trained, using Eq. 2,
to reconstruct the activities in the layer below from the activities in the layer above. The
details are given in (Hinton et al., 2006).

Fine-tuning with the contrastive wake-sleep algorithm is about an order of magnitude
slower than fine-tuning with backpropagation, partly because it has a more ambitious
goal. The network shown in figure 4 takes a week to train on a 3GHz machine. The
examples shown in figure 2 were all classified correctly by this network which gets a
test error rate of 1.25%. This is slightly worse than pretrained networks with the same
architecture that are fine-tuned with backpropagation, but it is better than the 1.4%
achieved by the best support vector machine on the permutation-invariant version of the
MNIST task. It is rare for a generative model to outperform a good discriminative model
at discrimination.

There are several different ways of using the generative model for discrimination. If
time was not an issue, it would be possible to use sampling methods to measure the
relative probabilities of generating each of the ten image-label pairs that are obtained by
pairing the test image with each of the 10 possible labels. A fast and accurate approx-
imation can be obtained by first performing a bottom-up pass in which the activation
probabilities of the first layer of hidden units are used to compute activation probabilities
for the penultimate hidden layer. Using probabilities rather than stochastic binary states
suppresses the noise due to sampling. Then the vector of activation probabilities of the
feature detectors in the penultimate layer is paired with each of the ten labels in turn
and the “free energy” of the associative memory is computed. Each of the top-level units
contributes additively to this free energy, so it is easy to calculate exactly (Hinton et al.,
2006). The label that gives the lowest free-energy is the network’s guess.

Fitting a generative model constrains the weights of the network far more strongly
than fitting a discriminative model, but if the ultimate objective is discrimination, it
also wastes a lot of the discriminative capacity. This waste shows up in the fact that
after fine-tuning the generative model, its discriminative performance on the training
data is about the same as its discriminative performance on the test data – there is
almost no overfitting. This suggests one final experiment. After first using contrastive
wake-sleep for fine-tuning, further fine-tuning can be performed using a weighted average
of the gradients computed by backpropagation and by contrastive wake-sleep. Using a
validation set, the coefficient controlling the contribution of the backpropagation gradient
to the weighted average was gradually increased to find the coefficient value at which the
error rate on the validation set was minimized. Using this value of the coefficient, the test
error rate was 0.97% which is the current record for the permutation-invariant MNIST
task. It is also possible to combine the gradient from backpropagation with the gradient
computed by the pretraining (Bengio et al., 2006). This is much less computational effort
than using contrastive wake-sleep, but does not perform as well.
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