
The wake-sleep algorithm for unsupervised
neural networks

Geoffrey E Hinton
�

Peter Dayan Brendan J Frey Radford M Neal

Department of Computer Science
University of Toronto
6 King’s College Road

Toronto M5S 1A4, Canada

27th November 1994

Abstract

We describe an unsupervised learning algorithm for a multilayer network
of stochastic neurons. Bottom-up “recognition” connections convert the input
into representations in successive hidden layers and top-down “generative”
connections reconstruct the representation in one layer from the representation
in the layer above. In the “wake” phase, neurons are driven by recognition
connections, and generative connections are adapted to increase the probability
that they would reconstruct the correct activity vector in the layer below. In the
“sleep” phase, neurons are driven by generative connections and recognition
connections are adapted to increase the probability that they would produce
the correct activity vector in the layer above.

Supervised learning algorithms for multilayer neural networks face two problems:
They require a teacher to specify the desired output of the network and they re-
quire some method of communicating error information to all of the connections.
The wake-sleep algorithm finesses both these problems. When there is no teach-
ing signal to be matched, some other goal is required to force the hidden units to
extract underlying structure. In the wake-sleep algorithm the goal is to learn rep-
resentations that are economical to describe but allow the input to be reconstructed
accurately. Each input vector could be communicated to a receiver by first sending
its hidden representation and then sending the difference between the input vector
and its top-down reconstruction from the hidden representation. The aim of learn-
ing is to minimize the “description length” which is the total number of bits that
would be required to communicate the input vectors in this way [1]. No commu-
nication actually takes place, but minimizing the description length that would be
required forces the network to learn economical representations that capture the
underlying regularities in the data [2].

1

The neural network has two quite different sets of connections. The bottom-up
“recognition” connections are used to convert the input vector into a representation
in one or more layers of hidden units. The top-down “generative” connections are
then used to reconstruct an approximation to the input vector from its underlying
representation. The training algorithm for these two sets of connections can be
used with many different types of stochastic neuron, but for simplicity we use only
stochastic binary units that have states of

�
or � . The state of unit � is ��� and the

probability that it is on is:

��� � �
	 ��� 	 ��������� ����� � ����� � ����� � � (1)

where � � is the bias of the unit and � � � is the weight on a connection from unit � .
Sometimes the units are driven by the generative weights and other times by the
recognition weights, but the same equation is used in both cases.

In the “wake” phase the units are driven bottom-up using the recognition weights,
producing a representation of the input vector in the first hidden layer, a repre-
sentation of this representation in the second hidden layer and so on. All of these
layers of representation combined are called the “total representation” of the input,
and the binary state of each hidden unit, , in total representation ! is ��"# . This
total representation could be used to communicate the input vector, $, to a receiver.
According to Shannon’s coding theorem, it requires �&%('*),+ bits to communicate an
event that has probability + under a distribution agreed by the sender and receiver.
We assume that the receiver knows the top-down generative weights [3] so these
can be used to create the agreed probability distributions required for communi-
cation. First, the activity of each unit, - , in the top hidden layer is communicated
using the distribution �.� "/10 � ��� "/ � which is obtained by applying Eq. 1 to the single
generative bias weight of unit - . Then the activities of the units in each lower layer
are communicated using the distribution �(� "# 0 � �2� "# � obtained by applying Eq. 1
to the already communicated activities in the layer above, � "/ , and the generative
weights, � / # . The description length of the binary state of unit is:

3 � � "# � 	 � � "# %('*)4� "# �5� � � � "# � %('*)6� � �7� "# � (2)

The description length for input vector $ using the total representation ! is simply
the cost of describing all the hidden states in all the hidden layers plus the cost of
describing the input vector given the hidden states

3 � ! 0 $ � 	 3 � ! �8 3 � $�9 ! � 	;: <>=@?A: # =B< 3 � � "# �8 :DC 3 � �DEC 9F! � (3)

2

where
�

is an index over the � layers of hidden units and � is an index over the
input units which have states � EC .
Because the hidden units are stochastic, an input vector will not always be repre-
sented in the same way. The recognition weights determine a conditional probabil-
ity distribution, � ��� 9 $ � over total representations. Nevertheless, if the recognition
weights are fixed, there is a very simple, on-line method of modifying the genera-
tive weights to minimize the expected cost � " � � ! 9F$ � 3 � ! 0 $ � of describing the input
vector using a stochastically chosen total representation. After using the recogni-
tion weights to choose a total representation, each generative weight is adjusted in
proportion to the derivative of equation 3 by using the purely local delta rule:� � / # 	�� � "/ � � "# �7� "# � (4)

where � is a learning rate. We call this the “wake” phase of the learning algorithm.
Although the units are driven by the recognition weights, it is only the genera-
tive weights that learn in this phase. The learning makes each layer of the total
representation better at reconstructing the activities in the layer below.

It seems obvious that the recognition weights should be adjusted to maximize the
probability of picking the ! that minimizes

3 � ! 0 $ � . But this is incorrect. When
there are many alternative ways of describing an input vector it is possible to design
a stochastic coding scheme that takes advantage of the entropy across alternative
descriptions [1]. The cost is then:

3 � $ � 	 : " � � ! 9F$ � 3 � ! 0 $ � �
	1� : " � � ! 9 $ � %.'�) � � ! 9 $ ��� (5)

The second term is the entropy of the distribution that the recognition weights
assign to the various alternative representations. If, for example, there are two
alternative representations each of which costs 4 bits, the combined cost is only 3
bits provided we use the two alternatives with equal probability[4]. It is precisely
analagous to the way in which the energies of the alternative states of a physi-
cal system are combined to yield the Helmholtz free energy of the system. As
in physics,

3 � $ � is minimized when the probabilities of the alternatives are expo-
nentially related to their costs by the Boltzmann distribution (at a temperature of
1):

� ! 9 $ � 	 ��� � ��� 3 � ! 0 $ � ���� � � � ��� 3 ��� 0 $ � � (6)

3

So rather than adjusting the recognition weights to focus all of the probability on
the lowest cost representation, we should try to make the recognition distribution� � � 9F$ � be as similar as possible to the Boltzmann distribution

��� 9 $ � which is the

posterior distribution over representations given the data and given the network’s
generative model. It is exponentially expensive to compute

��� 9F$ � exactly [5], but

there is a simple way of getting approximately correct target states for the hidden
units in order to train the distribution � ��� 9F$ � produced by the bottom-up recognition
weights.

We turn off the recognition weights and drive all of the units in the network using
the generative weights, starting at the topmost hidden layer and working down
all the way to the input units. Because the units are stochastic, repeating this
process typically produces many different “fantasy” vectors on the input units.
These fantasies provide an unbiased sample of the network’s generative model of
the world. Having produced a fantasy, we then adjust the recognition weights
to maximize the log probability of recovering the hidden activities that actually
caused the fantasy � � # / 	�� � �# � � � / ��� �/ � (7)

where � specifies the states of both the hidden units and the input units for a
particular fantasy and � �/ is the probability that unit - would be turned on by the
recognition weights operating on the binary activities, � �# , in the layer below [6].
We call this the “sleep” phase of the algorithm. Like the wake phase, it uses only
locally available information. A potential drawback of the sleep phase is that we
would like the recognition weights to be good at recovering the true causes for
the training data but the sleep phase optimizes the recognition weights for fantasy
data. Early in the learning, fantasies will have a quite different distribution than
the training data.

The distribution � ��� 9 $ � produced by the recognition weights is a factorial distribu-
tion in each hidden layer because the recognition weights produce stochastic states
of units within a hidden layer that are conditionally independent given the states
in the layer below. It is natural to use factorial distributions in a neural net because
it allows the probablity distribution over the ��� alternative hidden representations
to be specified with � numbers instead of ��� � �

. This simplification, however,
will typically make it impossible for the distribution � ��� 9 $ � to exactly match the
posterior distribution

� � 9 $ � in equation 6. It makes it impossible, for example,

to capture “explaining away” effects where the activity vector in one layer can be
economically explained by activating either unit 	 or unit � in the layer above but
not by activating both of them.

4

The restriction of � ��� 9 $ � to a factorial distribution is a potentially very serious
limitation. The reason it is not a fatal flaw is that the wake phase of the algorithm
adapts the generative weights so as to make

� � 9F$ � close to � ��� 9 $ � , thus limiting the

loss caused by the inability of � ��� 9F$ � to model non-factorial distributions. To see
why this effect occurs it is helpful to rewrite equation 5 in a different form

3 � $ � 	 : "

� ! 9F$ � 3 � ! 0 $ � � 	 � : "

� ! 9F$ � %('*)

� ! 9 $ � � : " � � ! 9F$ � %('*) � � ! 9 $ �

� ! 9F$ � (8)

The first two terms in equation 8 are exactly �&%('*)

� $ � under the current generative

model. The last term, which cannot be negative, is the Kullback-Leibler divergence
between � ��� 9F$ � and

��� 9F$ � which is the amount by which the description length

using � ��� 9F$ � exceeds �&%('*)

� $ � . So for two generative models which assign equal

probability to $, minimizing equation 8 with respect to the generative weights
will tend to favor the model whose posterior distribution is most similar to � � � 9 $ � .
Within the available space of generative models, the wake phase seeks out those
that give rise to posterior distributions which are approximately factorial.

Because we are making several approximations, the algorithm must be evaluated by
its performance. Figure 1 shows that it can learn the correct multilayer generative
model for a simple toy problem. Moreover, after learning, the Kullback-Leibler
divergence in equation 8 is only � � � �

bits which indicates that this term has forced a
solution in which the generative model has an almost perfectly factorial posterior.
The algorithm also works well on the more realistic task of identifying highly
variable handwritten digits by seeing which of ten different digit networks provides
the most economical description of the data. Figure 2 shows that after it has learned
a digit model, the fantasies generated by the network are very similar to the real
data.

Two of the most widely used unsupervised training algorithms for neural networks
are principal components analysis and competitive learning (sometimes called
vector quantization or clustering). They can both be viewed as special cases of the
minimum description length approach in which there is only one hidden layer and
it is unnecessary to distinguish between the recognition and generative weights
because they are always the same [7]. Other learning schemes have been proposed
that use separate feedforward and feedback weights [8, 9, 10, 11]. By contrast with
Adaptive Resonance Theory [8], the Counter-Streams model [9], and Kawato et
al’s algorithm [10], the wake-sleep algorithm treats the problem of unsupervised
learning as statistical – one of fitting a generative model which accurately captures
the structure in the input examples. Kawato’s model is couched in terms of forward
and inverse models [12], which are an alternative way to look at our generative and

5

recognition models. The wake-sleep algorithm is closest in spirit to Barlow’s ideas
about invertible factorial representations [13] and Mumford’s proposals [11] for
mapping Grenander’s generative model approach [14] onto the brain. By a curious
coincidence, the idea that the perceptual system uses generative models was also
advocated by Helmholtz, so we call any neural network that fits a generative model
to data by minimizing the free energy in Eq. 5 a “Helmholtz machine”.

6

References

[1] J Rissanen, Stochastic Complexity in Statistical Inquiry, (World Scientific, Singa-
pore, 1989).

[2] The description length can be viewed as an upper bound on the negative log
probability of the data given the network’s generative model, so this approach
is closely related to maximum likelihood methods of fitting models to data.

[3] The number of bits required to specify the generative weights should also be
included in the description length [1], but we currently ignore it.

[4] GE Hinton and RS Zemel, in Advances in Neural Information Processing Systems
6., JD Cowan, G Tesauro and J Alspector, editors, (Morgan Kaufmann, San
Mateo, 1994), 3-10.

[5] An unbiased estimate of the exact gradient is easy to obtain, but the noise in
this estimate increases with the size of the network. Alternatively, a mean-field
approximation can be made to the stochastic recognition model and the error
derivatives can then be computed by a backpropagation process (P Dayan,
GE Hinton, RM Neal and RS Zemel, Neural Computation, submitted).

[6] This performs stochastic steepest descent in the Kullback-Leibler divergences

: <>=@? : # =B< � �# %.'*)
� � �#�� � �#�� � � �7� �# � %('*) � � � �&� �# � � � � � � �# � � (9)

The cost function in equation 5 contains the same terms but with � and �
interchanged leading to an approximation error equal to the asymmetry of
the Kullback-Leibler divergences.

[7] In principal components analysis, the hidden representation vector is a linear
function of the input vector and the aim is to minimize the squared reconstruc-
tion error. From a description length perspective, the cost of describing the
hidden activites is ignored, so only the cost of describing the reconstruction
errors needs to be minimized. If these errors are coded using a zero-mean
Gaussian, the cost of describing them is proportional to their squared values.
In competitive learning, only the hidden unit whose weight vector is most sim-
ilar to the input vector is activated. The reconstruction is just the weight vector
of the winning hidden unit, so minimizing the squared distance between the
input vector and the weight vector of the winning hidden unit minimizes the
description length of the reconstruction error.

[8] G Carpenter and S Grossberg, Computer Vision, Graphics and Image Processing,
37, 54 (1987).

7

[9] S Ullman, in Large-Scale Theories of the Cortex, C Koch and J Davis, editors,
(MIT Press: Cambridge, MA, 1994).

[10] M Kawato, H Hayakama and T Inui, Network, 4, 415, 1993.

[11] D Mumford, in Large-Scale Theories of the Cortex, C Koch and J Davis, editors,
(MIT Press: Cambridge, MA, 1994).

[12] MI Jordan and DE Rumelhart, Cognitive Science, 16, 307, 1992.

[13] HB Barlow, Neural Computation, 1, 295, 1989.

[14] U Grenander, Lectures in Pattern Theory I, II and III: Pattern Analysis, Pattern
Synthesis and Regular Structures, (Springer-Verlag, Berlin, 1976-1981).

[15] The learning rates were � � � for the generative and recognition weights to and
from the input units and � � ��� � for the other weights. The generative biases of
the first hidden layer started at � �

� �*� and all other weights started at 0.0. The
final asymmetric divergence between the network’s generative model and the
real data was � �

� � bits. The penalty term in Eq. 8 was � � � �
bits.

[16] The training data was 700 examples of each digit from the CEDAR CDROM
1 made available by the US Postal Service Office of Advanced Technology.
Starting with the input layer, each network had a 64-16-16-4 architecture. All
weights were started at � and the learning rate on all connections was � � � � .
Training involved 500 sweeps through the 700 examples. For testing, each net
was run 10 times to estimate the expected description length of the image.

[17] This research was supported by Canadian federal grants from NSERC and
IRIS and an Ontario grant from ITRC. GEH is the Noranda fellow of CIAR.

8

FIGURE CAPTIONS

FIGURE 1: a) A generative model for
�����

images. The top level decides whether
to use vertical or horizontal bars. The next level decides whether or not each pos-
sible bar of the chosen orientation should be present in the image. b) A sample
of the images produced by the model in (a) with the ambiguous all-white images
removed. A neural net with 16 input units, 8 units in the first hidden layer, and 1
hidden unit in the second hidden layer was trained on � ��� ��� random examples
produced by the generative model. After training [15], the probability distribution
produced in the sleep phase was almost exactly correct. c) The generative weights
to and from the 8 units in the first hidden layer. Positive weights are white, nega-
tive weights are black, and the area is proportional to the magnitude. The largest
weight shown is

���
�
�
. The generative bias of the unit is shown on the top right

of each block and its generative weight from the single unit in the layer above is
shown on the top left. The rightmost block shows the generative biases of the
input units. To encourage an easily interpretable solution, the generative weights
to the input units were constrained to be positive. If they are allowed to go neg-
ative, the algorithm finds solutions that produce the correct distribution but in a
much more complicated way, and it requires more units in the second hidden layer.

FIGURE 2: Handwritten digits were normalized and quantized to produce
��� �

binary images. � � examples of each digit are shown on the left. A separate network
was trained on each digit class and � � fantasies from each network are shown on
the right. The variations within each digit class are modelled quite well. The error
rate was 4.8% when new test images were classified by choosing the network that
minimized the description length of the image. On the same data, nearest neighbor
classification gave 6.7% errors and backpropagation training of a single supervised
net with

� � output units and one hidden layer gave a minimum of 5.6% errors even
when we used the test data to optimize the number of hidden units, the training
time, and the amount of weight decay [16].

9

V/H
a) b)

c)

