
Artificial Intelligence 56 (1992) 71-113 71
Elsevier

Connectionist learning of belief
networks

Radford M. Neal
Department of Computer Science, University of Toronto, 10 King's College Road,
Toronto, Ontario, Canada M5S 1A4

Received January 1991
Revised November 1991

Abstract

Neal, R.M., Connectionist learning of belief networks, Artificial Intelligence 56 (1992)
71-113.

Connectionist learning procedures are presented for "sigmoid" and "noisy-OR" varieties
of probabilistic belief networks. These networks have previously been seen primarily as a
means of representing knowledge derived from experts. Here it is shown that the "Gibbs
sampling" simulation procedure for such networks can support maximum-likelihood
learning from empirical data through local gradient ascent. This learning procedure
resembles that used for "Boltzmann machines", and like it, allows the use of "hidden"
variables to model correlations between visible variables. Due to the directed nature
of the connections in a belief network, however, the "negative phase" of Boltzmann
machine learning is unnecessary. Experimental results show that, as a result, learning in
a sigmoid belief network can be faster than in a Boltzmann machine. These networks
have other advantages over Boltzmann machines in pattern classification and decision
making applications, are naturally applicable to unsupervised learning problems, and
provide a link between work on connectionist learning and work on the representation
of expert knowledge.

1. Introduction

T h e w o r k r e p o r t e d he re can be seen f r o m two p e r s p e c t i v e s . F r o m one p o i n t

o f v iew, i t d e s c r i b e s a c o n n e c t i o n i s t n e t w o r k w i th c a p a b i l i t i e s c o m p a r a b l e

to t h o s e o f t he B o l t z m a n n m a c h i n e , b u t w i th b e t t e r l e a r n i n g p e r f o r m a n c e .

F r o m the o the r , i t shows h o w b e l i e f n e t w o r k s can be l e a r n e d f r o m e m p i r i c a l

d a t a , as an a l t e r n a t i v e , o r a s u p p l e m e n t , to t h e i r s p e c i f i c a t i o n b y exper t s .

Correspondence to: R.M. Neal, Department of Computer Science, University of Toronto, 10
King's College Road, Toronto, Ontario, Canada M5S 1A4. E-mail: radford@cs.toronto.edu.

0004-3702/92/$ 05.00 © 1992 - - Elsevier Science Publishers B.V. All rights reserved

72 R.M. Neal

The original objective of the work was to find a network architecture
that shared with Boltzmann machines [1,8] the capacity to learn arbitrary
probability distributions over binary vectors, but that did not require the
"negative phase" of Boltzmann machine learning. It was hypothesized that
eliminating the negative phase would improve learning performance.

This goal was achieved by replacing the Boltzmann machine's symmetric
connections with directed, acyclic connections. In analogy with Boltzmann
machines, the sigmoid function was used to compute the conditional prob-
ability of a unit being on from the weighted input from other units. The
stochastic operation of such a network is somewhat more complex than
for a Boltzmann machine, but is still possible using local communication.
Maximum-likelihood, gradient-ascent learning can be done using locally
available information.

These networks turn out to fall within the general class of "belief networks"
studied by Pearl [15] and others as a means of representing probabilistic
knowledge in expert systems. However, the specific network architectures
considered by Pearl use a "noisy-OR" model for the probability of a unit
being on, based on the states of units feeding into it. It is natural to ask
whether a learning procedure can be developed for this model, as well as for
that using the sigmoid function. A local learning rule was indeed found for a
generalization of the noisy-OR model, though this time the gradient-ascent
procedure must be constrained to avoid an invalid region of the weight
space.

The representational power of the two types of belief network was inves-
tigated and compared to that of the Boltzmann machine. It turns out that
each of these three networks can represent probability distributions over
the full set of units that the other two networks cannot. With the help of
"hidden" units, all these networks can represent arbitrary distributions over
a set of "visible" units. Judicious placement of hidden and visible units can
be used to constrain the representational capabilities of a belief network, in
order to direct learning in a desired direction.

The presence of hidden units is an extreme case of "missing data"--data
which is not always observed in the training cases. Learning procedures for
belief networks that have been described previously have problems with
missing data, but it is handled naturally by the method presented here (as
well as by Boltzmann machines).

The learning capabilities of these networks were evaluated using a simple
mixture distribution and an associated classification task. The sigmoid belief
network was found to be capable of learning at a significantly higher rate
than the Boltzmann machine. Additional experiments established that the
sigmoid belief network's advantage in learning speed is indeed due to the
elimination of the negative phase. The noisy-OR belief network performed
less well at the mixture modeling task, and in other cases showed a strong

Connectionist learning of belief networks 73

tendency to get stuck at a local maximum. It did perform well at learning a
distribution naturally expressed in the noisy-OR form, however.

This paper begins with reviews of Boltzmann machines and belief net-
works. I then define the sigmoid and noisy-OR varieties of belief network,
derive gradient-ascent learning rules for them, and investigate their repre-
sentational power. The experiment comparing the learning performance of
these networks with Boltzmann machines is then described. Finally, I show
how belief networks relate to other connectionist approaches to statistical
modeling and to work on the representation of probabilistic knowledge in
expert systems, and I discuss how these networks open up new possibilities
for decision making, alternative learning procedures, and neural modeling.

2. A review of Boltzmann machines

The Boltzmann machine [1,8] is most naturally viewed as a device for
modeling a probability distribution, from which conditional distributions
for use in pattern completion and classification may be derived. In the
limit as probabilities approach zero and one, deterministic input-output
mappings can be represented as well. These capabilities would make the
Boltzmann machine attractive in many applications, were it not that its
learning procedure is generally seen as being painfully slow. Boltzmann
machines have also been considered as a model of computation in the
brain.

2. I. Definition o f Boltzmann machines

A Boltzmann machine consists of some fixed number of two-valued units
linked by symmetrical connections. In some formulations, the two possible
values of a unit are 0 and 1; in other formulations the two values are -1 and
+ 1. These alternate formulations are representationally equivalent, but the
- 1 / ÷ 1 formulation is often found to have better learning performance. ~
Since, on the other hand, networks with 0/1-valued units are easier to
understand, I will retain both formulations here.

The states of the units will be denoted by the vector ~, with the state of
unit i being si. This state vector will often be regarded as a realization of
a corresponding random variable ~. The weight on the connection between
unit i and unit j will be denoted by wij. Since connections are symmetrical,
qJ)ij = 113ji. Units do not connect to themselves. "Bias" weights, wi0, from a
fictitious unit 0 whose value is aways 1 are also assumed to be present.

l The benef i t of a symmetr ic formula t ion for the related case of backpropagat ion networks is
shown in [19].

74 R.M. Neal

In an analogy with thermodynamics, the "energy" of a network with state
~ is defined as follows:

E (-g) = - f l ~ s,sjwij, (1)
j<i

where fl is the constant 1 if units take on values of 0 and 1 or the constant
_t if units take on values of - 1 and + 1. Intuitively, a state with low energy 2
is more internally compatible than one with high energy.

The energy is used to define a "Boltzmann" probability distribution over
states, in which low-energy states are more probable than high-energy states.
Specifically,

P (~ = ~) = e x p (- E (~)) / Z , (2)

where Z is a normalization factor that makes the probabilities of all states
sum to one:

Z = y ~ exp (- E G)). (3)

S

Typically, some of the units in the network are "hidden", and we are
interested only in the marginal distribution of the other "visible" units. We
then consider the state vector ~ to be split into the pair (~, ~), and similarly
the random variable ~ becomes (/~, ~). The distribution over the visible
units is then

P (~ = ~) = y ~ P (~ = (~,~)). (4)

Z

2.2. Gibbs sampling for Boltzmann machines

Since Z is the sum of an exponentially large number of terms, directly
computing the probability of a given state vector is infeasible for networks
of significant size. Even if this calculation could be performed efficiently,
we would still need time exponential in the number of hidden units to
calculate the marginal probability of a visible vector, or the probability
distribution for a subset of visible units conditional on given values for
the other visible units. These distributions can, however, be exhibited via
a stochastic simulation procedure known as "Gibbs sampling", a process
which is fundamental to the operation of all the networks considered in this

2 paper.
The simulation starts with the network in an arbitrary state. Units are

then repeatedly visited in turn, with a new value being selected on each visit

2The technique appears to have been first described in [11], in the form known as the
"Metropolis algorithm". General application of the method is discussed in [6].

Connectionist learning of belief networks 75

according to the unit's probability distribution conditional on the values of
all other units. For Boltzmann machines, this conditional distribution for
unit i is as follows:

P(S i = x l Ss = ss " j # i) = a (x * ~-~sswi j) .
j~i

(5)

The notation "Sj = sj : j # i" means the joint condition that Sj = ss
for all j such that j # i. For - 1 / + 1-valued units, x* = x, while for
0/1-valued units x* = 2x - 1. The "sigmoid" function, tr(t), is defined as
1/(1 + e x p (- t)) . Note that t r (- t) = 1 - tr(t) .

To produce a sample from the distribution over state vectors, the sim-
ulation is allowed to run for a length of time sufficient for it to settle
to "equilibrium". A collection of state vectors taken at sufficiently widely
separated times as the simulation continues to run will then form a sample
from the distribution for 7. Conditional distributions can be exhibited by
clamping certain units to fixed values during the simulation and updating
only the values of the remaining units. This allows the network to perform
pattern completion and classification tasks.

Unfortunately, it is difficult to say how much time should be allowed for
the simulation to reach equilibrium, or at what interval state vectors should
subsequently be taken to form the sample. The technique of "simulated
annealing" is often used to reach equilibrium faster. In this method, we
make the probability distribution sampled from more uniform by raising the
probability of each state to the power l I T (and then renormalizing). T, the
"temperature" parameter, is initially set high in order to make equilibrium
easy to reach, and is then gradually reduced to 1, at which point we hope
that the equilibrium distribution for the original probabilities will have been
reached.

2.3. Learning in Bol t zmann machines

The learning problem for Boltzmann machines is to adjust the weights so
as to make the distribution over visible units match as closely as possible the
distribution of some real-world attributes, as evidenced by a set of training
cases.

Adopting the maximum-likelihood approach to such estimation, we at-
tempt to maximize the log-likelihood given the training cases, defined as

p(~" L ~) = l o g H = = ~ l ° g P (V = ~), (6)
~'~r ~'~-

where 7 is the collection of training cases (which may contain repetitions).

76 R.M. l'~k'al

The partial derivative of L with respect to a particular weight can be
expressed as follows:

OL
O W i j

f l_Z (Z_ P(~ = ~1 f) = ~)s~sj
~ET s

- t ' = g)sis).
?

(7)

The above formula provides the basis for a gradient-ascent learning pro-
cedure involving two parallel Gibbs sampling simulations for each training
case. In the "positive phase" simulation, the visible units are clamped to
the values they take in the training case, with the result that the simulation
produces a sample consi~sting of some number of states from the conditional
distribution of S given V = ~. In the "negative phase" simulation, no units
are clamped, producing an (equal size) sample from the unconditional dis-
tribution for S. For each state vector ~+ in the positive phase samples, the
weight wij is incremented by a small amount proportional to s~sJ-. For
each state vector ~- in the negative phase samples, w o is decremented by
an amount in the same proportion to s i s j . This procedure is repeated until
convergence is reached.

2.4. Need for the negative phase

Intuitively, the need for a negative as well as a positive phase in Boltzmann
machine learning arises from the presence of the normalizing factor, Z, in
the expression for the probability of a state vector. Because of this, the
direction of steepest descent in energy is not the same as that of steepest
ascent in probability. The negative phase of the learning procedure is needed
to account for this effect.

Looked at another way, the negative phase provides the mechanism by
which the learning comes to a stop--once the correct distribution over visible
units has been learned, this distribution is exhibited in the negative phase,
just as it is forced in the positive phase. The positive phase increments
and negative phase decrements then balance, on average, and the weights
become stable.

The presence of the negative phase has several disadvantages:

(1) It directly increases computation by a factor of more than two.
(2) It may make the learning procedure more sensitive to statistical errors.
(3) It may reduce any neurological plausibility the scheme possesses.

Note that since the negative phase simulations have more unclamped units,
they take longer to run than the positive phase simulations. The presence of
a negative phase may make it necessary to collect a larger sample of state

Connectionist learning of belief networks 77

vectors from the simulations in order to reduce the variance in the estimate
of the gradient of L, which will be the sum of the variances of the positive
and the negative phase statistics. Taking the difference of the statistics from
two phases may also exacerbate the ill-effects of not reaching equilibrium in
the simulations.

On the other hand, the negative phase can be exploited to control how
network resources are utilized. In particular, the network can be forced to
learn a mapping between a group of visible input units and a group of visible
output units while ignoring the distribution of the input units themselves.
This is done by clamping the input units in the negative as well as the
positive phase. It will turn out that in belief networks, where the negative
phase has been eliminated, control over what the network learns can be
exercised by other means.

3. A review of belief networks

Belief networks, also known as "Bayesian networks", "causal networks",
"influence diagrams", and "relevance diagrams", are designed, like Boltz-
mann machines, to represent a probability distribution over a set of at-
tributes. Study of these networks by Pearl [15] and others [13] has been
motivated principally by the desire to represent knowledge obtained from
human experts, however. Accordingly, hard-to-interpret parameters such as
the weights in a Boltzmann machine have been avoided in favour of more
intuitive representations of conditional probabilities.

3.1. Def ini t ion o f be l ie f ne tworks

Sticking as closely as possible to the terminology of the previous sections,
we can view the state of a belief network as a vector, g, with si being the
state of unit i. In this paper, the units will always be two-valued. When
belief networks are applied to expert system design, the units represent
propositions concerning the problem situation that are meaningful to the
expert.

The probability of a state vector is defined in terms of what I will
call "forward condition probabilities"--the probability of a unit having a
particular value conditional on the values of the units that precede it:

P (~ = -~) = 1-'~ P (S i = si] S j = sj • j < i) . (8)
i

The conditional probabilities above are assumed to have been given by
an expert. Typically, only a subset of the units preceding unit i will be
"connected" to it, and only these will be relevant in specifying its forward

78 R.M. Areal

conditional probabilities. Note that the ordering of units in the state vector is
crucial, since it determines which conditional probabilities must be specified.

3.2. Gibbs sampl ing for be l ie f networks

In contrast with Boltzmann machines, computing the probability of a
particular state vector for a belief network is straightfo~rward. One can also
easily generate a sample from the distribution for S. However, making
predictions by computing conditional probabilities or sampling from con-
ditional distributions are in general difficult problems. Various methods
for computing exact conditional probabilities in belief networks have been
proposed [9,15,17], but all are either restricted to special forms of network
or have exponential time complexity in the worst case.

It appears that the only plausible method of sampling from conditional
distributions in belief networks with high connectivity is Gibbs sampling,
introduced in this context by Pearl [14,15]. As with Boltzmann machines,
a step in the simulation requires selecting a new value for unit i from
its distribution conditional on the values of the other units. For a belief
network, this distribution is given by the proportionality

P (S i = x I S) = s; : j ¢ i)

oc P (S i = x [Sj = sj : j < i)

• 1--[P (s ; = s~ I s i = x , sk = sk • I¢ < j , 1¢ ~ i) .
j>i

(9)

For this procedure to be guaranteed to work (in the limit as the number
of simulation passes grows), the forward conditional probabilities should be
nonzero. The time to reach equilibrium in the simulation can be reduced
by using simulated annealing, as described for Boltzmann machines.

A "short-cut" simulation method is possible when the units whose values
are known happen to be the first ones in the state vector. In this case, rather
than employ the full Gibbs sampling procedure, we can simply select new
values for each unclamped unit in a single forward pass, using the forward
conditional probabilities. The selection for each unit depends only on the
values for preceding units, and the values in the previous state vector have
no effect on the result. Accordingly, no settling to equilibrium is required,
and the state vectors obtained in successive passes are all independent.
This short-cut can be exploited when belief networks are used for pattern
classification or for other tasks that have the form of an input-output
mapping.

Connectionist learning of belief networks 79

3.3. The noisy-OR model o f conditional probabilities

So far, forward conditional probabilities have been assumed to be given
explicitly. In fact, this will generally not be feasible, since explicitly specifying
the conditional distribution for Si given the values of the preceding units
requires 2 i - l parameters. Even if some of the preceding units are not
connected to unit i, more compact specifications will generally be necessary.

One method, termed the "noisy-OR" model [7,15], views the units as
0/1-valued OR gates with the preceding units as inputs. An input of 1 does
not invariably force a unit to take on the value 1, however. Rather, there is
a certain probability, qij, that even though unit j has the value I, it will fail
to force a unit i that it feeds into to go to 1. Under this model, the forward
conditional probabilities can be expressed in terms of the qij as follows:

P(S i = 1 S j = s j " j < i) = 1 - I-[qij. (10)
j<i, sj=l

Once again, a fictitious unit 0 whose value is always 1 has been assumed,
along with associated parameters qio. Note that if qij is one, unit j is
effectively not connected to unit i.

4. Two varieties of belief network

We are now in a position to describe the two types of belief network that
are investigated in this paper. The first, "sigmoid", variety was designed
in analogy with Boltzmann machines. 3 When the connection with belief
networks was realized, the second variety was developed as a generalization
of the "noisy-OR" model for specifying conditional probabilities. In contrast
with the use of belief networks in expert systems, the units in these networks
will not necessarily be seen as representing propositions that would be
meaningful in human terms. As in other connectionist systems, the units in
these networks may interact in ways that are useful in solving a problem
without mimicking its usual symbolic structure.

4.1. Definition o f s igmoid belief networks

Two formulations of sigmoid belief networks will be considered. In one,
units take on the values 0 and 1, in the other, they take on the values -1
and + 1. Directed forward connections connect the units. The weight on the
connection from unit j to unit i will be denoted by wij. A bias unit, 0,
set permanently to 1 is assumed to exist, with associated weights, wi0. The

3Belief networks of this type have also been discussed in [18]. They can be seen as general-
izations of the "logistic regression" model well-known in statistics.

80 R.M. Neal

forward conditional probabilities for sigmoid belief networks can then be
defined as follows:

P(Si = si [Sj = sj " j < i) = 6 (s T ~ s j w i j) . (l l)
j<~

Here again, for - 1 / + 1-valued units, s7 = si, while for 0/l-valued units,
s; = 2Si- 1. Note the analogy with equation (5) for the Boltzmann machine.
The above gives the distribution for a unit's value conditional only on the
units preceding it, however, not on all other units.

One can easily verify that a network of 0/1-valued units with forward
conditional probabilities defined as above can be converted to an equivalent
network of - 1 / + 1-valued units with weights w;j by the transformation:

' Z ~l)iO = ~OiO + Wij/2, (12)
0<j<i

w;j = wij/2 f o r 0 < j < i . (13)

This transformation is easily inverted. The two formulations thus have
equal representational power. A similar equivalence applies to Boltzmann
machines.

The probability of a state vector, 7, is defined in terms of the forward
conditional probabilities:

P (~ = 7) = H P (S i = si [S j = s j • j < i) (14)
i

=

i J<~

As with Boltzmann machines, we are often interested in the marginal
distribution over a subset of "visible" units, given by

P (~ = ~) = y ~ P (~ = (~,~)), (16)

where ~ has been split into /~ r, ~'). We are also interested in conditional
distributions involving subsets of visible units, as these allow one to perform
tasks such as pattern completion and classification.

To exhibit these marginal and conditional distributions via Gibbs sam-
pling, we must repeatedly select a new value for each unit from its distri-
bution conditional on the rest of the network. This distribution is given by
the proportionality

P (S i = x I S j = s j • j # i)

~ ~ (x * ~ s j w i j) ~l~>~(s;(xwji * s
~ <j, ~ ~

(17)

Connectionist learning of belief networks 81

To select a new value from the above distribution, unit i must have
available both its own total input: ~,j<i sjwij, and the input to each unit,
j , that it feeds into, exclusive of its own contribution: ~k<j,k~iSkW~k.
The procedure is thus somewhat more complex than that for a Boltzmann
machine (see equation (5)), but the information required can still be made
available through local network communication, provided data can pass
both ways along the directed connections.

4.2. Noisy-OR belief networks

In the "noisy-OR" form of belief network described above, the probabil-
ities, qij, that an input of 1 from unit j into unit i will be ineffective in
forcing unit i to 1 can be replaced with weights defined by Wij ----- - - logq i j .

The forward conditional probabilities of equation (10) can then be written
as follows:

P(S~ = 1 I S j = s~ ' j < i) = 1 - e x p (- y ~ s ~ w ~) . . .
J<t

(18)

Here, units take on values of 0 and l, and a unit 0 set permanently to l
exists.

In the above formulation, all weights are nonnegative. However, the
conditional probability specification will be valid even when some weights
are negative, provided that the weighted input to a unit cannot be negative,
no matter what states the preceding units have. For a network with 0/1-
valued units, this is equivalent to the constraint that, for all i,

Wio + y~ wij >~ O.
j<i, Wij'(O

(19)

With this generalization, units can behave not only as OR gates, but also
as OR gates with some or all inputs negated. For example, if unit 3 has
input weights of w30 = +20, w3~ = -10, and '//332 = - - 1 0 , it will behave as
a slightly noisy OR gate with negated inputs from units 1 and 2 (i.e. as a
NAND gate).

Noisy-OR belief networks can also be formulated with - 1 / ÷ 1-valued
units. Forward conditional probabilities are defined as above, with the
constraint that to be valid, the weights must satisfy the following, for all i:

w i 0 - Y~ Iwejl ~ 0, (20)
0<j<i

The same equivalence between 0/1 and - 1 / + 1 formulations that applied
to sigmoid networks applies to noisy-OR networks as well.

82 R.M. Neal

Conditional probability distributions for noisy-OR belief networks can
be exhibited using Gibbs sampling in a process entirely analogous to that
described above for sigmoid networks.

5. Learning belief networks from empirical data

The particular formulations of belief networks that have been described
are meant to be learnable from empirical data, rather than being constructed
from expert knowledge. Except for the lack of a negative phase, learning is
similar to that in a Boltzmann machine.

These learning procedures are all based on the widely used method of
maximum-likelihood estimation. One should realize that this method is
prone to "overfitting" the data when the amount of training data is small in
relation to the number of free network parameters, with the result that the
network generalizes poorly to future cases. (The use of Bayesian and cross-
validation methods to avoid this is briefly discussed later.) Also, all these
procedures use gradient-ascent to try to find a set of weights maximizing
the likelihood. This may lead to the learning getting stuck at a point that is
a local but not global maximum of the likelihood.

5.1. Learning in sigmoid networks

In the learning scenario assumed here, we have a collection, T, of training
cases drawn from the distribution of interest. Each training case consists
of the values for certain attributes, assumed here to be two-valued. Exact
repetitions are possible, indeed expected, in proportion to how common a
particular combination of attributes is.

In order to model the distribution from which the tr_aining sample was
drawn, we first decide on some size for a state vector, S, for our network,
and then select some subset, ~, of units in the state vector to represent the
attributes in the training cases. The remaining, "hidden", units constitute the
set ~ . Note that since the ordering of units in the state vector is significant
for belief networks, different selections for the subset of visible units may
give different results. This is discussed further in Section 6.4.

Next, we must find values for the network weights that maximize the
likelihood given the training cases, though to avoid overfitting or to reduce
computation we might decide to fix certain weights at zero based on a priori
knowledge. Other weights will be set to zero (or to small random values if
we wish to break symmetry faster) and then adjusted by gradient-ascent so
as to maximize the log-likelihood:

L = log 1-[P(~" = ~) = y ~ l o g P (~ " = ~). (21)
~7- ~ -

Connectionist learning of belief networks 83

For a sigmoid belief network, the partial derivatives of the log-likelihood
with respect to the weights may be found as follows:

OL 1 OP(~" = ~)
Owij - _E p(~/ = ~) Owij

v~T

1 o P (~ = (~,~))
= _E - E_

v~T h

(22)

(23)

= E Y~ P(~ = (~,~) I ~ = ~) (24)
;~- ~ l oP(~ = <~,~>)

p(~ = (~,~)) owi~

1 O P (~ = ~)
= ~ ~ (~ = ~ = ~) ~ (~ ~) Ow~ (2~)

~ 7 =

= e(g= l
"~- ~ 1 Oa (s~; E~,<is~,w~,)

~r (sT E~,<i s~w~) owij

(26)

\
= = ~ skwi~). (27) = E 71

~zT- ?

The last step uses the fact that a'(t) = a (t)a (- t) .
These partial derivatives can be evaluated by running a separate Gibbs

sampling simulation of the network for each training case, clamping the visi-
ble units to the values they take in that training case and observing the state
vectors that arise as a result. If the simulation is run "long enough".z, these
observations will form a sample from the conditional distribution for S given
the values in the current training case. Incrementing each weight, Wij, by
a small amount proportional to the average value of sTsja (-s7 ~k<i skwik)
over the combined samples for all training cases will then move the weights
along the gradient toward a local maximum of the likelihood. Various de-
tailed implementations of this procedure are possible, as is discussed in
Section 7.2.

Intuitively, only a single phase is needed for learning in a sigmoid belief
network because normalization of the probability distribution over state
vectors is accomplished locally at each unit via the sigmoid function,
rather than globally via the hard-to-compute normalization constant, Z.
The role of the Boltzmann machine's negative phase in stopping learning
once the distribution has been correctly modeled is taken over by the factor
a (- s ; ~k<iskwit,) used to weight the learning increments. In the limit-

84 R.M. Neal

ing case where unit i is learning a deterministic function of the preceding
units, for example, this factor is the probability that unit i would be set
to the wrong value in an unclamped network. As the correct function is
approached, this factor becomes zero, and the learning stops.

5.2. Learning in noisy-OR belief networks

Learning in noisy-OR belief networks is analogous to that in sigmoid belief
networks, with the added complication that the gradient-ascent procedure
must be constrained to the region of the weight space that produces valid
probabilities for state vectors.

The partial derivatives of the log-likelihood with respect to the weights
in a noisy-OR belief network can be expressed as follows, starting from
equation (25):

OL 1 OP(~ = ~)
- = = aw,

"~z 7 =

(28)

e(g= l

• i f s~ = 1 , •

- s j, if si ~ 1.

(29)

This formula is valid both for networks with 0/1-valued units and for those
with - 1 / + 1-valued units.

These derivatives are computed via Gibbs sampling and used to perform
gradient-ascent learning as described above for sigmoid belief networks. For
noisy-OR belief networks, however, we must also ensure that the weights
always define a valid probability distribution. In fact, in order for the
simulations to reach equilibrium in a reasonable amount of time, it is
desirable to further constrain the weights so that the conditional probability
of unit i being 1 given the values of the preceding units is at least some
minimum. For a noisy-OR network with 0/1-valued units, this will be so
provided that

wi0 + ~ wij >~ q, (30)
j<i, wij<O

where r/is some small positive constant. This can be ensured by applying the
procedure in Fig. 1 to the weights for unit i after each movement along the
gradient. One can show 4 that this procedure moves the weights to the set of

4See Claim A. 1 in Appendix A.

Connectionist learning of belief networks 85

Loop:

C *-- {0} t_J {j : O < j < i & w i j < O }

t ~ E j E c W i j

If t ~> ~/ then exit loop

d ,-- (~1- t)/[CI

For each j E C - {0}: if [wij[< d then d *-- lwijl
For each j ~ C: wij ~-- Wij -~- d

End loop

Fig. 1. Procedure to move the weights into unit i to the valid region.

valid values that is closest in Euclidean distance to the previous set. Since
the valid region of the weight space is convex, it follows that if one starts
with a valid initial set of weights, moves in the direction of the gradient,
and then applies the above procedure, the resulting total movement will
have a positive projection in the direction of the gradient whenever this is
possible.

An analogous constraint procedure exists for noisy-OR belief networks
with - 1 / + 1-valued units.

6. Representational power of belief networks

In this section, I will investigate how powerful the various forms of belief
network are at representing probability distributions. I will first consider
sigmoid belief networks, and then discuss the noisy-OR variety. I also
describe how the placement of hidden units in a belief network can be used
to constrain its representational power in order to control learning.

Recall that, as mentioned earlier, there is no difference in the represen-
tational power of networks with 0/1-valued units and those with -1 ! + 1-
valued units.

6.1. Representing distributions over the full set o f units

Consider first the relative capacity of sigmoid belief networks and Boltz-
mann machines to represent probability distributions over the full state
vector, ~.

One can show that any distribution over one or two units can be ap-
proximated arbitrarily closely by either a Boltzmann machine or a sigmoid
belief network, while for networks of three units, the restricted set of possi-

86 R.M. Neal

C +1 ~

+1 ~ +1

© ©
(~)

© © C 0150
C ' - I O

(b)

Fig. 2. An untranslatable Boltzmann machine (a) and sigmoid belief network (b).

ble probability distributions turns out to be the same for the two types of
network. 5

With four or more units, however, both Boltzmann machines and sigmoid
belief networks can represent probability distributions that the other cannot.
This is illustrated in Fig. 2, which shows a Boltzmann machine than cannot
be translated into a sigmoid belief network, and a sigmoid belief network
that cannot be translated into a Boltzmann machine. 6 In both cases, 0/1-
valued units are used, and absent connection weights are assumed to be
zero. An unattached connection is from the bias unit.

Intuitively, the belief network cannot express the symmetric compatibility
relations in the Boltzmann machine of Fig. 2(a), while the Boltzmann
machine is not capable of equalizing the probabilities for all patterns over
the top three units in the belief network of Fig. 2 (b).

6.2. Representing mix ture distributions

Suppose we are interested in the probability distribution over a vector of
"visible" units, ~. As seen above, in general, not all such distributions will
be representable in a net consisting of these visible units alone. This problem
can be overcome by including additional "hidden" units in a network.

In particular, sigmoid belief networks and Boltzmann machines can use
hidden units to represent visible distributions that are expressed as "mix-
tures" of several other distributions. Such a mixture distribution can be
written as follows:

P(~/ = ~) = Y ~ P (~ / = ~ l M = m) P (M = m) . (31)
m

The hidden variable M identifies a "component" of the mixture. Each
component produces its own distribution for ~'; these are then combined in

5See Claims A.2 and A.3 in Appendix A.
6See Claims A.4 and A.5 in Appendix A.

Connectionist learning of belief networks 8 7

+10

©
)o

-o.69 = ,,-'(½)

(a) (b)

Fig. 3. 1-in-3 clusters in a Boltzmann machine (a) and a sigmoid belief network (b).

the proportions P (M) . In this paper, the component distributions will be
such that the visible variables are independent--i.e.

P(~" = ~1 M = m) = I i P(Vi = vi l M = rn).
i

Such mixture distributions are commonly encountered and much studied
[2 1] .

To represent a mixture distribution in a network, we need first to rep-
resent the mixture variable, M. For a mixture of n components, one way
to do this is via a cluster of n units, exactly one of which is on at any
time. Figure 3 shows how a three-unit cluster of this sort can be con-
structed for both a Boltzmann machine and a sigmoid belief network (with
0/1-valued units). In both cases, the three state vectors with exactly one
unit on have nearly equal probabilities, and all other state vectors have
very small probability. The constructions generalize to clusters of any size,
and to clusters in which the possible state vectors have unequal probabili-
ties.

Using a 1-in-n cluster, we can implement a mixture in which the com-
ponent distributions assign independent probabilities to the various visible
units. For belief networks, all that is required is to connect each cluster
unit to the visible units using weights that produce the required conditional
probabilities. For Boltzmann machines, after making these connections to
visible units, one must also adjust the bias weights to the cluster units in
order to re-create the correct mixture proportions.

Note that any distribution over k visible units can be represented as a
mixture of 2 k component distributions, each of which generates but a single
vector. It follows that sigmoid belief networks and Boltzmann machines
can approximate any distribution over k visible units arbitrarily closely,
provided one is prepared to employ 2 k hidden units.

88 R.M. Neal

6.3. Power of noisy-OR belief networks

Unlike sigmoid belief networks, the ability of a noisy-OR network to
represent a distribution is sensitive to negation of the unit values. For
example, there is no way to make a noisy-OR unit behave as an AND
gate, but one can make one behave as a NAND gate. This sensitivity is
of significance only for visible units, since the output of a hidden unit can
always be implicitly negated by negating the weights on all its outgoing
connections.

In view of the above, there are certainly distributions over ~ that both a
Boltzmann machine and a sigmoid belief network can implement but which
a noisy-OR belief network cannot. Conversely, one can show 7 that there are
distributions over a three-unit noisy-OR network that cannot be duplicated
by either a Boltzmann machine or a sigmoid belief network with only three
units.

A 1-in-n cluster similar to that of Fig. 3(b) but with the unit values
negated can be constructed from noisy-OR units. Such a cluster can be used
to represent a mixture distribution over visible units using a noisy-OR belief
network, just as with sigmoid belief networks and Boltzmann machines.

6.4. Manipulating the representational power of belief networks

When training a Boltzmann machine, one can control what the network
learns by clamping certain units in the negative as well as the positive
phase. This is commonly done when only the mapping from a set of "input"
attributes to a set of "output" attributes is of interest--i.e, when we wish
to do "supervised" rather than "unsupervised" learning. Clamping the input
units in both phases forces the hidden units to model the conditional
distribution of the output given the input, rather than the distribution of
the input itself.

The same technique could be used with belief networks, but this would
naturally require re-introduction of a negative learning phase, the elimination
of which was the original motivation for this work. Fortunately, one can
achieve similar control via judicious placement of input, output, and hidden
units within a belief network, in such a way as to limit its representational
power to that which one wishes it to learn.

Four network architectures that illustrate the control possible are shown in
Fig. 4, using a medical diagnosis problem as an example. In all cases, a set of
visible "symptom" units is used to represent various attributes of a patient,
and a set of visible "disease" units is used to encode a diagnosis. There
are assumed to be no connections among the units within each visible set.

7See Claim A.6 in Appendix A.

Connectionist learning of belief networks 89

0000 Hidden units
Hidden units ~ 00~00 Symptoms 00~00 Symptoms

O O O O Hidden units 0000 0000 ~ 00~00 Hidden units
Symptoms Diseases 0000 Diseases

O O O O Diseases
(a) (b) (c)

00~00 Diseases

00~00 Hidden units

0000 Symptoms

(d)

Fig. 4. Four network architectures for a medical diagnosis problem.

Training data is assumed to be available giving the true sets of symptoms
and diseases for a sample of patients.

The network in Fig. 4(a) is designed for unsupervised learning--for mod-
eling the data without any particular task in mind. The hidden units feed
into both sets of visible units. As a result of training, these units may come
to model correlations among symptoms, among diseases, or between symp-
toms and diseases. If the network succeeds in modeling the total distribution
perfectly, it will be capable of performing any sort of pattern completion
task. For example, one could clamp a set of symptoms and then observe the
most likely diseases as the Gibbs sampling procedure is run, or, conversely,
one could clamp a set of diseases and observe the most likely symptoms.
However, if the number of hidden units is insufficient to model the total
distribution, the network will end up modeling whichever correlations are
strongest, and these might not be the ones that are most important for
diagnosis.

The network in Fig. 4(b) is designed for supervised learning aimed at
the diagnostic task. The hidden units are placed between the symptom units
and the disease units. This forces the hidden units to learn to model the
conditional distribution of the diseases given the symptoms. One could then
clamp a set of symptoms and observe the most likely diseases. In fact,
this can be done using the short-cut simulation procedure described in Sec-
tion 3.2, since the clamped symptom units precede all the unclamped units
(the full simulation procedure is still required during learning). The con-
verse operation of clamping a set of diseases and observing likely symptoms
no longer works well, however, since there are no hidden units in a position
to model correlations among symptoms.

The network in Fig. 4(c) adds a set of hidden units prior to the symptom
units in order to capture such correlations. This network has capabilities
comparable to those of network (a), with the difference that the number
of hidden units devoted to modeling each type of correlation is under the
control of the network designer. Network (c) might be appropriate for a
diagnosis application in which knowledge of correlations among symptoms
is sometimes needed in order to fill in missing symptom values.

None of the above networks express the usual causal view that diseases

90 R,M. Neal

cause symptoms (not the other way around), and that the presence of
one disease only weakly affects whether other diseases are also present.
This illustrates the fact that the arrows in a belief network are a device
for expressing probabilities, and need not correspond to real influences. In
some circumstances we may wish to learn a network that does correspond
to our causal view--we may feel that such a network would be easier to
interpret, for example. Figure 4(d) shows how such a network can be set
up for the disease/symptom example. Hidden units could be added prior
to the disease units if we wish to model the weak correlations between
diseases. This architecture would also be appropriate if the training data
gives only the patients' symptoms, and we wish to discover a set of diseases
that explains these symptoms in an unsupervised fashion.

7. Empirical comparison with Boltzmann machines

In this section, I will describe an experiment in which the learning pro-
cedures for belief networks and for Boltzmann machines were compared
on the task of learning a simple mixture distribution and classifying items
derived from it. Further details on this experiment may be found in [12].

7.1. Objectives of the experiment

This experiment is intended to answer the following questions:

(1) Are the learning procedures for belief networks capable in practice
of learning an approximation to a nontrivial distribution, based on a
set of training cases?

(2) If so, how does the speed of learning in sigmoid belief networks
compare to the speed of learning in a Boltzmann machine?

(3) Can differences in learning speed between sigmoid belief networks
and the Boltzmann machine be attributed to the lack of a negative
phase in the learning procedure for the belief networks?

(4) Are there differences in the learning performances of networks with
0/ l -valued units and those with - 1 / + 1-valued units?

(5) How does learning in noisy-OR belief networks compare to learning
in sigmoid belief networks?

(6) How well do the solutions learned by the various networks on the
basis of training data generalize to the true distribution?

Regarding points (2) and (3), the expectation is that the negative phase
adds additional noise to the estimation of the gradient, and that this noise is
detrimental to the learning process in Boltzmann machines. The magnitude
of this effect is hard to judge, however. The added noise could even be
beneficial, if it allows the network to escape local maxima during learning.

Connectionist learning of belief networks 91

7.2. The learning procedure used

Numerous variations of the Boltzmann machine learning procedure have
been tried [5], each of which requires fixing a number of parameters,
such as the learning rate, and the temperatures in an annealing schedule.
This presents a problem in comparing learning in Boltzmann machines to
learning in belief networks--a valid comparison would require searching for
the optimal parameter settings for each type of network, which would be a
rather large undertaking.

The approach I have adopted is to train both types of network using a
simple method that has only one adjustable parameter--the learning rate, e.
A complete picture of the performance of each type of network for various
values of e can be obtained with a reasonable number of runs, and the
relative performance of the different networks with their best e can then be
compared.

The procedure used can be characterized as follows:

(1) Learning was done in "batch" mode--i .e, each change to the weights
was made on the basis of the entire set of training cases.

(2) Each training case was clamped into a separate copy of the network,
where a separate Gibbs sampling simulation was run. 8 For Boltzmann
machines, there was also an unclamped negative phase copy of the
network associated with each training case.

(3) No annealing was done.
(4) The state of each copy of the network was retained after each change

to the weights, on the assumption that if the weight changes are
"small", these existing simulation states will be close to equilibrium,
and be good starting points for the next pass.

(5) Changes to the weights were made after each simulation pass, based on
the sample consisting of the current state vectors from the simulations
for all training cases (plus the state vectors from the negative phase
simulations, for Boltzmann machines).

(6) Weight changes were scaled by a learning rate parameter, e.
(7) Weights were set to zero initially. Symmetry was broken by the

stochastic nature of the simulation.

In detail, the weights in the Boltzmann machines were changed by

_ -

S + E T + "~- E T -

8This aspect of the learning procedure appears to be advantageous from an engineering point
of view, but is quite implausible in a biological context.

92 R.M. Neal

Here, 7 -+ is the set of current state vectors from the positive phase sim-
ulations (one per training case), and T - is the set of state vectors from
the corresponding negative phase simulations. N is the number of training
cases.

Similarly, the weights in the sigmoid belief networks were changed by

_

"~ET k <i

and those in the noisy-OR belief networks by

I
-s , + s , / (1 - e x p (- S s g w i k)) ,

k<i

Awij = ~ y~ if si = 1, (34)

sE~r(_sj , i f s i # 1.

Weight changes in noisy-OR networks were limited to a magnitude of no
more than 1 to avoid the possibility of huge weight changes resulting from
the division above. After all changes were made, the constraint procedure
of Fig. 1 with ~/ = 2 -7 was applied.

The lack of annealing in this procedure is unconventional, as is the chang-
ing of weights based on a single state vector from each training case. The
rationale behind these choices is that as e approaches zero, the simulations
will necessarily approach equilibrium, as they will run for many passes with
the weights essentially unchanged. Furthermore, the cumulative effect of
many changes with a small e that are based on a single state vector from
each training case will be equivalent to a single change with a larger e that
is based on a larger sample. As e approaches zero, the learning procedure
used will thus "do the right thing".

Whether this procedure is better or worse than previous methods is not
important for this experiment, however, provided only that any differences in
learning performance between the various networks seen using this procedure
will show up in some guise in any other implementation.

7.3. The task learned

The networks were evaluated on the task of learning the mixture distribu-
tion shown in Table 1. There are four equally probable mixture components,
each of which produces a distribution over nine visible attributes in which
each attribute is independent of the others (given knowledge of the mixture
component).

All the networks tested had a similar structure. Six interconnected hidden
units were provided to allow the network to model the mixture variable,
using a cluster such as in Fig. 3. (Four hidden units would have sufficed; six

Connectionist learning o f belief networks

Table 1
The mixture distribution to be learned.

rn P (M = m) P(Vi = vi I M = m) , i = 1 9

1 0.25

2 0.25

3 0.25

4 0.25

0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 1.0

0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8 1.0

0.8 0.8 0.2 0.2 0.8 0.8 0.2 0.2 0.0

0.2 0.2 0.8 0.8 0.2 0.2 0.8 0.8 0.0

93

were provided to help avoid problems with local maxima.) These hidden
units were connected to a set of nine visible units. For the belief net-
works, these connections were directed from the hidden to the visible units.
The visible units were not connected to each other. All units had a bias
connection.

Since the task is to model the entire distribution, the negative phase in
Boltzmann machines was left completely unclamped.

The entropy of the target distribution is 7.67 bits. For this experiment,
the number of training cases used, N, was 250. The particular set of training
cases generate~d at random and used in these runs had an average value
o f - l O g E P * (V = ~) of 7.87 bits, where P*(.) is the true probability
distribution. This is close to the entropy, as expected. This value is the
target for - L / N (the log-likelihood per training case) in network training,
but due to overfitting, the training procedures might well reach values even
lower than this.

The networks were also evaluated on the task of guessing the last attribute
given the values of the other eight attributes. With knowledge of the real
distribution, the optimal error rate on this classification task is 18.6%. Note
that performance on this task is not the formal learning objective, and need
not, in fact, be monotonically related to the actual objective of maximizing
the likelihood.

7.4. Evaluation method

Typically, Gibbs sampling is used when applying networks such as these
to a problem instance, as well as when training them. For example, the
classification task would be performed by clamping the values of the eight
known attributes and observing which value for the unknown ninth attribute
shows up most often as the network is simulated.

This method was not used for most of the evaluations in this experiment,
however. Instead, the exact probabilities of all 2 ~5 states of the trained net-
work were computed, and from these, the log-likelihood given the training
data, its analogue for the real distribution, the performance on the classifi-

94 R.M. Neal

cation task for the training data, and the performance for items drawn from
the real distribution were all calculated.

Of course, this method is infeasible for networks that are even slightly
larger than the ones used here. It is convenient for this experiment since it
eliminates statistical noise from the evaluations. In the tests of generalization
performance, the classification task was performed with Gibbs sampling as
well as with exact probabilities, and results were similar, as reported below.

7. 5. Comparing sigmoid belief networks and Boltzmann machines

The 250 training cases drawn from the mixture distribution were used to
train both sigmoid belief networks and Boltzmann machines, using values
for e of ¼, ½, 1, 2, and so on until network behaviour became unstable.
Networks with 0/1-valued units and those with - 1 / + 1-valued units were
both tried.

Illustrative results are shown in Fig. 5, for - 1 / + 1-valued units and e of ¼
and 1. Three runs are shown, in which different random seeds were used in
the simulations. During each run, the log-likelihood, L, was computed exactly
after 25, 50, 100, 200, 400, and 800 simulation passes. (Recall that each
pass consists of a (potential) change to each unit value in each simulation,
and that weights are changed after each pass.) The value o f - L / N in bits
(i.e. using base-2 logarithms) is plotted. It is nine bits initially, since with
zero weights all of the nine-element visible vectors are equally probable.

With e = ¼, the Boltzmann machine and the sigmoid belief network
behaved similarly. As e was increased, however, the Boltzmann machine
became unstable. This is seen in the figure for e = 1, where the Boltzmann
machine reached the 8.25-bit performance level, but thereafter failed to
improve consistently. In contrast, the sigmoid belief network with e = l
simply learned at four times the rate that it did with e = ¼. For larger e, the
Boltzmann machine became even more unstable, while the sigmoid belief
network tolerated learning rates up to e = 4 before becoming unstable at
e = 8 and above.

The instability of the Boltzmann machine with e = 1 was examined at a
finer time scale by evaluating the network after every learning pass for one
of the runs, as performance went from 8.29 bits for - L / N at pass 25 to
8.58 bits at pass 50. Changes in - L / N of as much as 0.41 bits were seen
after single learning passes, and - L / N ranged in value from 8.25 bits to
8.83 bits during this interval. Examination at this time scale of learning in
a sigmoid belief network simply shows steady improvement.

Results using 0/1-valued units were similar, except that learning was
slower for a given value of e in both types of network. This was largely
compensated for with sigmoid belief networks by the fact that a larger e

Connectionist learning o f belief networks 95

Boltzmann machine Sigmoid belief network

..i ~ i i i . . 9 . 0 . . . i ! i ~ .

. ::

! ~ - = ¼ i : i : i
i :

• -i ? i : ? ? 7.S ---! :: ! . : . .
:

8.0

~ 1 i

. i • i ! . . 9 . 0 . ! .

8.5 -.-: : : : :

8.0

. ~.. 7 . 5 . . . i i : ! . : . .

25 50 100 200 400 800 25 50 100 200 400 800

Number of passes - L / N Number of passes

Fig. 5. L e a r n i n g p e r f o r m a n c e o f B o l t z m a n n m a c h i n e s a n d s i g m o i d b e l i e f n e t w o r k s w i t h

- 1 / + 1 -va lued un i t s , for e o f 1 /4 a n d 1. T h r e e r u n s w i t h d i f f e r en t r a n d o m n u m b e r s eeds

are shown.

could be used before instability set in. With Boltzmann machines, however,
there appeared to be some net advantage for the - 1 / + 1 formulation. 9

The relative performance of these networks is shown in Table 2, under
the assumption that learning must be stopped after 200 passes. This would
produce a fair comparison if the computation time per pass was the same
for all networks. In fact, Boltzmann machine passes require somewhat more
time, as would be expected from the need to simulate negative phase cases,
so the comparison is somewhat biased in favour of Boltzmann machines.
(The times shown, measured on a machine rated at approximately 20
MIPS, should not be taken too seriously, since they are affected by many
implementation factors that may not be of general significance.)

The entries in Table 2 were produced by selecting the value of e that gave
the best value of - L / N after 200 passes, averaged over the three runs that
were done. These values are shown along with the corresponding error rates

9Clea r d i f f e r ences b e t w e e n the 0 / 1 a n d - 1 / + 1 f o r m u l a t i o n s a re seen in o t h e r p r o b l e m s .

F o r e x a m p l e , w i t h b o t h B o l t z m a n n m a c h i n e s a n d s i g m o i d b e l i e f n e t w o r k s , l e a r n i n g to a s s ign
h i g h p r o b a b i l i t y to o n l y t h o s e 4 -b i t v i s i b l e v e c t o r s w i t h o d d pa r i t y , u s ing fou r h i d d e n u n i t s to

exp re s s c o r r e l a t i o n s , is m u c h e a s i e r w i t h - 1 / + 1 u n i t s t h a n w i t h 0 /1 uni t s .

96 RM, Neal

Table 2
Best performances after 200 learning passes (three runs each).

Type of network Time/pass Best e Values of - L / N Error rates

Boltzmann machine 0.39s 1/2 8.30 8.22 8.23 35% 30% 33%

(0/1 units)

Boltzmann machine 0.58s 1/2 7.94 8.25 8.10 19% 37% 25%

(- 1 / + 1 units)

Sigmoid belief network 0.30s 4 7.76 7.82 7.77 19% 19% 17%

(0/1 units)

Sigmoid belief network 0.35s 2 7.72 7.74 7.74 17% 17% 16%

(- 1 / + 1 units)

when guessing the last attribute of the training cases from the first eight
attributes. The superiority of the sigmoid belief networks is evident. The high
error rates for the Boltzmann machine (especially using 0/1-valued units) is
due to the fact that all these networks initially learn correlations among the
first eight attributes, and only later discover how the ninth attribute relates
to these. Four of the six Boltzmann machine runs had not progressed far
into the second stage after 200 passes.

Further experiments established that the superiority seen for sigmoid belief
networks over Boltzmann machines was not related to the fact that weights
were updated based on a single state vector. The instability of Boltzmann
machine learning for large values of e was also found to be only slightly
reduced by the use of annealing. Details of these experiments are reported
in [12].

7. 6. Interpretation of the results

These experiments show that a sigmoid belief network can learn the target
mixture distribution faster than a Boltzmann machine. This difference is due
to the sigmoid belief network's tolerance of a high learning rate that causes
instability in the Boltzmann machine. Since this instability is apparent at
the time scale of a single learning pass, and since it not due to the lack of
annealing, it appears that it results simply from the sampling noise in the
calculation of the gradient from the results of positive and negative phase
Gibbs sampling simulations.

One advantage of belief networks in this respect may be seen clearly when
there are no hidden units. In this case, the positive phase, clamped simu-
lations are completely deterministic, while the negative phase, undamped
simulations remain stochastic. Learning in a belief network, for which only

Connectionist learning of belief networks 97

the positive phase simulation is necessary, will then take place with no noise
disturbing the measurement of the gradient. Learning in a Boltzmann ma-
chine, which requires a negative phase, will still be subject to noise. When
hidden units are present, the estimate of the gradient in the belief network
will have some noise, but still not as much as in the Boltzmann machine.

This is not the full explanation of the difference, however, as was seen in
experiments where the sigmoid belief network was trained with a redundant
unclamped phase, using the "short-cut" simulation method (see Section 3.2)
to ensure that state vectors came from the true equilibrium distribution.
Regardless of whether this redundant phase was negative (as in Boltzmann
machines) or positive (equivalent to a second set of 250 unclamped training
cases) its inclusion did not induce instability, but merely introduced a bit
more variability in the progress of learning (see Fig. 6, below).

The difference appears to result from the way weights are changed in
the two networks. In a belief network, each change to ~l)ij is weighted by
the forward conditional probability of Si having a value different from
that it presently has. As learning progresses, these weighting factors tend
to decrease, leading to stability. In Boltzmann machines, the magnitude of
each change remains constant; it is only the balance between positive phase
increments and negative phase decrements that, in theory, brings learning
to a stable halt, but this balance is sensitive to noise.

7. 7. Effect o f failure to reach equilibrium

Although it was not a major factor in the experiment described here,
failure to reach equilibrium during Boltzmann machine learning is noted as
a problem in [8], where it is observed that after a period of good progress
learning can "go sour", as weights are built up to values where they form
large energy barriers that inhibit settling to the equilibrium distribution. The
authors prescribe "weight decay" as a partial solution.

One would think that learning could "go sour" in belief networks as well
as in Boltzmann machines, but such problems have not been observed.
However, it is possible to make the sigmoid belief network go sour in
the mixture distribution experiment by adding a redundant, unclamped
negative phase, simulated in the normal manner (i.e. with no short-cut).
This is seen in Fig. 6. Using - 1 / + 1-valued units with e = 2, learning with
the redundant negative phase closely matches that without a negative phase
for about the first 100 passes, but then becomes unstable. Interestingly,
adding a redundant, unclamped positive phase does not cause the learning
to go sour.

These results can be understood by picturing the effects of failing to
sample from the true equilibrium distribution in the various phases. In a
clamped positive phase, the effect will be to confine the state vectors seen to

9 8 R.M, Neal

: With redundant negative phase i
: (short-cut simulation)

" ~

~ . o . . i : ! i

i W~th redundant negatWe phase :
(no short-cut)

8.5 ~

8 . 0

. .

: :

7 . 5 - .: . : :.

.̧.i i i i 9.0 ...i i i :
With redundant positive phase : With redundant positive phase

i (short-.cut simulation) (no short.cut)
. &5 - : . i :

. . . . 8 . 0

: : : : - - : : 7 . g . . - : : : :

2 5 5 0 1 0 0 2 0 0 4 0 0 8 0 0 25 5 0 100 2 0 0 4 0 0 8 0 0

Number of passes - L /N Number of passes

F i g . 6 . E f f e c t o f r e d u n d a n t p h a s e s o n l e a r n i n g p e r f o r m a n c e i n s i g m o i d b e l i e f n e t w o r k s

(- 1 / + 1 - v a l u e d u n i t s , e = 2) . F i v e r u n s w i t h d i f f e r e n t r a n d o m n u m b e r s e e d s a r e s h o w n .

a subset of those high probability state vectors that are compatible with the
clamped visible units. The learning increments that result from this sample
will still tend to increase the probability of the clamped training data, albeit
at a lesser rate than would be the case if a / / the compatible high probability
state vectors had been seen.

In an unclamped negative phase, failure to sample from the equilibrium
distribution will produce state vectors that do not represent all those of high
probability. Once learning has made some progress, there will be a group of
high probability state vectors compatible with each training case. In a non-
representative sample, some of these groups may not be sampled from at
all, while other groups will contribute more than their share of state vectors
to the sample. The learning decrements that occur in the negative phase
will then unfairly decrease the probability of the training cases compatible
with the over-sampled groups, more than offsetting the increments in the
positive phase and producing instability.

Similarly, an extra unclamped positive phase results in some training cases
being over-sampled, and thus weighted more heavily in the learning. This
may produce suboptimal progress, but not instability. In fact, runs done with
an extra unclamped positive phase (simulated without use of the short-cut)
were notable for a high variability--some runs did significantly better than

Connectionist learning of belief networks 99

-L /N

Noisy-OR Belief Network

~ ; i i i . ; : ~

8.0 --

. ~ . = - - ~

7.5 ..-i : : i : -i :: : i ,:

25 50 100 200 400 800 1600 3200 6400 12800

Number of passes

Fig. 7. L e a r n i n g p e r f o r m a n c e o f a n o i s y - O R b e l i e f n e t w o r k w i t h - 1 / + l - v a l u e d u n i t s f o r e o f

1 / 3 2 . T h r e e r u n s w i t h d i f f e r e n t r a n d o m n u m b e r seeds a r e s h o w n ,

those without the extra phase, while others did rather worse. Nevertheless,
even the less successful runs showed nearly steady improvement as the
simulations progressed, in contrast to the drastic worsening seen at times
with an extra negative phase.

Thus, it appears that the consequences of failure to reach equilibrium
are more serious in a negative phase than in a positive phase. This gives
belief networks a qualitative advantage in circumstances where equilibrium
is hard to reach--learning may be adversely affected, but the instability that
can occur with Boltzmann machines does not arise.

7. 8. Performance of noisy-OR belief networks

Noisy-OR belief networks were also applied to the task of learning the
mixture distribution, with rather disappointing results. Performance was
both poorer and more erratic than for sigmoid belief networks.

Figure 7 shows the progress of three runs using - 1 / + 1-valued units, with
e = ~2. The networks appear to have difficulty learning to reduce - L / N to
less than 8 bits. Increasing e sometimes improved learning speed, but not
reliably so. Performance of noisy-OR networks with 0/ l -valued units was
essentially similar, except that a higher value of e was desirable.

In other experiments, noisy-OR networks sometimes showed a strong
tendency to get stuck at a local maximum (or at a point where the gradient
was so small that learning essentially stopped). For example, attempts to
train a noisy-OR network with 0/1-valued units to compute XOR using two
hidden units between inputs and output (the minimum required) succeeded
in only 1 out of 20 tries. 10 Somewhat better results were obtained using

l ° S o m e de t a i l s : T h e t w o h i d d e n u n i t s w e r e c o n n e c t e d t o t h e i n p u t s , b u t n o t to e a c h o t h e r .

T h e o u t p u t u n i t w a s c o n n e c t e d t o t h e i n p u t s a n d to t h e h i d d e n un i t s . T r a i n i n g w a s d o n e f o r

5 0 0 0 p a s s e s w i t h e = 1 /8 .

1 O0 R.M. Neal

(a)

0.05 0.05

0.29 0.00 1.20

0.29 0.00 0.00

0.29 1.20 0.00

0.29 0.00 0.00

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

1.20 0.00 0.00 0.00 0.00 0.00 1.20 0.00

1.20 0.00 0.00 0.00 1.20 0.00 1.20 1.20

1.20 1.20 0.00 0.00 0.00 0.00 0.00 1.20

1.20 0.00 0.00 0.00 1.20 1.20 0.00 0.00

(b)

0.04 0.01

0.32 0.00 1.80

0.19 0.00 0.00

0.24 1.80 0.03

0.57 0.11 0.05

0.11 0.00 0.00

0.05 0.04 0.01 0.04 0.03 0.02 0.05 0.07

1.22 0.12 0.03 0.02 0.14 0.10 1.32 0.05

0.88 0.02 0.08 0.00 1.51 0.27 t.44 0.96

1.65 1.02 0.01 0.00 0.00 0.00 0.10 2.06

1.16 0.00 0.00 0.00 0.75 0.52 0.08 0.00

0.00 0.39 0.30 0.23 0.00 0.02 0.00 0.27

Fig. 8. Learning a two-level noisy-OR network: (a) the true network; (b) network learned from
200 training cases. In each case, the left column contains the bias weights of the four (five)
hidden "disease" units, the top row contains the bias weights of the ten visible "symptom"
units, and the body of the table contains the weights from disease units to symptom units. The

hidden units in (b) have been manually re-ordered to correspond to those in (a).

- 1 / + 1-valued units--success in 10 out of 20 attempts. Sigmoid networks
almost never get stuck when solving this problem, even with only one hidden
unit (the minimum needed with sigmoid networks).

An additional experiment was done to test whether the learning procedure
for the noisy-OR network performs better when the distribution to be learned
can be simply representated in the noisy-OR form. A two-level, 0/1-valued,
noisy-OR belief network of the type used for medical diagnosis in [7] was
constructed. In this network, four hidden units represent "diseases" which
occur independently in each patient with 25% probability. Ten visible units
represent "symptoms". Each disease has three or four potential symptoms,
each of which is produced with 70% probability. Symptoms also have a 5%
probability of occurring spontaneously. The weights embodying this network
are shown in Fig. 8(a).

This manually constructed network was used to randomly generate 200
training cases, which were then used to train a 0! 1-valued noisy-OR network
of the same form (but with five hidden units rather than four, to allow escape
from local maxima). In order to ease interpretation of the network learned,
weights were constrained to be nonnegative, i i Note that only the symptoms
of each "patient" were used for training--the network was not told the true

l l Similar results were obtained without this constraint, except that the presense of a disease
was sometimes represented by a hidden unit being O, rather than 1. Results using - 1 / + l units
were also similar.

Connectionist learning of belief networks 101

Table 3
Performance on training data (first line) and on items from the real distribution (second
line) for various networks trained to near-convergence. Results from three runs with different
random number seeds are shown.

Type of network Passes e Values o f - L / N Error rates (exact ~ simulated)

Boltzmann machine 1600 1/4 7.80 7.81 7.77 19% 17% 18% ~ 20% 18% 18%

(- 1 / + 1 units) 7.90 7.85 7.84 19% 19% 1 9 % ~ 20% 17% 20%

Sigmoid belief network 800 2 7.64 7.66 7.70 15% 17% 18% ~ 18% 18% 20%

(- 1 / + 1 units) 7.91 7.89 7.87 19% 20% 1 9 % ~ 19% 19% 20%

Noisy-OR belief network 12800 1/32 7.81 7.85 8.08 19% 19% 35% N 18% 19% 33%

(- 1 / + 1 units) 7.82 7.86 8.12 19% 19% 3 5 % ~ 18% 20% 36%

Mixture model 100 - 7.73 7.74 7.72 18% 18% 20%

(EM algorithm) 7.82 7.85 7.86 19% 22% 19%

set of diseases underlying a training case, nor even the number of diseases
present in the population.

The network that resulted from training for 2000 passes with e = ~ is
shown in Fig. 8(b). A reasonably close correspondence with the weights
in the true network is apparent, with the extra hidden unit in the trained
network being largely unused. The learning procedure may thus be said to
have discovered the essential structure of this distribution.

7.9. Generalization performance

All the results concerning the mixture distribution shown so far give
the performance of the networks on the training cases. Generally, the true
objective is good performance on items drawn from the real distribution of
which the training cases are a sample.

Table 3 shows the performance of all the network types, using - 1 / + 1-
valued units, on both the training data and on items from the real dis-
tribution. (Results for 0/1-valued units were similar or worse; they may
be found in [12].) Each type of network was trained with a reasonable
value of e until performance on the training data approached convergence.
(The choice of e and the point of near-convergence were both subjec-
tively determined.) The value of - L / N and the classification error rates
for the training data are shown, along with the corresponding figures for
the real distribution. (The analogue of - L / N for the real distribution is
- ~ - P * (~ " = ~) logP(~" = ~), where P*(.) is the real distribution, and
P (.) that given by the network.)

Classification error rates shown in the table were calculated in two ways.
The first calculation uses the exact, real distribution, and assumes that

102 R.M. Neal

classification is based on the exact probabilities defined by the networks. The
second calculation is based on a sample of 1000 test items drawn from the
real distribution which were classified by clamping the first eight attributes
and using Gibbs sampling (with annealing) to observe the resulting values
for the ninth attribute. Results of the two methods were similar, showing
that classification performance is not dependent on very small differences
in probabilities that would be swamped by noise when Gibbs sampling is
used.

For comparison, results from a maximum-likelihood fit of a mixture model
with six components to the training data using the EM algorithm [21] are
given as well, evaluated on a test sample of 5000 items.

The sigmoid belief network, the Boltzmann machine, and the mixture
model all show signs of overfitting the data, since their values for - L / N
on the training data are less than the value of 7.87 bits that the true model
would give. Accordingly, it is not surprising that their performance on the
real distribution is not quite as good as on the training data. The mixture
model appears to have overfitted to a lesser extend than the networks. This
is expected, since it is a more restricted model that nevertheless can exactly
represent this particular distribution, but the penalty in overfitting paid for
the generality of the network models does not seem large. The EM algorithm
does take considerably less time than any of the network training procedures,
however.

The noisy-OR belief network did not show such definite signs of overfitting
the training data. One run did poorly on both the training data and on the
real distribution. The other two performed well on the real distribution--
slightly better, in fact, than the other two networks. This is probably an
ironic consequence of the noisy-OR network's generally inferior learning
performance, which would make convergence to an overfitted solution more
difficult, though it could possibly be due to the particular representational
capabilities of the noisy-OR network matching this problem well.

Generalization performance for all these networks might well be improved
by using a cross-validation criterion [20] to stop learning before conver-
gence, or to select an optimal number of hidden units. Use of weight decay
[8] might also help.

7.10. Summary of empirical results

To summarize, the experimental results show that the sigmoid and noisy-
OR belief networks are capable of learning to model a nontrivial distribution,
that the sigmoid belief network can learn at a higher rate than the Boltzmann
machine, and that this advantage over the Boltzmann machine is due to
the elimination of the negative learning phase. The - l / + l formulations
of all networks appeared to outperform the 0/1 formulations, though this

Connectionist learning of belief networks 103

point was not investigated in detail. The generalization performance of the
networks was found to be broadly similar, though again only preliminary
investigations were undertaken.

The noisy-OR belief network learned the mixture distribution considerably
less well than did the sigmoid belief network, and also did poorly at several
other tasks. However, the noisy-OR network did perform well when learning
a distribution that was naturally represented in the noisy-OR form.

How well the learning procedures for belief networks perform on larger,
real-world problems can only be determined by experience. However, I
expect the superiority of the sigmoid belief network over the Boltzmann
machine to be at least as great for large networks as for the moderate-
size networks examined here. The Boltzmann machine's problems when
equilibrium is hard to reach are likely to be more apparent for larger
networks, since the state space that needs to be explored is larger. The
problem of sampling noise might appear to be lessened for larger networks,
which will have correspondingly larger training sets, but contrary to this,
the magnitude of the gradients that must be estimated tend (initially) to be
smaller for complex networks.

As an aside, it is interesting that the weights learned for the mixture
distribution generally bore only a vague resemblance to those that would
result from manually solving the problem using the clusters of Fig. 3 to
represent mixture components.

8. Discussion

I conclude by discussing how the learning procedures for belief networks
described in this paper relate to other connectionist approaches to statistical
modeling and to work on the representation of expert knowledge. I also
outline some areas in which this work appears to open up new possibilities.

8.1. Relation to determin&tic classifier networks

Problems such as speech or handwriting recognition are fundamentally
statistical in nature. Although some a priori knowledge of the task may be
available, much of the information required to solve the problem must come
from training data. The preferred output for such classification problems is
a probability distribution over possible classes, conditional on the attributes
presented as input.

A deterministic feedforward network, trained by a method such as back-
propagation [16], can represent a distribution over two classes by simply
producing the probability of one of the classes as its output. Such a network
that uses the sigmoid function to compute the output of a unit from its

104 R.M, Neal

weighted input appears very similar to a sigmoid belief network with the
same structure. Indeed, the two networks are essentially equivalent if there
are no hidden units. However, in the general case, this is not so, since the
hidden units in a deterministic network take on fixed real values, while
those in a stochastic network represent a distribution over binary vectors.

Distributions over more than two classes can be represented in a de-
terministic network using a cluster of output units, one for each possible
classification. The output of unit c, representing P(Class = c] Input), is set
to exp(X~.)/~iexp(Xi), where X~ is the total input of unit i [2]. Distri-
butions over a vector of output attributes can be represented using several
such clusters, under the assumption that the probabilities for the various
attributes are independent.

Stochastic networks, such as belief networks and Boltzmann machines,
have the more general capacity to exhibit distributions over a large output
vector in which there are arbitrary dependencies among attributes. For ex-
ample, in a medical diagnosis context, a stochastic network can represent
a diagnosis that the patient has either disease A, or disease B, but likely
not both. The improved learning speed of belief networks over Boltzmann
machines may make use of such networks feasible in practice. In a belief
network where the input units precede all the hidden and output units,
as in Fig. 4(b) , the short-cut simulation method can be used to produce
possible classifications for a given input without the need to settle to equi-
librium, at a speed comparable to that of a deterministic network. Settling
to equilibrium is still necessary during learning, when the output units are
clamped.

A further advantage of stochastic over deterministic networks is their
superior ability to cope with missing data, especially when architectures
such as those of Fig. 4 (a), (c), or (d) are used. For problems where the
advantages of a stochastic network are not relevant, however, deterministic
networks are likely to remain the best choice, since the exact calculation of
gradients they support will generally allow faster learning.

8.2. Application to unsupervised learning

The uses of belief networks and other stochastic networks are not confined
to classification problems. They are also naturally applicable to unsupervised
learning, in which the objective is simply to discover the underlying structure
of the data, without addressing any explicit classification task (though the
resulting network may well be useful for classification). One natural measure
of success in unsupervised learning is how well the probability distribution of
the data has been modeled, and this is the formal objective of the learning
procedure for belief networks. The experimental evaluations of learning
in belief networks in Section 7 were of an unsupervised nature, with the

Connectionist learning of belief networks 105

tasks being to model the mixture distribution of Table 1 and the two-level
disease/symptom distribution of Fig. 8 (a).

Standard statistical methods such as the EM algorithm can be applied to
unsupervised learning problems, as is done for the case of mixture models
in the AutoClass system of [3]. As was seen in Section 7, the learning
procedures for belief networks are capable of discovering mixture models
when they are appropriate, but they also have the capacity to learn models
with a componential structure, such as that of the two-level belief network
of Fig. 8(a), in which the various diseases can occur independently, but
jointly influence the symptoms observed. To represent the distribution of
Fig. 8(a) by a mixture model would require 24 mixture components, one
for each possible combination of diseases. This would be impractical for
large numbers of diseases.

A similar situation arises in the context of Hidden Markov Models, which
are much used in speech recognition [10]. The mean field variety of the
Boltzmann machine was used in [22] to learn a model that economically
represented Hidden Markov Model states possessing a componential struc-
ture. The learning procedures for belief networks described here should also
be applicable to this problem.

8. 3. Relation to expert systems

In applications such as medical diagnosis, experts have extensive knowl-
edge relevant to the task. Empirical data, while valuable, may be of limited
extent, or may have been acquired under circumstances different from those
currently prevailing. The need in such applications to integrate knowledge
derived from experts with that derived from empirical data has been recog-
nized by workers in the area (see the discussion in [9], for example). The
learning procedures described in this paper may contribute to solving this
problem.

One possible approach would be for the expert to specify the struc-
ture of a belief network, while leaving the numeric values of the forward
conditional probabilities to be estimated empirically. If training data is
available in which all attributes are known, this will be straightforward.
It is likely, however, that the belief network will contain units whose val-
ues were not always measured, or which are not directly observable (such
as the true underlying disease a patient suffered from). In this case, the
gradient-ascent learning procedures of this paper could be applied, per-
haps starting with weight values derived from an expert's tentative assess-
ment of the probabilities. The expert might also constrain probabilities to
some interval in order to guard against training data that is not exten-
sive enough, or that is not representative of all possible contexts in which
the system might be used. Another possibility would be for the expert to

106 R.M. Nea/

construct artificial, "textbook" training cases to supplement the empirical
data.

More ambitiously, in parts of the network where causal connections are
not clear to the expert a pool of hidden units could be included and their
weights trained from empirical data. A problem with this approach is that
the resulting networks may be hard to interpret. Using "weight decay" [8]
to encourage some weights to go to zero might help.

The desire to keep the network's operation intelligible to the experts
might also lead one to use the noisy-OR model for conditional probabilities,
regardless of whether the learning performance of sigmoid units might be
better. The particular properties of the noisy-OR model might also be
desirable for technical reasons; they are exploited in the heuristic diagnostic
search algorithm of [7], for example. 12 Noisy-OR and sigmoid units can
also be mixed in the same network, and for that matter, incorporating a
Boltzmann machine as a subnetwork is not impossible.

8.4. Making decisions

Belief networks are compatible with the "influence diagrams" used to
formulate decision problems. An algorithm of Shachter [17] exploits the
structure of these diagrams to find decisions that maximize expected utility.
Unfortunately, this algorithm can sometimes take exponential time. I will
describe here a method of making simple decisions using Gibbs sampling
that also exploits properties of belief networks.

Consider a network with three sets of visible units--a "context" set, ~, an
"action" set ~, and a "result" set, ~. Using empirical data, we can train this
network to represent the conditional probabilities that ~ will result given
that we perform action ~ in context ~. Suppose now that we wish to bring
about some "goal", ~, at a time when the context is ?. Our best bet is to
perform an action ~ that maximizes P(/~ = ~] ~ = ~, ~ = ~).

We could find the action that maximizes the probability of our goal
by running a separate Gibbs sampling simulation for every possible ac-
tion. In each simulation, the action and context units would be clamped,
and we would observe how often the goal shows up in the result units.
We would then choose the action that leads to the goal showing up most
often. However, this method is infeasible if there are many actions, rep-
resented by a large number of units. (Consider the number of possible
medical treatments when twenty drugs can be given in combination, for
example.)

12If this algorithm is to be used, the noisy-OR network must be constrained to allow only
nonnegative weights.

Connectionist learning of belief networks 107

However, we can transform the problem by rewriting the probability to
be maximized using Bayes' rule:

= I a,

?=5) e(=ffl?=5)
, ' (X = a i

(35)

Now, provided that P (.~ = ~ I ~ = 5) is the same for all ~, we can choose
the best action by running a Gibbs sampling simulation in which we clamp
the context units to ~" and the result units to ~, and then observe which
value of ~ turns up ~ o s t often in the action units.

Ensuring that P(A = ~ I ~ = 5) is the same for all ~ is easy in a belief
network--we simply set up the network so that units in ~ have no incom-
ing connections, ensuring equal probabilities for each ~ in an unclamped
network, and we further arrange that there is no directed path from a unit
in .~ to a unit in ~, which ensures that clamping ~ will not change these
probabilities. ~3 Producing these equal probabilities in a Boltzmann machine
is not so easy. We could try to train the Boltzmann machine to satisfy
the constraint, but there is no guarantee that we will succeed very well,
and the attempt may interfere with learning the distribution of /~ given ~
and ~.

Unfortunately, the transformed method does not completely solve this
decision problem. It is possible that with a particular context and goal
clamped, a different action will show up after every simulation pass, even
during a long simulation. We will then have no basis for deciding which (if
any) of these actions is best. Accordingly, the method is most applicable
in situations where only a small, but unknown, subset of actions have a
significant probability of producing the goal.

It is tempting to try to solve this problem using simulated annealing by
"cooling" the simulation down to a temperature of zero in order to find
the most probable state vector compatible with the clamped context and
goal. However, the action with highest marginal probability (i.e. probability
after summing over all possible hidden unit values) need not be the same
as the action part of the most probable total state vector, so the annealing
method is guaranteed to work only if there are no hidden units in the
network.

13Note that P (~ = ~ [~ = ~') exists only in a formal sense, and may thus be manipula ted
in any fashion that is convenient . With a usual degree-of-belief interpretat ion o f probability,
we do not assess how likely we are to perform action ~', we simply decide whether or not to
do it.

108 R.M. Neal

8.5. Potential for new learning procedures

Gradient-ascent learning has the advantage that it is simple, and that it can
be performed in an "on-line" manner if desired. However, it can be rather
slow, and can get stuck at a local maximum. For Boltzmann machines, there
appears to be no reasonable alternative to gradient-ascent, but for belief
networks the fact that the probability of a full state vector can be explicitly
calculated allows one to contemplate other learning procedures.

For noisy-OR belief networks, one possibility is to apply a stochastic
version of the EM algorithm [4]. This seems feasible provided that the
efficacy of each input to a unit in forcing the unit to take on the value
1 is made explicit in a set of auxiliary units that are simulated along
with the main units. Probabilities can then be iteratively estimated from
co-occurrence counts.

It also seems feasible to implement Bayesian learning by applying Gibbs
sampling to the learning process as a whole. This method may avoid both the
problem of overfitting the training data and the possibility of getting stuck
in a local maximum. It may work especially well for noisy-OR networks
with the auxiliary units described above, since it turns out that one can then
avoid having to simulate distributions over continuous parameters.

One advantage of all the learning methods based on Gibbs sampling is
the ability to easily handle missing data, which is an inherent aspect of
learning whenever the network contains hidden units. This is a problem for
previously described learning methods for belief networks, such as those of
[18].

8.6. Neural modeling

The connectionist learning procedures for belief networks also provide
additional options for modeling of real neural processes. Although analogies
between the negative phase of Boltzmann machine learning and dream sleep
are speculated upon in [8], it may well turn out that the negative phase is
biologically implausible. The work here shows that this would not necessarily
be fatal to the idea that gradient ascent using Gibbs sampling plays some
role in learning in the brain. The somewhat greater complexity of Gibbs
sampling in belief networks may be a barrier to their incorporation in models
of neural processing, however.

Appendix A. Proofs of claims

Claim A.1. The procedure o f Fig. I moves the weights into unit i to the point
closest in Euclidean distance that satisfies the constraint

WiO q- Z wij >~ rl. (A.1)
j<i, w~j<0

Connectionist learning o f belief networks 109

Proof. Let ~oij be the original set of weights, and let w~j = ~uij -1- 6j be the
set of weights satisfying the constraint for which A 2 = ~ j 6~ is minimal.
We can prove a number of properties of the 6j.

First, all the 6j are nonnegative, since decreasing a weight will certainly
not help satisfy the constraint. Also, for j > 0, 6j = 0 if ~Uij ~ 0 and
6j ~ [wijl if113ij < O, since o n c e 6j is large enough to m a k e ~/)~j zero, making
it any larger does not help satisfy the constraint.

Next, if wij <~ wik < 0, then 6j >~ 6k. Otherwise replacing both 6j and
6~ by ½ (6j + 6k) would reduce A 2 while keeping the constraint satisfied.
Similarly, 6o >~ 6j for all j , since otherwise there would be an advantage in
replacing them both by ½ (60 + 6j).

We can therefore renumber the units before i in such a way that for some
n~

60 >~ 61 >~ .. . >~ 6n > 0,

~l)il ~ ' ' " ~ Win < 0,
(A.2)

and wij >~ 0 and 6j = 0 for j > n. One can now show, by arguments similar
to those above, that there is an m such that for all j up to m, 6j = 60 and
6j < [~13ij[, while for m < j <~ n, 6j -~- 1~33ij] .

The entire set of optimal changes, 6j, is therefore determined by the value
of 60. The other 6j are either equal to 60, or are less, if a lesser value suffices
to make w~j nonnegative.

The procedure of Fig. 1 is now easily seen to be a search for the appropriate
value of 60. []

Claim A.2. The weights in both a Boltzmann machine and in a sigmoid
belief network consisting o f only one or two units can be set so as to produce
any probability distribution over state vectors. (Except that distributions in
which some state vectors have zero probability can only be approached as the
weights go to infinity.)

Proof. We need only consider networks with 0 / l -valued units. Clearly, any
distribution over a network of one unit can be produced by simply adjusting
the single bias weight.

To produce a given distribution over a sigmoid belief network with two
units, start by setting the bias weight for the first unit to produce the required
marginal probability distribution for that unit. Then set the bias weight for
the second unit to produce the required conditional probability distribution
given that the first unit has value 0. Lastly, set the weight on the connection
from the first to second unit to produce the correct conditional probability
distribution given that the first unit has value 1, taking into account the
value of bias weight determined earlier.

110 R.M. Neal

For a two-unit Boltzmann machine, we must find weights that give energies
to the four possible states that produce the required distribution. The energy
of state (0, 0) is zero irrespective of the weight values. We can arrange for
states (1,0) and (0, 1) to have the appropriate energies relative to that of
{0,0) by adjusting their bias weights. The energy of state {1, 1) can then be
made whatever we wish by setting the weight on the connection between
the two units, taking account of the bias weights. []

Claim A.3. The set of probability distributions that can be produced over a
network o f three units is the same for Boltzmann machines and sigmoid belief
networks.

Proof. To translate a three-unit Boltzmann machine to a sigmoid belief
network, start by setting up the first two units of the sigmoid network so as
to duplicate the marginal distribution over (any) two units of the Boltzmann
machine. Claim A.2 guarantees that this is possible. Now add a third unit
after these two, connected to the first two using the same weights as in the
Boltzmann machine. This duplicates the required conditional probabilities
for the third unit, without disturbing the distribution over the first two
units.

To translate a three-unit sigmoid belief network to a Boltzmann machine,
start by setting the weights to the third unit in the Boltzmann machine to be
the same as those into the last unit in the sigmoid network. This duplicates
the conditional probabilities for this unit given the values of the other two
units. Now we need to set up the weights between the remaining two units
so as to produce the same marginal distribution as in the sigmoid network,
taking into account the biasing effects of the third unit. This can be done
because, again, all things are possible with only two units. []

Claim A.4. The probability distribution produced by the O/1-valued Boltz-
mann machine o f Fig. 2(a) cannot be duplicated by a sigmoid belief network
with the same number of units.

Proof. We can assume that the sigmoid belief network also uses 0/1-valued
units. Due to the symmetry of the Boltzmann machine, there is no choice in
ordering the units when trying to find an equivalent sigmoid belief network.
The last unit in the sigmoid belief network (unit 4) must have the same
weights as in the Boltzmann machine in order to reproduce the conditional
probabilities for that unit's value given the values in the rest of the network.

Now consider how we must set the weights into the second-to-last unit in
the sigmoid belief network (unit 3). By symmetry, the two weights from the
earlier units must be equal; call their value w. There is also a bias weight,
b. Consider the odds in favour of unit 3 having the value 1 when unit 4

Connectionist learning of belief networks 111

has the value 1 and there are zero, one, or two units with value 1 before
unit 3. Equating these odds in the sigmoid belief network to the odds in the
Boltzmann machine produces the constraints, respectively:

a(1)
e x p (b) - - - exp(1), (A.3)

a(0)

a(2)
exp(b + w) - exp(2), (A.4)

a(1)

a(3)
exp(b + 2w) - - _ exp(3). (A.5)

a (2)

By taking logarithms, one obtains a system of linear equations in w and b
which numerical calculation shows to be inconsistent. []

Claim A.5. The probability distribution produced by the O/l-valued sigmoid
belief network of Fig. 2(b) cannot be duplicated by a Boltzmann machine
with the same number of units.

Proof. We can restrict consideration to Boltzmann machines with 0/1-valued
units. Consider the unit in a candidate Boltzmann machine corresponding
to the bottom unit in the sigmoid network. The weights into this unit must
be the same as those in the sigmoid network, in order to reproduce the
conditional probabilities for this unit given the various combinations of
other unit values. Note that the value of the bottom unit is effectively a
deterministic function of the values of the upper three units--i.e, there are
only eight state vectors with significant probability.

Now consider the constraints placed on the weights in the Boltzmann
machine by the requirement that all combinations of values for the upper
three units be equally probable, as they are in the sigmoid network. In the
Boltzmann machine, this translates to the requirement that the energy of
the network be the same for all eight possible state vectors. In particular,
since the energy of the state vector (0, 0, 0, 0) is zero, the energy of the other
seven state vectors must be zero as well. Applying this constraint to the
three state vectors (1,0, 0, 1), (0, 1,0, 1), and (0, 0, 1, 1), we find that the bias
weights into the three upper units must be -10. Applying it to the the three
state vectors (0, 1, 1, 1), (1,0, 1, 1), and (1, 1,0, 1), we get that the weights
between the upper units must all be - 1 0 as well. The energy of the state
(1, 1, 1, I) is now determined to be -10 , showing that a proper set of weights
is impossible. []

Claim A.6. The probability distribution produced by a three-unit noisy-OR
belief network with O/l-valued units in which w3~ = w32 = 1 and all other

1 12 R.M. Neal

weights are zero cannot be duplicated by either a Boltzmann machine or a
sigmoid belief network with only three units.

Proof. In view of Claim A.3, it suffices to show that the noisy-OR network
cannot be duplicated by a Boltzmann machine with 0/1-valued units.

Consider the unit in a candidate Boltzmann machine corresponding to
unit 3 in the noisy-OR network. In the noisy-OR network, this unit is
always zero when the other units are both zero. To approximate this in the
Boltzmann machine, the bias weight for this unit must be very large and
negative. The probability of this unit being zero when one of the other two
units is one is only e - l , however. The weights from the other two units
must therefore be very large and positive, in order to nearly cancel out
the large negative bias in this case. Now, however, the probability of the
unit being one when both other units are one is nearly 1 in the Boltzmann
machine, but only 1 - e -2 in the noisy-OR network. Thus no set of weights
for the Boltzmann machine can produce (or even closely approximate) the
required distribution. []

Acknowledgement

I thank Geoff Hinton and the other members of the Connectionist Re-
search Group at the University of Toronto for many helpful discussions.
This research was supported by the Natural Sciences and Engineering Re-
search Council of Canada and the Ontario Information Technology Research
Centre.

References

[1] D.H. Ackley, G.E. Hinton and T.J. Sejnowski, A learning algorithm for Boltzmann
machines, Cogn. Sci. 9 (1985) 147-169.

[2] J.S. Bridle, Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition, in: F. Fougelman-Soulie and J.
H6rault, eds., Neuro-computing: Algorithms, Architectures, and Applications (Springer,
Berlin, t989).

[3] P. Cheeseman, J. Kelly, M. Self J. Stutz, W. Taylor and D. Freeman, AutoClass: a
Bayesian classification system, in: Proceedings Fifth International Conference on Machine
Learning, Ann Arbor, MI (1988).

[4] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm (with discussion), J. Roy. Stat. Soc. B 39 (1977) 1-38.

[5] M. Derthick, Variations on the Boltzmann machine learning algorithm, Tech. Rept. CMU-
CS-84-120, Department of Computer Science, Carnegie-Mellon University, Pittsburg, PA
(1984).

[6] A.E. Gelfand and A.F.M. Smith, Sampling-based approaches to calculating marginal
densities, J. Am. Stat. Assoc. 85 (1990) 398-409.

Connectionist learning of belief networks 113

[7] M. Henrion, Towards efficient probabilistic diagnosis in multiply connected belief
networks, in: R.M. Oliver and J.Q. Smith, eds., Influence Diagrams, Belief Nets and
Decision Analysis (Wiley, Chichester, England, 1988).

[8] G.E. Hinton and T.J. Sejnowski, Learning and relearning in Boltzmann machines, in:
D.E. Rumelhart, J.L. McClelland and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, VoL 1: Foundations (MIT
Press, Cambridge, MA, 1986) 282-317.

[9] S.L. Lauritzen and D.J. Spiegelhalter, Local computations with probabilities on graphical
structures and their application to expert systems (with discussion), J. Roy. Stat. Soc. B
50 (2) (1988) 157-224.

[10] S.E. Levinson, L.R. Rabiner and M.M. Sondhi, An introduction to the application of the
theory of probabilistic functions of a Markov process to automatic speech recognition,
Bell Syst. Tech. J. 62 (4) (1983).

[11] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of
state calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953) 1087-1092.

[12] R.M. Neal, Learning stochastic feedforward networks, Tech. Rept. CRG-TR-90-7,
Connectionist Research Group, Department of Computer Science, University of Toronto,
Ont. (1990).

[13] R.M. Oliver and J.Q. Smith, Influence Diagrams, Belief Nets and Decision Analysis
(Wiley, Chichester, England, 1988) (Proceedings Conference on Influence Diagrams for
Decision Analysis, Inference, and Prediction, Berkeley, CA (1988)).

[14] J. Pearl, Evidential reasoning using stochastic simulation of causal models, Artif. Intell.
32 (2) (1987) 245-257.

[15] J. Pearl, Probabilistic Reasoning in Intelligent System: Networks of Plausible Inference
(Morgan Kaufmann, San Mateo, CA, 1988).

[16] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning representations by back-
propagating errors, Nature 323 (1986) 533-536.

[17] R.D. Shachter, Probabilistic inference and influence diagrams, Oper. Res. 36 (4) (1988)
589-604.

[18] D.J. Spiegelhalter and S.L. Lauritzen, Sequential updating of conditional probabilities on
directed graphical structures, Networks 20 (1990) 579-605.

[19] W.S. Stornetta and B.A. Huberman, An improved three-layer back propagation algorithm,
in: Proceedings First IEEE International Conference on Neural Networks, San Diego, CA
(1987).

[20] M. Stone, Cross-validatory choice and assessment of statistical predictions (with
discussion), J. Roy. Stat. Soc. B 36 (1974) 111-147.

[21] D.M. Titterington, A.F.M. Smith and U.E. Makov, Statistical Analysis of Finite Mixture
Distributions (Wiley, Chichester, England, 1985).

[22] C.K.I. Williams and G.E. Hinton, Mean field networks that learn to discriminate
temporally distorted string, in: Connectionist Models: Proceedings of the 1990 Summer
School (Morgan Kaufmann, San Mateo, CA, 1990).

