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Abstract 

Neal, R.M., Connectionist learning of belief networks, Artificial Intelligence 56 (1992) 
71-113. 

Connectionist learning procedures are presented for "sigmoid" and "noisy-OR" varieties 
of probabilistic belief networks. These networks have previously been seen primarily as a 
means of representing knowledge derived from experts. Here it is shown that the "Gibbs 
sampling" simulation procedure for such networks can support maximum-likelihood 
learning from empirical data through local gradient ascent. This learning procedure 
resembles that used for "Boltzmann machines", and like it, allows the use of "hidden" 
variables to model correlations between visible variables. Due to the directed nature 
of the connections in a belief network, however, the "negative phase" of Boltzmann 
machine learning is unnecessary. Experimental results show that, as a result, learning in 
a sigmoid belief network can be faster than in a Boltzmann machine. These networks 
have other advantages over Boltzmann machines in pattern classification and decision 
making applications, are naturally applicable to unsupervised learning problems, and 
provide a link between work on connectionist learning and work on the representation 
of expert knowledge. 

1. Introduction 

T h e  w o r k  r e p o r t e d  he re  can  be  seen  f r o m  two p e r s p e c t i v e s .  F r o m  one  p o i n t  

o f  v iew,  i t  d e s c r i b e s  a c o n n e c t i o n i s t  n e t w o r k  w i th  c a p a b i l i t i e s  c o m p a r a b l e  

to  t h o s e  o f  t he  B o l t z m a n n  m a c h i n e ,  b u t  w i th  b e t t e r  l e a r n i n g  p e r f o r m a n c e .  

F r o m  the  o the r ,  i t  shows  h o w  b e l i e f  n e t w o r k s  can  be  l e a r n e d  f r o m  e m p i r i c a l  

d a t a ,  as  an  a l t e r n a t i v e ,  o r  a s u p p l e m e n t ,  to  t h e i r  s p e c i f i c a t i o n  b y  exper t s .  
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The original objective of the work was to find a network architecture 
that shared with Boltzmann machines [1,8] the capacity to learn arbitrary 
probability distributions over binary vectors, but that did not require the 
"negative phase" of Boltzmann machine learning. It was hypothesized that 
eliminating the negative phase would improve learning performance. 

This goal was achieved by replacing the Boltzmann machine's symmetric 
connections with directed, acyclic connections. In analogy with Boltzmann 
machines, the sigmoid function was used to compute the conditional prob- 
ability of  a unit being on from the weighted input from other units. The 
stochastic operation of such a network is somewhat more complex than 
for a Boltzmann machine, but is still possible using local communication. 
Maximum-likelihood, gradient-ascent learning can be done using locally 
available information. 

These networks turn out to fall within the general class of "belief networks" 
studied by Pearl [15] and others as a means of representing probabilistic 
knowledge in expert systems. However, the specific network architectures 
considered by Pearl use a "noisy-OR" model for the probability of a unit 
being on, based on the states of  units feeding into it. It is natural to ask 
whether a learning procedure can be developed for this model, as well as for 
that using the sigmoid function. A local learning rule was indeed found for a 
generalization of the noisy-OR model, though this time the gradient-ascent 
procedure must be constrained to avoid an invalid region of the weight 
space. 

The representational power of the two types of belief network was inves- 
tigated and compared to that of  the Boltzmann machine. It turns out that 
each of  these three networks can represent probability distributions over 
the full set of  units that the other two networks cannot. With the help of 
"hidden" units, all these networks can represent arbitrary distributions over 
a set of  "visible" units. Judicious placement of  hidden and visible units can 
be used to constrain the representational capabilities of  a belief network, in 
order to direct learning in a desired direction. 

The presence of  hidden units is an extreme case of "missing data"--data 
which is not always observed in the training cases. Learning procedures for 
belief networks that have been described previously have problems with 
missing data, but it is handled naturally by the method presented here (as 
well as by Boltzmann machines). 

The learning capabilities of these networks were evaluated using a simple 
mixture distribution and an associated classification task. The sigmoid belief 
network was found to be capable of  learning at a significantly higher rate 
than the Boltzmann machine. Additional experiments established that the 
sigmoid belief network's advantage in learning speed is indeed due to the 
elimination of  the negative phase. The noisy-OR belief network performed 
less well at the mixture modeling task, and in other cases showed a strong 
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tendency to get stuck at a local maximum. It did perform well at learning a 
distribution naturally expressed in the noisy-OR form, however. 

This paper begins with reviews of Boltzmann machines and belief net- 
works. I then define the sigmoid and noisy-OR varieties of belief network, 
derive gradient-ascent learning rules for them, and investigate their repre- 
sentational power. The experiment comparing the learning performance of 
these networks with Boltzmann machines is then described. Finally, I show 
how belief networks relate to other connectionist approaches to statistical 
modeling and to work on the representation of probabilistic knowledge in 
expert systems, and I discuss how these networks open up new possibilities 
for decision making, alternative learning procedures, and neural modeling. 

2. A review of Boltzmann machines 

The Boltzmann machine [1,8] is most naturally viewed as a device for 
modeling a probability distribution, from which conditional distributions 
for use in pattern completion and classification may be derived. In the 
limit as probabilities approach zero and one, deterministic input-output 
mappings can be represented as well. These capabilities would make the 
Boltzmann machine attractive in many applications, were it not that its 
learning procedure is generally seen as being painfully slow. Boltzmann 
machines have also been considered as a model of  computation in the 
brain. 

2. I. Definition o f  Boltzmann machines 

A Boltzmann machine consists of some fixed number of two-valued units 
linked by symmetrical connections. In some formulations, the two possible 
values of a unit are 0 and 1; in other formulations the two values are -1  and 
+ 1. These alternate formulations are representationally equivalent, but the 
- 1 / ÷  1 formulation is often found to have better learning performance. ~ 
Since, on the other hand, networks with 0/1-valued units are easier to 
understand, I will retain both formulations here. 

The states of the units will be denoted by the vector ~, with the state of 
unit i being si. This state vector will often be regarded as a realization of 
a corresponding random variable ~. The weight on the connection between 
unit i and unit j will be denoted by wij. Since connections are symmetrical, 
qJ)ij = 113ji. Units do not connect to themselves. "Bias" weights, wi0, from a 
fictitious unit 0 whose value is aways 1 are also assumed to be present. 

l The  benef i t  of  a symmetr ic  formula t ion  for the related case of  backpropagat ion  networks  is 
shown in [ 19 ]. 
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In an analogy with thermodynamics, the "energy" of a network with state 
~ is defined as follows: 

E (-g) = - f l  ~ s,sjwij, (1) 
j<i 

where fl is the constant 1 if units take on values of  0 and 1 or the constant 
_t if units take on values of - 1 and + 1. Intuitively, a state with low energy 2 
is more internally compatible than one with high energy. 

The energy is used to define a "Boltzmann" probability distribution over 
states, in which low-energy states are more probable than high-energy states. 
Specifically, 

P ( ~ = ~ )  = e x p ( - E ( ~ ) ) / Z ,  (2) 

where Z is a normalization factor that makes the probabilities of  all states 
sum to one: 

Z = y ~  exp ( - E  G) ). (3) 

S 

Typically, some of the units in the network are "hidden", and we are 
interested only in the marginal distribution of the other "visible" units. We 
then consider the state vector ~ to be split into the pair (~, ~), and similarly 
the random variable ~ becomes (/~, ~). The distribution over the visible 
units is then 

P ( ~  = ~ )  = y ~ P ( ~ =  (~,~)). (4) 

Z 

2.2. Gibbs sampling for Boltzmann machines 

Since Z is the sum of an exponentially large number of terms, directly 
computing the probability of  a given state vector is infeasible for networks 
of significant size. Even if this calculation could be performed efficiently, 
we would still need time exponential in the number of hidden units to 
calculate the marginal probability of a visible vector, or the probability 
distribution for a subset of  visible units conditional on given values for 
the other visible units. These distributions can, however, be exhibited via 
a stochastic simulation procedure known as "Gibbs sampling", a process 
which is fundamental to the operation of all the networks considered in this 

2 paper. 
The simulation starts with the network in an arbitrary state. Units are 

then repeatedly visited in turn, with a new value being selected on each visit 

2The technique appears to have been first described in [11 ], in the form known as the 
"Metropolis algorithm". General application of the method is discussed in [6]. 
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according to the unit's probability distribution conditional on the values of 
all other units. For Boltzmann machines, this conditional distribution for 
unit i is as follows: 

P(S i  = x l Ss = ss " j # i) = a ( x *  ~-~sswi j ) .  
j~i 

(5) 

The notation "Sj  = sj : j # i" means the joint condition that Sj = ss 
for all j such that j # i. For - 1 / +  1-valued units, x* = x, while for 
0/1-valued units x* = 2x - 1. The "sigmoid" function, tr(t), is defined as 
1/(1 + e x p ( - t ) ) .  Note that t r ( - t )  = 1 - tr(t) .  

To produce a sample from the distribution over state vectors, the sim- 
ulation is allowed to run for a length of time sufficient for it to settle 
to "equilibrium". A collection of state vectors taken at sufficiently widely 
separated times as the simulation continues to run will then form a sample 
from the distribution for 7. Conditional distributions can be exhibited by 
clamping certain units to fixed values during the simulation and updating 
only the values of  the remaining units. This allows the network to perform 
pattern completion and classification tasks. 

Unfortunately, it is difficult to say how much time should be allowed for 
the simulation to reach equilibrium, or at what interval state vectors should 
subsequently be taken to form the sample. The technique of "simulated 
annealing" is often used to reach equilibrium faster. In this method, we 
make the probability distribution sampled from more uniform by raising the 
probability of each state to the power l I T  (and then renormalizing). T, the 
"temperature" parameter, is initially set high in order to make equilibrium 
easy to reach, and is then gradually reduced to 1, at which point we hope 
that the equilibrium distribution for the original probabilities will have been 
reached. 

2.3. Learning in Bol t zmann  machines 

The learning problem for Boltzmann machines is to adjust the weights so 
as to make the distribution over visible units match as closely as possible the 
distribution of some real-world attributes, as evidenced by a set of  training 
cases. 

Adopting the maximum-likelihood approach to such estimation, we at- 
tempt to maximize the log-likelihood given the training cases, defined as 

p(~" L ~) = l o g H  = = ~ l ° g P ( V  = ~), (6) 
~'~r ~'~- 

where 7 is the collection of training cases (which may contain repetitions). 
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The partial derivative of L with respect to a particular weight can be 
expressed as follows: 

OL 
O W i j  

f l_Z ( Z_ P(~ = ~1 f) = ~)s~sj 
~ET  s 

- t '  =  g)sis ). 
? 

(7) 

The above formula provides the basis for a gradient-ascent learning pro- 
cedure involving two parallel Gibbs sampling simulations for each training 
case. In the "positive phase" simulation, the visible units are clamped to 
the values they take in the training case, with the result that the simulation 
produces a sample consi~sting of some number of states from the conditional 
distribution of S given V = ~. In the "negative phase" simulation, no units 
are clamped, producing an (equal size) sample from the unconditional dis- 
tribution for S. For each state vector ~+ in the positive phase samples, the 
weight wij is incremented by a small amount proportional to s~sJ-. For 
each state vector ~- in the negative phase samples, w o is decremented by 
an amount in the same proportion to s i s j .  This procedure is repeated until 
convergence is reached. 

2.4. Need for the negative phase 

Intuitively, the need for a negative as well as a positive phase in Boltzmann 
machine learning arises from the presence of the normalizing factor, Z,  in 
the expression for the probability of a state vector. Because of this, the 
direction of steepest descent in energy is not the same as that of steepest 
ascent in probability. The negative phase of the learning procedure is needed 
to account for this effect. 

Looked at another way, the negative phase provides the mechanism by 
which the learning comes to a stop--once the correct distribution over visible 
units has been learned, this distribution is exhibited in the negative phase, 
just as it is forced in the positive phase. The positive phase increments 
and negative phase decrements then balance, on average, and the weights 
become stable. 

The presence of the negative phase has several disadvantages: 

(1) It directly increases computation by a factor of more than two. 
(2) It may make the learning procedure more sensitive to statistical errors. 
(3) It may reduce any neurological plausibility the scheme possesses. 

Note that since the negative phase simulations have more unclamped units, 
they take longer to run than the positive phase simulations. The presence of 
a negative phase may make it necessary to collect a larger sample of state 
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vectors from the simulations in order to reduce the variance in the estimate 
of the gradient of L, which will be the sum of the variances of the positive 
and the negative phase statistics. Taking the difference of the statistics from 
two phases may also exacerbate the ill-effects of not reaching equilibrium in 
the simulations. 

On the other hand, the negative phase can be exploited to control how 
network resources are utilized. In particular, the network can be forced to 
learn a mapping between a group of visible input units and a group of visible 
output units while ignoring the distribution of the input units themselves. 
This is done by clamping the input units in the negative as well as the 
positive phase. It will turn out that in belief networks, where the negative 
phase has been eliminated, control over what the network learns can be 
exercised by other means. 

3. A review of belief networks 

Belief networks, also known as "Bayesian networks", "causal networks", 
"influence diagrams", and "relevance diagrams", are designed, like Boltz- 
mann machines, to represent a probability distribution over a set of at- 
tributes. Study of these networks by Pearl [ 15] and others [ 13] has been 
motivated principally by the desire to represent knowledge obtained from 
human experts, however. Accordingly, hard-to-interpret parameters such as 
the weights in a Boltzmann machine have been avoided in favour of more 
intuitive representations of conditional probabilities. 

3.1. Def ini t ion o f  be l ie f  ne tworks  

Sticking as closely as possible to the terminology of the previous sections, 
we can view the state of a belief network as a vector, g, with si being the 
state of unit i. In this paper, the units will always be two-valued. When 
belief networks are applied to expert system design, the units represent 
propositions concerning the problem situation that are meaningful to the 
expert. 

The probability of a state vector is defined in terms of what I will 
call "forward condition probabilities"--the probability of a unit having a 
particular value conditional on the values of the units that precede it: 

P ( ~  = -~) = 1-'~ P ( S i  = si ] S j  = sj • j < i) .  (8) 
i 

The conditional probabilities above are assumed to have been given by 
an expert. Typically, only a subset of the units preceding unit i will be 
"connected" to it, and only these will be relevant in specifying its forward 
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conditional probabilities. Note that the ordering of units in the state vector is 
crucial, since it determines which conditional probabilities must be specified. 

3.2. Gibbs sampl ing  for  be l ie f  networks  

In contrast with Boltzmann machines, computing the probability of a 
particular state vector for a belief network is straightfo~rward. One can also 
easily generate a sample from the distribution for S. However, making 
predictions by computing conditional probabilities or sampling from con- 
ditional distributions are in general difficult problems. Various methods 
for computing exact conditional probabilities in belief networks have been 
proposed [9,15,17 ], but all are either restricted to special forms of network 
or have exponential time complexity in the worst case. 

It appears that the only plausible method of sampling from conditional 
distributions in belief networks with high connectivity is Gibbs sampling, 
introduced in this context by Pearl [14,15]. As with Boltzmann machines, 
a step in the simulation requires selecting a new value for unit i from 
its distribution conditional on the values of the other units. For a belief 
network, this distribution is given by the proportionality 

P ( S i  = x I S) = s; : j ¢ i) 

oc P ( S i  = x [ Sj  = sj : j < i) 

• 1--[ P ( s ;  = s~ I s i  = x ,  sk  = sk • I¢ < j ,  1¢ ~ i ) .  
j>i 

(9) 

For this procedure to be guaranteed to work (in the limit as the number 
of simulation passes grows), the forward conditional probabilities should be 
nonzero. The time to reach equilibrium in the simulation can be reduced 
by using simulated annealing, as described for Boltzmann machines. 

A "short-cut" simulation method is possible when the units whose values 
are known happen to be the first ones in the state vector. In this case, rather 
than employ the full Gibbs sampling procedure, we can simply select new 
values for each unclamped unit in a single forward pass, using the forward 
conditional probabilities. The selection for each unit depends only on the 
values for preceding units, and the values in the previous state vector have 
no effect on the result. Accordingly, no settling to equilibrium is required, 
and the state vectors obtained in successive passes are all independent. 
This short-cut can be exploited when belief networks are used for pattern 
classification or for other tasks that have the form of an input-output 
mapping. 
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3.3. The noisy-OR model  o f  conditional probabilities 

So far, forward conditional probabilities have been assumed to be given 
explicitly. In fact, this will generally not be feasible, since explicitly specifying 
the conditional distribution for Si given the values of the preceding units 
requires 2 i - l  parameters. Even if some of the preceding units are not 
connected to unit i, more compact specifications will generally be necessary. 

One method, termed the "noisy-OR" model [7,15], views the units as 
0/1-valued OR gates with the preceding units as inputs. An input of  1 does 
not invariably force a unit to take on the value 1, however. Rather, there is 
a certain probability, qij, that even though unit j has the value I, it will fail 
to force a unit i that it feeds into to go to 1. Under this model, the forward 
conditional probabilities can be expressed in terms of the qij as follows: 

P(S i  = 1 S j  = s j  " j < i) = 1 - I-[ qij. (10) 
j<i, sj=l 

Once again, a fictitious unit 0 whose value is always 1 has been assumed, 
along with associated parameters qio. Note that if qij is one, unit j is 
effectively not connected to unit i. 

4. Two varieties of belief network 

We are now in a position to describe the two types of belief network that 
are investigated in this paper. The first, "sigmoid", variety was designed 
in analogy with Boltzmann machines. 3 When the connection with belief 
networks was realized, the second variety was developed as a generalization 
of the "noisy-OR" model for specifying conditional probabilities. In contrast 
with the use of belief networks in expert systems, the units in these networks 
will not necessarily be seen as representing propositions that would be 
meaningful in human terms. As in other connectionist systems, the units in 
these networks may interact in ways that are useful in solving a problem 
without mimicking its usual symbolic structure. 

4.1. Definition o f  s igmoid belief  networks 

Two formulations of sigmoid belief networks will be considered. In one, 
units take on the values 0 and 1, in the other, they take on the values -1  
and + 1. Directed forward connections connect the units. The weight on the 
connection from unit j to unit i will be denoted by wij.  A bias unit, 0, 
set permanently to 1 is assumed to exist, with associated weights, wi0. The 

3Belief networks of this type have also been discussed in [18]. They can be seen as general- 
izations of the "logistic regression" model well-known in statistics. 
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forward conditional probabilities for sigmoid belief networks can then be 
defined as follows: 

P(Si = si [ Sj = sj " j < i) = 6 ( s T ~ s j w i j ) .  ( l l )  
j<~ 

Here again, for - 1 / +  1-valued units, s7 = si, while for 0/l-valued units, 
s; = 2Si- 1. Note the analogy with equation (5) for the Boltzmann machine. 
The above gives the distribution for a unit's value conditional only on the 
units preceding it, however, not on all other units. 

One can easily verify that a network of 0/1-valued units with forward 
conditional probabilities defined as above can be converted to an equivalent 
network of - 1 / + 1-valued units with weights w;j by the transformation: 

' Z ~l)iO = ~OiO + Wij/2, (12) 
0<j<i  

w;j = wij/2 f o r 0 < j < i .  (13) 

This transformation is easily inverted. The two formulations thus have 
equal representational power. A similar equivalence applies to Boltzmann 
machines. 

The probability of a state vector, 7, is defined in terms of the forward 
conditional probabilities: 

P (~  = 7) = H P ( S i  = si  [ S j  = s j  • j < i) (14) 
i 

= 

i J<~ 

As with Boltzmann machines, we are often interested in the marginal 
distribution over a subset of "visible" units, given by 

P ( ~  = ~) = y ~ P ( ~  = (~,~)), (16) 

where ~ has been split into /~  r, ~'). We are also interested in conditional 
distributions involving subsets of  visible units, as these allow one to perform 
tasks such as pattern completion and classification. 

To exhibit these marginal and conditional distributions via Gibbs sam- 
pling, we must repeatedly select a new value for each unit from its distri- 
bution conditional on the rest of the network. This distribution is given by 
the proportionality 

P ( S i  = x I S j  = s j  • j # i) 

~ ~ ( x * ~ s j w i j )  ~l~>~(s;(xwji * s 
~ <j, ~ ~ 

(17) 
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To select a new value from the above distribution, unit i must have 
available both its own total input: ~,j<i sjwij, and the input to each unit, 
j ,  that it feeds into, exclusive of its own contribution: ~k<j,k~iSkW~k. 
The procedure is thus somewhat more complex than that for a Boltzmann 
machine (see equation (5)),  but the information required can still be made 
available through local network communication, provided data can pass 
both ways along the directed connections. 

4.2. Noisy-OR belief networks 

In the "noisy-OR" form of belief network described above, the probabil- 
ities, qij,  that an input of  1 from unit j into unit i will be ineffective in 
forcing unit i to 1 can be replaced with weights defined by Wij ----- - - logq i j .  

The forward conditional probabilities of equation (10) can then be written 
as follows: 

P(S~  = 1 I S j  = s~ ' j < i )  = 1 - e x p ( - y ~ s ~ w ~ ) . .  . 
J<t 

(18) 

Here, units take on values of 0 and l, and a unit 0 set permanently to l 
exists. 

In the above formulation, all weights are nonnegative. However, the 
conditional probability specification will be valid even when some weights 
are negative, provided that the weighted input to a unit cannot be negative, 
no matter what states the preceding units have. For a network with 0/1- 
valued units, this is equivalent to the constraint that, for all i, 

Wio + y~ wij >~ O. 
j<i, Wij'(O 

(19) 

With this generalization, units can behave not only as OR gates, but also 
as OR gates with some or all inputs negated. For example, if unit 3 has 
input weights of w30 = +20, w3~ = -10,  and '//332 = - - 1 0 ,  it will behave as 
a slightly noisy OR gate with negated inputs from units 1 and 2 (i.e. as a 
NAND gate). 

Noisy-OR belief networks can also be formulated with - 1 / ÷  1-valued 
units. Forward conditional probabilities are defined as above, with the 
constraint that to be valid, the weights must satisfy the following, for all i: 

w i 0 -  Y~ Iwejl ~ 0, (20) 
0<j<i  

The same equivalence between 0/1 and - 1 / +  1 formulations that applied 
to sigmoid networks applies to noisy-OR networks as well. 
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Conditional probability distributions for noisy-OR belief networks can 
be exhibited using Gibbs sampling in a process entirely analogous to that 
described above for sigmoid networks. 

5. Learning belief networks from empirical data 

The particular formulations of  belief networks that have been described 
are meant to be learnable from empirical data, rather than being constructed 
from expert knowledge. Except for the lack of a negative phase, learning is 
similar to that in a Boltzmann machine. 

These learning procedures are all based on the widely used method of 
maximum-likelihood estimation. One should realize that this method is 
prone to "overfitting" the data when the amount of training data is small in 
relation to the number of free network parameters, with the result that the 
network generalizes poorly to future cases. (The use of  Bayesian and cross- 
validation methods to avoid this is briefly discussed later.) Also, all these 
procedures use gradient-ascent to try to find a set of weights maximizing 
the likelihood. This may lead to the learning getting stuck at a point that is 
a local but not global maximum of the likelihood. 

5.1. Learning in sigmoid networks 

In the learning scenario assumed here, we have a collection, T, of training 
cases drawn from the distribution of  interest. Each training case consists 
of  the values for certain attributes, assumed here to be two-valued. Exact 
repetitions are possible, indeed expected, in proportion to how common a 
particular combination of attributes is. 

In order to model the distribution from which the tr_aining sample was 
drawn, we first decide on some size for a state vector, S, for our network, 
and then select some subset, ~, of  units in the state vector to represent the 
attributes in the training cases. The remaining, "hidden", units constitute the 
set ~ .  Note that since the ordering of units in the state vector is significant 
for belief networks, different selections for the subset of  visible units may 
give different results. This is discussed further in Section 6.4. 

Next, we must find values for the network weights that maximize the 
likelihood given the training cases, though to avoid overfitting or to reduce 
computation we might decide to fix certain weights at zero based on a priori 
knowledge. Other weights will be set to zero (or to small random values if 
we wish to break symmetry faster) and then adjusted by gradient-ascent so 
as to maximize the log-likelihood: 

L = log 1-[ P(~" = ~) = y ~ l o g P ( ~ "  = ~). (21) 
~7- ~ -  
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For a sigmoid belief network, the partial derivatives of the log-likelihood 
with respect to the weights may be found as follows: 

OL 1 OP(~" = ~) 
Owij - _E  p(~/ = ~) Owij 

v~T 

1 o P ( ~  = (~,~)) 
= _E - E_ 

v~T h 

(22) 

(23) 

= E Y~ P(~ = (~,~) I ~ = ~) (24) 
;~- ~ l oP(~  = <~,~>) 

p(~  = (~,~)) owi~ 

1 O P ( ~  = ~) 
= ~ ~ ( ~ = ~ = ~ ) ~ ( ~  ~) Ow~ (2~) 

~ 7 = 

= e(g= l 
"~- ~ 1 Oa (s~; E~,<is~,w~,) 

~r (sT E~,<i s~w~) owij 

(26) 

\ 
= = ~ skwi~). (27) = E 71 

~zT- ? 

The last step uses the fact that a'(t) = a ( t )a ( - t ) .  
These partial derivatives can be evaluated by running a separate Gibbs 

sampling simulation of the network for each training case, clamping the visi- 
ble units to the values they take in that training case and observing the state 
vectors that arise as a result. If the simulation is run "long enough".z, these 
observations will form a sample from the conditional distribution for S given 
the values in the current training case. Incrementing each weight, Wij, by 
a small amount proportional to the average value of sTsja (-s7 ~k<i skwik ) 
over the combined samples for all training cases will then move the weights 
along the gradient toward a local maximum of the likelihood. Various de- 
tailed implementations of this procedure are possible, as is discussed in 
Section 7.2. 

Intuitively, only a single phase is needed for learning in a sigmoid belief 
network because normalization of the probability distribution over state 
vectors is accomplished locally at each unit via the sigmoid function, 
rather than globally via the hard-to-compute normalization constant, Z. 
The role of the Boltzmann machine's negative phase in stopping learning 
once the distribution has been correctly modeled is taken over by the factor 
a ( - s ;  ~k<iskwit,) used to weight the learning increments. In the limit- 
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ing case where unit i is learning a deterministic function of the preceding 
units, for example, this factor is the probability that unit i would be set 
to the wrong value in an unclamped network. As the correct function is 
approached, this factor becomes zero, and the learning stops. 

5.2. Learning in noisy-OR belief networks 

Learning in noisy-OR belief networks is analogous to that in sigmoid belief 
networks, with the added complication that the gradient-ascent procedure 
must be constrained to the region of the weight space that produces valid 
probabilities for state vectors. 

The partial derivatives of the log-likelihood with respect to the weights 
in a noisy-OR belief network can be expressed as follows, starting from 
equation (25): 

OL 1 OP(~ = ~) 
- = = aw,  

"~z 7 = 

(28) 

e(g= l 

• i f  s~  = 1 ,  • 

- s  j, if si ~ 1. 

(29) 

This formula is valid both for networks with 0/1-valued units and for those 
with - 1 / + 1-valued units. 

These derivatives are computed via Gibbs sampling and used to perform 
gradient-ascent learning as described above for sigmoid belief networks. For 
noisy-OR belief networks, however, we must also ensure that the weights 
always define a valid probability distribution. In fact, in order for the 
simulations to reach equilibrium in a reasonable amount of time, it is 
desirable to further constrain the weights so that the conditional probability 
of unit i being 1 given the values of the preceding units is at least some 
minimum. For a noisy-OR network with 0/1-valued units, this will be so 
provided that 

wi0 + ~ wij >~ q, (30) 
j<i, wij<O 

where r/is some small positive constant. This can be ensured by applying the 
procedure in Fig. 1 to the weights for unit i after each movement along the 
gradient. One can show 4 that this procedure moves the weights to the set of 

4See Claim A. 1 in Appendix A. 
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Loop: 

C *-- {0} t_J {j  : O < j < i & w i j < O }  

t ~ E j E c W i j  

If  t ~> ~/ then exit loop 

d ,-- (~1- t)/[CI 

For each j E C - {0}: if  [wij[ < d then d *-- lwijl 
For each j ~ C: wij ~-- Wij -~- d 

End loop 

Fig. 1. Procedure  to move  the weights into unit  i to the valid region. 

valid values that is closest in Euclidean distance to the previous set. Since 
the valid region of the weight space is convex, it follows that if one starts 
with a valid initial set of  weights, moves in the direction of the gradient, 
and then applies the above procedure, the resulting total movement will 
have a positive projection in the direction of the gradient whenever this is 
possible. 

An analogous constraint procedure exists for noisy-OR belief networks 
with - 1 / + 1-valued units. 

6. Representational power of belief networks 

In this section, I will investigate how powerful the various forms of belief 
network are at representing probability distributions. I will first consider 
sigmoid belief networks, and then discuss the noisy-OR variety. I also 
describe how the placement of hidden units in a belief network can be used 
to constrain its representational power in order to control learning. 

Recall that, as mentioned earlier, there is no difference in the represen- 
tational power of networks with 0/1-valued units and those with -1  ! + 1- 
valued units. 

6.1. Representing distributions over the full set o f  units 

Consider first the relative capacity of sigmoid belief networks and Boltz- 
mann machines to represent probability distributions over the full state 
vector, ~. 

One can show that any distribution over one or two units can be ap- 
proximated arbitrarily closely by either a Boltzmann machine or a sigmoid 
belief network, while for networks of three units, the restricted set of possi- 
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Fig. 2. An untranslatable Boltzmann machine (a) and sigmoid belief network (b). 

ble probability distributions turns out to be the same for the two types of 
network. 5 

With four or more units, however, both Boltzmann machines and sigmoid 
belief networks can represent probability distributions that the other cannot. 
This is illustrated in Fig. 2, which shows a Boltzmann machine than cannot 
be translated into a sigmoid belief network, and a sigmoid belief network 
that cannot be translated into a Boltzmann machine. 6 In both cases, 0/1- 
valued units are used, and absent connection weights are assumed to be 
zero. An unattached connection is from the bias unit. 

Intuitively, the belief network cannot express the symmetric compatibility 
relations in the Boltzmann machine of  Fig. 2(a),  while the Boltzmann 
machine is not capable of  equalizing the probabilities for all patterns over 
the top three units in the belief network of Fig. 2 (b). 

6.2. Representing mix ture  distributions 

Suppose we are interested in the probability distribution over a vector of  
"visible" units, ~. As seen above, in general, not all such distributions will 
be representable in a net consisting of  these visible units alone. This problem 
can be overcome by including additional "hidden" units in a network. 

In particular, sigmoid belief networks and Boltzmann machines can use 
hidden units to represent visible distributions that are expressed as "mix- 
tures" of  several other distributions. Such a mixture distribution can be 
written as follows: 

P(~/  = ~) = Y ~ P ( ~ /  = ~ l M =  m ) P ( M  = m) .  (31) 
m 

The hidden variable M identifies a "component" of the mixture. Each 
component produces its own distribution for ~'; these are then combined in 

5See Claims A.2 and A.3 in Appendix A. 
6See Claims A.4 and A.5 in Appendix A. 
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Fig. 3. 1-in-3 clusters in a Boltzmann machine (a) and a sigmoid belief network (b). 

the proportions P ( M ) .  In this paper, the component distributions will be 
such that the visible variables are independent--i.e. 

P(~" = ~1 M = m )  = I i  P(Vi  = vi l M = rn). 
i 

Such mixture distributions are commonly encountered and much studied 
[ 2 1 ] .  

To represent a mixture distribution in a network, we need first to rep- 
resent the mixture variable, M. For a mixture of n components, one way 
to do this is via a cluster of  n units, exactly one of  which is on at any 
time. Figure 3 shows how a three-unit cluster of this sort can be con- 
structed for both a Boltzmann machine and a sigmoid belief network (with 
0/1-valued units). In both cases, the three state vectors with exactly one 
unit on have nearly equal probabilities, and all other state vectors have 
very small probability. The constructions generalize to clusters of  any size, 
and to clusters in which the possible state vectors have unequal probabili- 
ties. 

Using a 1-in-n cluster, we can implement a mixture in which the com- 
ponent distributions assign independent probabilities to the various visible 
units. For belief networks, all that is required is to connect each cluster 
unit to the visible units using weights that produce the required conditional 
probabilities. For Boltzmann machines, after making these connections to 
visible units, one must also adjust the bias weights to the cluster units in 
order to re-create the correct mixture proportions. 

Note that any distribution over k visible units can be represented as a 
mixture of 2 k component distributions, each of  which generates but a single 
vector. It follows that sigmoid belief networks and Boltzmann machines 
can approximate any distribution over k visible units arbitrarily closely, 
provided one is prepared to employ 2 k hidden units. 
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6.3. Power of noisy-OR belief networks 

Unlike sigmoid belief networks, the ability of a noisy-OR network to 
represent a distribution is sensitive to negation of the unit values. For 
example, there is no way to make a noisy-OR unit behave as an AND 
gate, but one can make one behave as a NAND gate. This sensitivity is 
of significance only for visible units, since the output of a hidden unit can 
always be implicitly negated by negating the weights on all its outgoing 
connections. 

In view of the above, there are certainly distributions over ~ that both a 
Boltzmann machine and a sigmoid belief network can implement but which 
a noisy-OR belief network cannot. Conversely, one can show 7 that there are 
distributions over a three-unit noisy-OR network that cannot be duplicated 
by either a Boltzmann machine or a sigmoid belief network with only three 
units. 

A 1-in-n cluster similar to that of Fig. 3(b) but with the unit values 
negated can be constructed from noisy-OR units. Such a cluster can be used 
to represent a mixture distribution over visible units using a noisy-OR belief 
network, just as with sigmoid belief networks and Boltzmann machines. 

6.4. Manipulating the representational power of belief networks 

When training a Boltzmann machine, one can control what the network 
learns by clamping certain units in the negative as well as the positive 
phase. This is commonly done when only the mapping from a set of  "input" 
attributes to a set of  "output" attributes is of  interest--i.e, when we wish 
to do "supervised" rather than "unsupervised" learning. Clamping the input 
units in both phases forces the hidden units to model the conditional 
distribution of the output given the input, rather than the distribution of 
the input itself. 

The same technique could be used with belief networks, but this would 
naturally require re-introduction of  a negative learning phase, the elimination 
of which was the original motivation for this work. Fortunately, one can 
achieve similar control via judicious placement of  input, output, and hidden 
units within a belief network, in such a way as to limit its representational 
power to that which one wishes it to learn. 

Four network architectures that illustrate the control possible are shown in 
Fig. 4, using a medical diagnosis problem as an example. In all cases, a set of 
visible "symptom" units is used to represent various attributes of  a patient, 
and a set of  visible "disease" units is used to encode a diagnosis. There 
are assumed to be no connections among the units within each visible set. 

7See Claim A.6 in Appendix A. 
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0000 Hidden units 
Hidden units ~ 00~00 Symptoms 00~00 Symptoms 

O O O O  Hidden units 0000 0000 ~ 00~00 Hidden units 
Symptoms Diseases 0000 Diseases 

O O O O  Diseases 
(a) (b) (c) 

00~00 Diseases 

00~00 Hidden units 

0000 Symptoms 

(d) 

Fig. 4. Four network architectures for a medical diagnosis problem. 

Training data is assumed to be available giving the true sets of symptoms 
and diseases for a sample of patients. 

The network in Fig. 4(a) is designed for unsupervised learning--for mod- 
eling the data without any particular task in mind. The hidden units feed 
into both sets of visible units. As a result of training, these units may come 
to model correlations among symptoms, among diseases, or between symp- 
toms and diseases. If the network succeeds in modeling the total distribution 
perfectly, it will be capable of performing any sort of pattern completion 
task. For example, one could clamp a set of symptoms and then observe the 
most likely diseases as the Gibbs sampling procedure is run, or, conversely, 
one could clamp a set of diseases and observe the most likely symptoms. 
However, if the number of hidden units is insufficient to model the total 
distribution, the network will end up modeling whichever correlations are 
strongest, and these might not be the ones that are most important for 
diagnosis. 

The network in Fig. 4(b) is designed for supervised learning aimed at 
the diagnostic task. The hidden units are placed between the symptom units 
and the disease units. This forces the hidden units to learn to model the 
conditional distribution of the diseases given the symptoms. One could then 
clamp a set of symptoms and observe the most likely diseases. In fact, 
this can be done using the short-cut simulation procedure described in Sec- 
tion 3.2, since the clamped symptom units precede all the unclamped units 
(the full simulation procedure is still required during learning). The con- 
verse operation of clamping a set of diseases and observing likely symptoms 
no longer works well, however, since there are no hidden units in a position 
to model correlations among symptoms. 

The network in Fig. 4(c) adds a set of hidden units prior to the symptom 
units in order to capture such correlations. This network has capabilities 
comparable to those of network (a), with the difference that the number 
of hidden units devoted to modeling each type of correlation is under the 
control of the network designer. Network (c) might be appropriate for a 
diagnosis application in which knowledge of correlations among symptoms 
is sometimes needed in order to fill in missing symptom values. 

None of the above networks express the usual causal view that diseases 



90 R,M. Neal 

cause symptoms (not the other way around), and that the presence of 
one disease only weakly affects whether other diseases are also present. 
This illustrates the fact that the arrows in a belief network are a device 
for expressing probabilities, and need not correspond to real influences. In 
some circumstances we may wish to learn a network that does correspond 
to our causal view--we may feel that such a network would be easier to 
interpret, for example. Figure 4(d) shows how such a network can be set 
up for the disease/symptom example. Hidden units could be added prior 
to the disease units if we wish to model the weak correlations between 
diseases. This architecture would also be appropriate if the training data 
gives only the patients' symptoms, and we wish to discover a set of  diseases 
that explains these symptoms in an unsupervised fashion. 

7. Empirical comparison with Boltzmann machines 

In this section, I will describe an experiment in which the learning pro- 
cedures for belief networks and for Boltzmann machines were compared 
on the task of learning a simple mixture distribution and classifying items 
derived from it. Further details on this experiment may be found in [12]. 

7.1. Objectives of the experiment 

This experiment is intended to answer the following questions: 

(1) Are the learning procedures for belief networks capable in practice 
of  learning an approximation to a nontrivial distribution, based on a 
set of training cases? 

(2) If so, how does the speed of learning in sigmoid belief networks 
compare to the speed of  learning in a Boltzmann machine? 

(3) Can differences in learning speed between sigmoid belief networks 
and the Boltzmann machine be attributed to the lack of a negative 
phase in the learning procedure for the belief networks? 

(4) Are there differences in the learning performances of networks with 
0/ l -valued units and those with - 1 / +  1-valued units? 

(5) How does learning in noisy-OR belief networks compare to learning 
in sigmoid belief networks? 

(6) How well do the solutions learned by the various networks on the 
basis of training data generalize to the true distribution? 

Regarding points (2) and (3), the expectation is that the negative phase 
adds additional noise to the estimation of the gradient, and that this noise is 
detrimental to the learning process in Boltzmann machines. The magnitude 
of  this effect is hard to judge, however. The added noise could even be 
beneficial, if it allows the network to escape local maxima during learning. 
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7.2. The learning procedure used 

Numerous variations of  the Boltzmann machine learning procedure have 
been tried [5], each of  which requires fixing a number of parameters, 
such as the learning rate, and the temperatures in an annealing schedule. 
This presents a problem in comparing learning in Boltzmann machines to 
learning in belief networks--a valid comparison would require searching for 
the optimal parameter settings for each type of network, which would be a 
rather large undertaking. 

The approach I have adopted is to train both types of network using a 
simple method that has only one adjustable parameter--the learning rate, e. 
A complete picture of  the performance of each type of  network for various 
values of  e can be obtained with a reasonable number of  runs, and the 
relative performance of the different networks with their best e can then be 
compared. 

The procedure used can be characterized as follows: 

(1) Learning was done in "batch" mode--i .e,  each change to the weights 
was made on the basis of  the entire set of  training cases. 

(2) Each training case was clamped into a separate copy of  the network, 
where a separate Gibbs sampling simulation was run. 8 For Boltzmann 
machines, there was also an unclamped negative phase copy of  the 
network associated with each training case. 

(3) No annealing was done. 
(4) The state of  each copy of  the network was retained after each change 

to the weights, on the assumption that if the weight changes are 
"small", these existing simulation states will be close to equilibrium, 
and be good starting points for the next pass. 

(5) Changes to the weights were made after each simulation pass, based on 
the sample consisting of  the current state vectors from the simulations 
for all training cases (plus the state vectors from the negative phase 
simulations, for Boltzmann machines). 

(6) Weight changes were scaled by a learning rate parameter, e. 
(7) Weights were set to zero initially. Symmetry was broken by the 

stochastic nature of  the simulation. 

In detail, the weights in the Boltzmann machines were changed by 

_ -  

S + E T  + "~- E T -  

8This aspect of the learning procedure appears to be advantageous from an engineering point 
of view, but is quite implausible in a biological context. 
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Here, 7 -+ is the set of  current state vectors from the positive phase sim- 
ulations (one per training case), and T -  is the set of  state vectors from 
the corresponding negative phase simulations. N is the number of training 
cases. 

Similarly, the weights in the sigmoid belief networks were changed by 

_ 

"~ET k <i 

and those in the noisy-OR belief networks by 

I 
-s ,  + s , / ( 1 - e x p ( - S s g w i k ) ) ,  

k<i 

Awij = ~ y~  if si = 1, (34) 

sE~r(_sj ,  i f s i #  1. 

Weight changes in noisy-OR networks were limited to a magnitude of no 
more than 1 to avoid the possibility of  huge weight changes resulting from 
the division above. After all changes were made, the constraint procedure 
of  Fig. 1 with ~/ = 2 -7 was applied. 

The lack of  annealing in this procedure is unconventional, as is the chang- 
ing of  weights based on a single state vector from each training case. The 
rationale behind these choices is that as e approaches zero, the simulations 
will necessarily approach equilibrium, as they will run for many passes with 
the weights essentially unchanged. Furthermore, the cumulative effect of 
many changes with a small e that are based on a single state vector from 
each training case will be equivalent to a single change with a larger e that 
is based on a larger sample. As e approaches zero, the learning procedure 
used will thus "do the right thing". 

Whether this procedure is better or worse than previous methods is not 
important for this experiment, however, provided only that any differences in 
learning performance between the various networks seen using this procedure 
will show up in some guise in any other implementation. 

7.3. The task learned 

The networks were evaluated on the task of  learning the mixture distribu- 
tion shown in Table 1. There are four equally probable mixture components, 
each of  which produces a distribution over nine visible attributes in which 
each attribute is independent of  the others (given knowledge of  the mixture 
component).  

All the networks tested had a similar structure. Six interconnected hidden 
units were provided to allow the network to model the mixture variable, 
using a cluster such as in Fig. 3. (Four hidden units would have sufficed; six 
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Table 1 
The mixture distribution to be learned. 

rn P ( M  = m )  P(Vi  = vi I M =  m) ,  i =  1 . . . . .  9 

1 0.25 

2 0.25 

3 0.25 

4 0.25 

0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 1.0 

0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8 1.0 

0.8 0.8 0.2 0.2 0.8 0.8 0.2 0.2 0.0 

0.2 0.2 0.8 0.8 0.2 0.2 0.8 0.8 0.0 
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were provided to help avoid problems with local maxima.) These hidden 
units were connected to a set of  nine visible units. For the belief net- 
works, these connections were directed from the hidden to the visible units. 
The visible units were not connected to each other. All units had a bias 
connection. 

Since the task is to model the entire distribution, the negative phase in 
Boltzmann machines was left completely unclamped. 

The entropy of  the target distribution is 7.67 bits. For this experiment, 
the number of training cases used, N, was 250. The particular set of  training 
cases generate~d at random and used in these runs had an average value 
o f - l O g E P * ( V  = ~) of 7.87 bits, where P*(.) is the true probability 
distribution. This is close to the entropy, as expected. This value is the 
target for - L / N  (the log-likelihood per training case) in network training, 
but due to overfitting, the training procedures might well reach values even 
lower than this. 

The networks were also evaluated on the task of guessing the last attribute 
given the values of  the other eight attributes. With knowledge of  the real 
distribution, the optimal error rate on this classification task is 18.6%. Note 
that performance on this task is not the formal learning objective, and need 
not, in fact, be monotonically related to the actual objective of maximizing 
the likelihood. 

7.4. Evaluation method 

Typically, Gibbs sampling is used when applying networks such as these 
to a problem instance, as well as when training them. For example, the 
classification task would be performed by clamping the values of the eight 
known attributes and observing which value for the unknown ninth attribute 
shows up most often as the network is simulated. 

This method was not used for most of  the evaluations in this experiment, 
however. Instead, the exact probabilities of  all 2 ~5 states of the trained net- 
work were computed, and from these, the log-likelihood given the training 
data, its analogue for the real distribution, the performance on the classifi- 
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cation task for the training data, and the performance for items drawn from 
the real distribution were all calculated. 

Of course, this method is infeasible for networks that are even slightly 
larger than the ones used here. It is convenient for this experiment since it 
eliminates statistical noise from the evaluations. In the tests of generalization 
performance, the classification task was performed with Gibbs sampling as 
well as with exact probabilities, and results were similar, as reported below. 

7. 5. Comparing sigmoid belief networks and Boltzmann machines 

The 250 training cases drawn from the mixture distribution were used to 
train both sigmoid belief networks and Boltzmann machines, using values 
for e of  ¼, ½, 1, 2, and so on until network behaviour became unstable. 
Networks with 0/1-valued units and those with - 1 / +  1-valued units were 
both tried. 

Illustrative results are shown in Fig. 5, for - 1 / + 1-valued units and e of ¼ 
and 1. Three runs are shown, in which different random seeds were used in 
the simulations. During each run, the log-likelihood, L, was computed exactly 
after 25, 50, 100, 200, 400, and 800 simulation passes. (Recall that each 
pass consists of  a (potential) change to each unit value in each simulation, 
and that weights are changed after each pass.) The value o f - L / N  in bits 
(i.e. using base-2 logarithms) is plotted. It is nine bits initially, since with 
zero weights all of  the nine-element visible vectors are equally probable. 

With e = ¼, the Boltzmann machine and the sigmoid belief network 
behaved similarly. As e was increased, however, the Boltzmann machine 
became unstable. This is seen in the figure for e = 1, where the Boltzmann 
machine reached the 8.25-bit performance level, but thereafter failed to 
improve consistently. In contrast, the sigmoid belief network with e = l 
simply learned at four times the rate that it did with e = ¼. For larger e, the 
Boltzmann machine became even more unstable, while the sigmoid belief 
network tolerated learning rates up to e = 4 before becoming unstable at 
e = 8 and above. 

The instability of  the Boltzmann machine with e = 1 was examined at a 
finer time scale by evaluating the network after every learning pass for one 
of the runs, as performance went from 8.29 bits for - L / N  at pass 25 to 
8.58 bits at pass 50. Changes in - L / N  of as much as 0.41 bits were seen 
after single learning passes, and - L / N  ranged in value from 8.25 bits to 
8.83 bits during this interval. Examination at this time scale of  learning in 
a sigmoid belief network simply shows steady improvement. 

Results using 0/1-valued units were similar, except that learning was 
slower for a given value of e in both types of network. This was largely 
compensated for with sigmoid belief networks by the fact that a larger e 
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Boltzmann machine Sigmoid belief network 
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Fig. 5. L e a r n i n g  p e r f o r m a n c e  o f  B o l t z m a n n  m a c h i n e s  a n d  s i g m o i d  b e l i e f  n e t w o r k s  w i t h  

- 1 / +  1 -va lued  un i t s ,  for  e o f  1 /4  a n d  1. T h r e e  r u n s  w i t h  d i f f e r en t  r a n d o m  n u m b e r  s eeds  

are  shown.  

could be used before instability set in. With Boltzmann machines, however, 
there appeared to be some net advantage for the - 1 / + 1 formulation. 9 

The relative performance of  these networks is shown in Table 2, under 
the assumption that learning must be stopped after 200 passes. This would 
produce a fair comparison if the computation time per pass was the same 
for all networks. In fact, Boltzmann machine passes require somewhat more 
time, as would be expected from the need to simulate negative phase cases, 
so the comparison is somewhat biased in favour of Boltzmann machines. 
(The times shown, measured on a machine rated at approximately 20 
MIPS, should not be taken too seriously, since they are affected by many 
implementation factors that may not be of  general significance.) 

The entries in Table 2 were produced by selecting the value of  e that gave 
the best value of  - L / N  after 200 passes, averaged over the three runs that 
were done. These values are shown along with the corresponding error rates 

9Clea r  d i f f e r ences  b e t w e e n  the  0 / 1  a n d  - 1 / +  1 f o r m u l a t i o n s  a re  seen  in  o t h e r  p r o b l e m s .  

F o r  e x a m p l e ,  w i t h  b o t h  B o l t z m a n n  m a c h i n e s  a n d  s i g m o i d  b e l i e f  n e t w o r k s ,  l e a r n i n g  to  a s s ign  
h i g h  p r o b a b i l i t y  to  o n l y  t h o s e  4 -b i t  v i s i b l e  v e c t o r s  w i t h  o d d  pa r i t y ,  u s ing  fou r  h i d d e n  u n i t s  to  

exp re s s  c o r r e l a t i o n s ,  is  m u c h  e a s i e r  w i t h  - 1 / + 1 u n i t s  t h a n  w i t h  0 /1  uni t s .  
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Table 2 
Best performances after 200 learning passes (three runs each). 

Type of network Time/pass Best e Values of - L / N  Error rates 

Boltzmann machine 0.39s 1/2 8.30 8.22 8.23 35% 30% 33% 

(0/1 units) 

Boltzmann machine 0.58s 1/2 7.94 8.25 8.10 19% 37% 25% 

( - 1 / +  1 units) 

Sigmoid belief network 0.30s 4 7.76 7.82 7.77 19% 19% 17% 

(0/1 units) 

Sigmoid belief network 0.35s 2 7.72 7.74 7.74 17% 17% 16% 

( -  1 / + 1 units) 

when guessing the last attribute of the training cases from the first eight 
attributes. The superiority of the sigmoid belief networks is evident. The high 
error rates for the Boltzmann machine (especially using 0/1-valued units) is 
due to the fact that all these networks initially learn correlations among the 
first eight attributes, and only later discover how the ninth attribute relates 
to these. Four of the six Boltzmann machine runs had not progressed far 
into the second stage after 200 passes. 

Further experiments established that the superiority seen for sigmoid belief 
networks over Boltzmann machines was not related to the fact that weights 
were updated based on a single state vector. The instability of Boltzmann 
machine learning for large values of  e was also found to be only slightly 
reduced by the use of annealing. Details of these experiments are reported 
in [12]. 

7. 6. Interpretation of the results 

These experiments show that a sigmoid belief network can learn the target 
mixture distribution faster than a Boltzmann machine. This difference is due 
to the sigmoid belief network's tolerance of a high learning rate that causes 
instability in the Boltzmann machine. Since this instability is apparent at 
the time scale of a single learning pass, and since it not due to the lack of 
annealing, it appears that it results simply from the sampling noise in the 
calculation of the gradient from the results of  positive and negative phase 
Gibbs sampling simulations. 

One advantage of  belief networks in this respect may be seen clearly when 
there are no hidden units. In this case, the positive phase, clamped simu- 
lations are completely deterministic, while the negative phase, undamped 
simulations remain stochastic. Learning in a belief network, for which only 
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the positive phase simulation is necessary, will then take place with no noise 
disturbing the measurement of the gradient. Learning in a Boltzmann ma- 
chine, which requires a negative phase, will still be subject to noise. When 
hidden units are present, the estimate of the gradient in the belief network 
will have some noise, but still not as much as in the Boltzmann machine. 

This is not the full explanation of the difference, however, as was seen in 
experiments where the sigmoid belief network was trained with a redundant 
unclamped phase, using the "short-cut" simulation method (see Section 3.2) 
to ensure that state vectors came from the true equilibrium distribution. 
Regardless of whether this redundant phase was negative (as in Boltzmann 
machines) or positive (equivalent to a second set of 250 unclamped training 
cases) its inclusion did not induce instability, but merely introduced a bit 
more variability in the progress of learning (see Fig. 6, below). 

The difference appears to result from the way weights are changed in 
the two networks. In a belief network, each change to ~l)ij is weighted by 
the forward conditional probability of Si having a value different from 
that it presently has. As learning progresses, these weighting factors tend 
to decrease, leading to stability. In Boltzmann machines, the magnitude of 
each change remains constant; it is only the balance between positive phase 
increments and negative phase decrements that, in theory, brings learning 
to a stable halt, but this balance is sensitive to noise. 

7. 7. Effect o f failure to reach equilibrium 

Although it was not a major factor in the experiment described here, 
failure to reach equilibrium during Boltzmann machine learning is noted as 
a problem in [8], where it is observed that after a period of good progress 
learning can "go sour", as weights are built up to values where they form 
large energy barriers that inhibit settling to the equilibrium distribution. The 
authors prescribe "weight decay" as a partial solution. 

One would think that learning could "go sour" in belief networks as well 
as in Boltzmann machines, but such problems have not been observed. 
However, it is possible to make the sigmoid belief network go sour in 
the mixture distribution experiment by adding a redundant, unclamped 
negative phase, simulated in the normal manner (i.e. with no short-cut). 
This is seen in Fig. 6. Using - 1 / +  1-valued units with e = 2, learning with 
the redundant negative phase closely matches that without a negative phase 
for about the first 100 passes, but then becomes unstable. Interestingly, 
adding a redundant, unclamped positive phase does not cause the learning 
to go sour. 

These results can be understood by picturing the effects of failing to 
sample from the true equilibrium distribution in the various phases. In a 
clamped positive phase, the effect will be to confine the state vectors seen to 
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a subset of those high probability state vectors that are compatible with the 
clamped visible units. The learning increments that result from this sample 
will still tend to increase the probability of the clamped training data, albeit 
at a lesser rate than would be the case if a / / the  compatible high probability 
state vectors had been seen. 

In an unclamped negative phase, failure to sample from the equilibrium 
distribution will produce state vectors that do not represent all those of high 
probability. Once learning has made some progress, there will be a group of 
high probability state vectors compatible with each training case. In a non- 
representative sample, some of these groups may not be sampled from at 
all, while other groups will contribute more than their share of state vectors 
to the sample. The learning decrements that occur in the negative phase 
will then unfairly decrease the probability of the training cases compatible 
with the over-sampled groups, more than offsetting the increments in the 
positive phase and producing instability. 

Similarly, an extra unclamped positive phase results in some training cases 
being over-sampled, and thus weighted more heavily in the learning. This 
may produce suboptimal progress, but not instability. In fact, runs done with 
an extra unclamped positive phase (simulated without use of the short-cut) 
were notable for a high variability--some runs did significantly better than 
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Fig.  7. L e a r n i n g  p e r f o r m a n c e  o f  a n o i s y - O R  b e l i e f  n e t w o r k  w i t h  - 1 / + l - v a l u e d  u n i t s  f o r  e o f  

1 / 3 2 .  T h r e e  r u n s  w i t h  d i f f e r e n t  r a n d o m  n u m b e r  seeds  a r e  s h o w n ,  

those without the extra phase, while others did rather worse. Nevertheless, 
even the less successful runs showed nearly steady improvement as the 
simulations progressed, in contrast to the drastic worsening seen at times 
with an extra negative phase. 

Thus, it appears that the consequences of failure to reach equilibrium 
are more serious in a negative phase than in a positive phase. This gives 
belief networks a qualitative advantage in circumstances where equilibrium 
is hard to reach--learning may be adversely affected, but the instability that 
can occur with Boltzmann machines does not arise. 

7. 8. Performance of noisy-OR belief networks 

Noisy-OR belief networks were also applied to the task of learning the 
mixture distribution, with rather disappointing results. Performance was 
both poorer and more erratic than for sigmoid belief networks. 

Figure 7 shows the progress of  three runs using - 1 / +  1-valued units, with 
e = ~2. The networks appear to have difficulty learning to reduce - L / N  to 
less than 8 bits. Increasing e sometimes improved learning speed, but not 
reliably so. Performance of  noisy-OR networks with 0/ l -valued units was 
essentially similar, except that a higher value of e was desirable. 

In other experiments, noisy-OR networks sometimes showed a strong 
tendency to get stuck at a local maximum (or at a point where the gradient 
was so small that learning essentially stopped). For example, attempts to 
train a noisy-OR network with 0/1-valued units to compute XOR using two 
hidden units between inputs and output (the minimum required) succeeded 
in only 1 out of  20 tries. 10 Somewhat better results were obtained using 

l ° S o m e  de t a i l s :  T h e  t w o  h i d d e n  u n i t s  w e r e  c o n n e c t e d  t o  t h e  i n p u t s ,  b u t  n o t  to  e a c h  o t h e r .  

T h e  o u t p u t  u n i t  w a s  c o n n e c t e d  t o  t h e  i n p u t s  a n d  to  t h e  h i d d e n  un i t s .  T r a i n i n g  w a s  d o n e  f o r  

5 0 0 0  p a s s e s  w i t h  e = 1 /8 .  
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Fig. 8. Learning a two-level noisy-OR network: (a) the true network; (b) network learned from 
200 training cases. In each case, the left column contains the bias weights of the four (five) 
hidden "disease" units, the top row contains the bias weights of  the ten visible "symptom" 
units, and the body of the table contains the weights from disease units to symptom units. The 

hidden units in (b) have been manually re-ordered to correspond to those in (a). 

- 1 / +  1-valued units--success in 10 out of 20 attempts. Sigmoid networks 
almost never get stuck when solving this problem, even with only one hidden 
unit (the minimum needed with sigmoid networks). 

An additional experiment was done to test whether the learning procedure 
for the noisy-OR network performs better when the distribution to be learned 
can be simply representated in the noisy-OR form. A two-level, 0/1-valued, 
noisy-OR belief network of the type used for medical diagnosis in [7] was 
constructed. In this network, four hidden units represent "diseases" which 
occur independently in each patient with 25% probability. Ten visible units 
represent "symptoms". Each disease has three or four potential symptoms, 
each of which is produced with 70% probability. Symptoms also have a 5% 
probability of occurring spontaneously. The weights embodying this network 
are shown in Fig. 8(a). 

This manually constructed network was used to randomly generate 200 
training cases, which were then used to train a 0! 1-valued noisy-OR network 
of the same form (but with five hidden units rather than four, to allow escape 
from local maxima). In order to ease interpretation of the network learned, 
weights were constrained to be nonnegative, i i Note that only the symptoms 
of each "patient" were used for training--the network was not told the true 

l l Similar results were obtained without this constraint, except that the presense of a disease 
was sometimes represented by a hidden unit being O, rather than 1. Results using - 1 / + l units 
were also similar. 
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Table 3 
Performance on training data (first line) and on items from the real distribution (second 
line) for various networks trained to near-convergence. Results from three runs with different 
random number  seeds are shown. 

Type of network Passes e Values o f - L / N  Error rates (exact ~ simulated) 

Boltzmann machine 1600 1/4 7.80 7.81 7.77 19% 17% 18% ~ 20% 18% 18% 

( - 1 / + 1  units) 7.90 7.85 7.84 19% 19% 1 9 % ~  20% 17% 20% 

Sigmoid belief network 800 2 7.64 7.66 7.70 15% 17% 18% ~ 18% 18% 20% 

( - 1 / + 1  units) 7.91 7.89 7.87 19% 20% 1 9 % ~  19% 19% 20% 

Noisy-OR belief network 12800 1/32 7.81 7.85 8.08 19% 19% 35% N 18% 19% 33% 

( - 1 / + 1  units) 7.82 7.86 8.12 19% 19% 3 5 % ~  18% 20% 36% 

Mixture model 100 - 7.73 7.74 7.72 18% 18% 20% 

(EM algorithm) 7.82 7.85 7.86 19% 22% 19% 

set of  diseases underlying a training case, nor even the number of diseases 
present in the population. 

The network that resulted from training for 2000 passes with e = ~ is 
shown in Fig. 8(b). A reasonably close correspondence with the weights 
in the true network is apparent, with the extra hidden unit in the trained 
network being largely unused. The learning procedure may thus be said to 
have discovered the essential structure of this distribution. 

7.9. Generalization performance 

All the results concerning the mixture distribution shown so far give 
the performance of the networks on the training cases. Generally, the true 
objective is good performance on items drawn from the real distribution of 
which the training cases are a sample. 

Table 3 shows the performance of all the network types, using - 1 / +  1- 
valued units, on both the training data and on items from the real dis- 
tribution. (Results for 0/1-valued units were similar or worse; they may 
be found in [12].) Each type of network was trained with a reasonable 
value of e until performance on the training data approached convergence. 
(The choice of e and the point of near-convergence were both subjec- 
tively determined.) The value of - L / N  and the classification error rates 
for the training data are shown, along with the corresponding figures for 
the real distribution. (The analogue of - L / N  for the real distribution is 
- ~ - P * ( ~ "  = ~) logP(~" = ~), where P*(.) is the real distribution, and 
P (.) that given by the network.) 

Classification error rates shown in the table were calculated in two ways. 
The first calculation uses the exact, real distribution, and assumes that 
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classification is based on the exact probabilities defined by the networks. The 
second calculation is based on a sample of 1000 test items drawn from the 
real distribution which were classified by clamping the first eight attributes 
and using Gibbs sampling (with annealing) to observe the resulting values 
for the ninth attribute. Results of the two methods were similar, showing 
that classification performance is not dependent on very small differences 
in probabilities that would be swamped by noise when Gibbs sampling is 
used. 

For comparison, results from a maximum-likelihood fit of a mixture model 
with six components to the training data using the EM algorithm [21] are 
given as well, evaluated on a test sample of 5000 items. 

The sigmoid belief network, the Boltzmann machine, and the mixture 
model all show signs of overfitting the data, since their values for - L / N  
on the training data are less than the value of 7.87 bits that the true model 
would give. Accordingly, it is not surprising that their performance on the 
real distribution is not quite as good as on the training data. The mixture 
model appears to have overfitted to a lesser extend than the networks. This 
is expected, since it is a more restricted model that nevertheless can exactly 
represent this particular distribution, but the penalty in overfitting paid for 
the generality of the network models does not seem large. The EM algorithm 
does take considerably less time than any of the network training procedures, 
however. 

The noisy-OR belief network did not show such definite signs of overfitting 
the training data. One run did poorly on both the training data and on the 
real distribution. The other two performed well on the real distribution-- 
slightly better, in fact, than the other two networks. This is probably an 
ironic consequence of the noisy-OR network's generally inferior learning 
performance, which would make convergence to an overfitted solution more 
difficult, though it could possibly be due to the particular representational 
capabilities of the noisy-OR network matching this problem well. 

Generalization performance for all these networks might well be improved 
by using a cross-validation criterion [20] to stop learning before conver- 
gence, or to select an optimal number of hidden units. Use of weight decay 
[8 ] might also help. 

7.10. Summary of empirical results 

To summarize, the experimental results show that the sigmoid and noisy- 
OR belief networks are capable of learning to model a nontrivial distribution, 
that the sigmoid belief network can learn at a higher rate than the Boltzmann 
machine, and that this advantage over the Boltzmann machine is due to 
the elimination of the negative learning phase. The - l / +  l formulations 
of all networks appeared to outperform the 0/1 formulations, though this 
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point was not investigated in detail. The generalization performance of the 
networks was found to be broadly similar, though again only preliminary 
investigations were undertaken. 

The noisy-OR belief network learned the mixture distribution considerably 
less well than did the sigmoid belief network, and also did poorly at several 
other tasks. However, the noisy-OR network did perform well when learning 
a distribution that was naturally represented in the noisy-OR form. 

How well the learning procedures for belief networks perform on larger, 
real-world problems can only be determined by experience. However, I 
expect the superiority of the sigmoid belief network over the Boltzmann 
machine to be at least as great for large networks as for the moderate- 
size networks examined here. The Boltzmann machine's problems when 
equilibrium is hard to reach are likely to be more apparent for larger 
networks, since the state space that needs to be explored is larger. The 
problem of sampling noise might appear to be lessened for larger networks, 
which will have correspondingly larger training sets, but contrary to this, 
the magnitude of the gradients that must be estimated tend (initially) to be 
smaller for complex networks. 

As an aside, it is interesting that the weights learned for the mixture 
distribution generally bore only a vague resemblance to those that would 
result from manually solving the problem using the clusters of Fig. 3 to 
represent mixture components. 

8. Discussion 

I conclude by discussing how the learning procedures for belief networks 
described in this paper relate to other connectionist approaches to statistical 
modeling and to work on the representation of expert knowledge. I also 
outline some areas in which this work appears to open up new possibilities. 

8.1. Relation to determin&tic classifier networks 

Problems such as speech or handwriting recognition are fundamentally 
statistical in nature. Although some a priori knowledge of the task may be 
available, much of the information required to solve the problem must come 
from training data. The preferred output for such classification problems is 
a probability distribution over possible classes, conditional on the attributes 
presented as input. 

A deterministic feedforward network, trained by a method such as back- 
propagation [ 16 ], can represent a distribution over two classes by simply 
producing the probability of one of the classes as its output. Such a network 
that uses the sigmoid function to compute the output of a unit from its 



104 R.M, Neal 

weighted input appears very similar to a sigmoid belief network with the 
same structure. Indeed, the two networks are essentially equivalent if there 
are no hidden units. However, in the general case, this is not so, since the 
hidden units in a deterministic network take on fixed real values, while 
those in a stochastic network represent a distribution over binary vectors. 

Distributions over more than two classes can be represented in a de- 
terministic network using a cluster of output units, one for each possible 
classification. The output of unit c, representing P(Class = c ] Input), is set 
to exp(X~.)/~iexp(Xi), where X~ is the total input of unit i [2]. Distri- 
butions over a vector of  output attributes can be represented using several 
such clusters, under the assumption that the probabilities for the various 
attributes are independent. 

Stochastic networks, such as belief networks and Boltzmann machines, 
have the more general capacity to exhibit distributions over a large output 
vector in which there are arbitrary dependencies among attributes. For ex- 
ample, in a medical diagnosis context, a stochastic network can represent 
a diagnosis that the patient has either disease A, or disease B, but likely 
not both. The improved learning speed of belief networks over Boltzmann 
machines may make use of  such networks feasible in practice. In a belief 
network where the input units precede all the hidden and output units, 
as in Fig. 4(b) ,  the short-cut simulation method can be used to produce 
possible classifications for a given input without the need to settle to equi- 
librium, at a speed comparable to that of a deterministic network. Settling 
to equilibrium is still necessary during learning, when the output units are 
clamped. 

A further advantage of stochastic over deterministic networks is their 
superior ability to cope with missing data, especially when architectures 
such as those of Fig. 4 (a), (c), or (d) are used. For problems where the 
advantages of a stochastic network are not relevant, however, deterministic 
networks are likely to remain the best choice, since the exact calculation of 
gradients they support will generally allow faster learning. 

8.2. Application to unsupervised learning 

The uses of  belief networks and other stochastic networks are not confined 
to classification problems. They are also naturally applicable to unsupervised 
learning, in which the objective is simply to discover the underlying structure 
of the data, without addressing any explicit classification task (though the 
resulting network may well be useful for classification). One natural measure 
of success in unsupervised learning is how well the probability distribution of 
the data has been modeled, and this is the formal objective of the learning 
procedure for belief networks. The experimental evaluations of  learning 
in belief networks in Section 7 were of an unsupervised nature, with the 
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tasks being to model the mixture distribution of Table 1 and the two-level 
disease/symptom distribution of Fig. 8 (a). 

Standard statistical methods such as the EM algorithm can be applied to 
unsupervised learning problems, as is done for the case of mixture models 
in the AutoClass system of [3]. As was seen in Section 7, the learning 
procedures for belief networks are capable of discovering mixture models 
when they are appropriate, but they also have the capacity to learn models 
with a componential structure, such as that of the two-level belief network 
of Fig. 8(a), in which the various diseases can occur independently, but 
jointly influence the symptoms observed. To represent the distribution of 
Fig. 8(a) by a mixture model would require 24 mixture components, one 
for each possible combination of diseases. This would be impractical for 
large numbers of diseases. 

A similar situation arises in the context of Hidden Markov Models, which 
are much used in speech recognition [10]. The mean field variety of the 
Boltzmann machine was used in [22] to learn a model that economically 
represented Hidden Markov Model states possessing a componential struc- 
ture. The learning procedures for belief networks described here should also 
be applicable to this problem. 

8. 3. Relation to expert systems 

In applications such as medical diagnosis, experts have extensive knowl- 
edge relevant to the task. Empirical data, while valuable, may be of limited 
extent, or may have been acquired under circumstances different from those 
currently prevailing. The need in such applications to integrate knowledge 
derived from experts with that derived from empirical data has been recog- 
nized by workers in the area (see the discussion in [9], for example). The 
learning procedures described in this paper may contribute to solving this 
problem. 

One possible approach would be for the expert to specify the struc- 
ture of a belief network, while leaving the numeric values of the forward 
conditional probabilities to be estimated empirically. If training data is 
available in which all attributes are known, this will be straightforward. 
It is likely, however, that the belief network will contain units whose val- 
ues were not always measured, or which are not directly observable (such 
as the true underlying disease a patient suffered from). In this case, the 
gradient-ascent learning procedures of this paper could be applied, per- 
haps starting with weight values derived from an expert's tentative assess- 
ment of the probabilities. The expert might also constrain probabilities to 
some interval in order to guard against training data that is not exten- 
sive enough, or that is not representative of all possible contexts in which 
the system might be used. Another possibility would be for the expert to 
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construct artificial, "textbook" training cases to supplement the empirical 
data. 

More ambitiously, in parts of the network where causal connections are 
not clear to the expert a pool of hidden units could be included and their 
weights trained from empirical data. A problem with this approach is that 
the resulting networks may be hard to interpret. Using "weight decay" [8] 
to encourage some weights to go to zero might help. 

The desire to keep the network's operation intelligible to the experts 
might also lead one to use the noisy-OR model for conditional probabilities, 
regardless of whether the learning performance of sigmoid units might be 
better. The particular properties of the noisy-OR model might also be 
desirable for technical reasons; they are exploited in the heuristic diagnostic 
search algorithm of [7], for example. 12 Noisy-OR and sigmoid units can 
also be mixed in the same network, and for that matter, incorporating a 
Boltzmann machine as a subnetwork is not impossible. 

8.4. Making decisions 

Belief networks are compatible with the "influence diagrams" used to 
formulate decision problems. An algorithm of Shachter [17] exploits the 
structure of these diagrams to find decisions that maximize expected utility. 
Unfortunately, this algorithm can sometimes take exponential time. I will 
describe here a method of making simple decisions using Gibbs sampling 
that also exploits properties of belief networks. 

Consider a network with three sets of  visible units--a "context" set, ~,  an 
"action" set ~, and a "result" set, ~. Using empirical data, we can train this 
network to represent the conditional probabilities that ~ will result given 
that we perform action ~ in context ~. Suppose now that we wish to bring 
about some "goal", ~, at a time when the context is ?. Our best bet is to 
perform an action ~ that maximizes P(/~ = ~ ] ~ = ~, ~ = ~). 

We could find the action that maximizes the probability of our goal 
by running a separate Gibbs sampling simulation for every possible ac- 
tion. In each simulation, the action and context units would be clamped, 
and we would observe how often the goal shows up in the result units. 
We would then choose the action that leads to the goal showing up most 
often. However, this method is infeasible if there are many actions, rep- 
resented by a large number of units. (Consider the number of possible 
medical treatments when twenty drugs can be given in combination, for 
example. ) 

12If this algorithm is to be used, the noisy-OR network must be constrained to allow only 
nonnegative weights. 
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However, we can transform the problem by rewriting the probability to 
be maximized using Bayes' rule: 

= I a, 

?=5) e( =ffl?=5) 
, ' ( X =  a i 

(35) 

Now, provided that P (.~ = ~ I ~ = 5) is the same for all ~, we can choose 
the best action by running a Gibbs sampling simulation in which we clamp 
the context units to ~" and the result units to ~, and then observe which 
value of  ~ turns up ~ o s t  often in the action units. 

Ensuring that P(A = ~ I ~ = 5) is the same for all ~ is easy in a belief 
network--we simply set up the network so that units in ~ have no incom- 
ing connections, ensuring equal probabilities for each ~ in an unclamped 
network, and we further arrange that there is no directed path from a unit 
in .~ to a unit in ~,  which ensures that clamping ~ will not change these 
probabilities. ~3 Producing these equal probabilities in a Boltzmann machine 
is not so easy. We could try to train the Boltzmann machine to satisfy 
the constraint, but there is no guarantee that we will succeed very well, 
and the attempt may interfere with learning the distribution of /~  given ~ 
and ~.  

Unfortunately, the transformed method does not completely solve this 
decision problem. It is possible that with a particular context and goal 
clamped, a different action will show up after every simulation pass, even 
during a long simulation. We will then have no basis for deciding which (if 
any) of these actions is best. Accordingly, the method is most applicable 
in situations where only a small, but unknown, subset of  actions have a 
significant probability of producing the goal. 

It is tempting to try to solve this problem using simulated annealing by 
"cooling" the simulation down to a temperature of zero in order to find 
the most probable state vector compatible with the clamped context and 
goal. However, the action with highest marginal probability (i.e. probability 
after summing over all possible hidden unit values) need not be the same 
as the action part of  the most probable total state vector, so the annealing 
method is guaranteed to work only if there are no hidden units in the 
network. 

13Note that  P ( ~  = ~ [ ~ = ~') exists only in a formal sense, and may thus be manipula ted 
in any fashion that  is convenient .  With a usual degree-of-belief interpretat ion o f  probability, 
we do not  assess how likely we are to perform action ~', we simply decide whether  or not  to 
do it. 
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8.5. Potential for new learning procedures 

Gradient-ascent learning has the advantage that it is simple, and that it can 
be performed in an "on-line" manner if desired. However, it can be rather 
slow, and can get stuck at a local maximum. For Boltzmann machines, there 
appears to be no reasonable alternative to gradient-ascent, but for belief 
networks the fact that the probability of a full state vector can be explicitly 
calculated allows one to contemplate other learning procedures. 

For noisy-OR belief networks, one possibility is to apply a stochastic 
version of the EM algorithm [4]. This seems feasible provided that the 
efficacy of each input to a unit in forcing the unit to take on the value 
1 is made explicit in a set of auxiliary units that are simulated along 
with the main units. Probabilities can then be iteratively estimated from 
co-occurrence counts. 

It also seems feasible to implement Bayesian learning by applying Gibbs 
sampling to the learning process as a whole. This method may avoid both the 
problem of overfitting the training data and the possibility of getting stuck 
in a local maximum. It may work especially well for noisy-OR networks 
with the auxiliary units described above, since it turns out that one can then 
avoid having to simulate distributions over continuous parameters. 

One advantage of all the learning methods based on Gibbs sampling is 
the ability to easily handle missing data, which is an inherent aspect of 
learning whenever the network contains hidden units. This is a problem for 
previously described learning methods for belief networks, such as those of 
[18]. 

8.6. Neural modeling 

The connectionist learning procedures for belief networks also provide 
additional options for modeling of real neural processes. Although analogies 
between the negative phase of Boltzmann machine learning and dream sleep 
are speculated upon in [8], it may well turn out that the negative phase is 
biologically implausible. The work here shows that this would not necessarily 
be fatal to the idea that gradient ascent using Gibbs sampling plays some 
role in learning in the brain. The somewhat greater complexity of Gibbs 
sampling in belief networks may be a barrier to their incorporation in models 
of neural processing, however. 

Appendix A. Proofs of claims 

Claim A.1. The procedure o f  Fig. I moves the weights into unit i to the point 
closest in Euclidean distance that satisfies the constraint 

WiO q- Z wij >~ rl. (A.1) 
j<i, w~j<0 
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Proof. Let ~oij be the original set of weights, and let w~j = ~uij -1- 6j be the 
set of weights satisfying the constraint for which A 2 = ~ j  6~ is minimal. 
We can prove a number  of properties of the 6j. 

First, all the 6j are nonnegative, since decreasing a weight will certainly 
not help satisfy the constraint. Also, for j > 0, 6j = 0 if ~Uij ~ 0 and 
6j ~ [wijl if113ij < O, since o n c e  6j is large enough to m a k e  ~/)~j zero, making 
it any larger does not help satisfy the constraint. 

Next, if wij <~ wik < 0, then 6j >~ 6k. Otherwise replacing both 6j and 
6~ by ½ (6j + 6k ) would reduce A 2 while keeping the constraint satisfied. 
Similarly, 6o >~ 6j for all j ,  since otherwise there would be an advantage in 
replacing them both by ½ (60 + 6j ). 

We can therefore renumber the units before i in such a way that for some 
n~ 

60 >~ 61 >~ .. .  >~ 6n > 0, 

~l)il ~ ' ' "  ~ Win < 0, 
(A.2) 

and wij >~ 0 and 6j = 0 for j > n. One can now show, by arguments similar 
to those above, that there is an m such that for all j up to m, 6j = 60 and 
6j < [~13ij[, while for m < j <~ n, 6j -~- 1~33ij ] . 

The entire set of optimal changes, 6j, is therefore determined by the value 
of 60. The other 6j are either equal to 60, or are less, if a lesser value suffices 
to make w~j nonnegative. 

The procedure of Fig. 1 is now easily seen to be a search for the appropriate 
value of 60. [] 

Claim A.2. The weights in both a Boltzmann machine and in a sigmoid 
belief network consisting o f  only one or two units can be set so as to produce 
any probability distribution over state vectors. (Except that distributions in 
which some state vectors have zero probability can only be approached as the 
weights go to infinity. ) 

Proof. We need only consider networks with 0 / l -valued units. Clearly, any 
distribution over a network of one unit can be produced by simply adjusting 
the single bias weight. 

To produce a given distribution over a sigmoid belief network with two 
units, start by setting the bias weight for the first unit to produce the required 
marginal probability distribution for that unit. Then set the bias weight for 
the second unit to produce the required conditional probability distribution 
given that the first unit  has value 0. Lastly, set the weight on the connection 
from the first to second unit to produce the correct conditional probability 
distribution given that the first unit has value 1, taking into account the 
value of bias weight determined earlier. 
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For a two-unit Boltzmann machine, we must find weights that give energies 
to the four possible states that produce the required distribution. The energy 
of  state (0, 0) is zero irrespective of the weight values. We can arrange for 
states (1,0) and (0, 1) to have the appropriate energies relative to that of 
{0,0) by adjusting their bias weights. The energy of  state {1, 1) can then be 
made whatever we wish by setting the weight on the connection between 
the two units, taking account of  the bias weights. [] 

Claim A.3. The set of  probability distributions that can be produced over a 
network o f  three units is the same for Boltzmann machines and sigmoid belief 
networks. 

Proof. To translate a three-unit Boltzmann machine to a sigmoid belief 
network, start by setting up the first two units of  the sigmoid network so as 
to duplicate the marginal distribution over (any) two units of the Boltzmann 
machine. Claim A.2 guarantees that this is possible. Now add a third unit 
after these two, connected to the first two using the same weights as in the 
Boltzmann machine. This duplicates the required conditional probabilities 
for the third unit, without disturbing the distribution over the first two 
units. 

To translate a three-unit sigmoid belief network to a Boltzmann machine, 
start by setting the weights to the third unit in the Boltzmann machine to be 
the same as those into the last unit in the sigmoid network. This duplicates 
the conditional probabilities for this unit given the values of the other two 
units. Now we need to set up the weights between the remaining two units 
so as to produce the same marginal distribution as in the sigmoid network, 
taking into account the biasing effects of  the third unit. This can be done 
because, again, all things are possible with only two units. [] 

Claim A.4. The probability distribution produced by the O/1-valued Boltz- 
mann machine o f  Fig. 2(a) cannot be duplicated by a sigmoid belief network 
with the same number of  units. 

Proof. We can assume that the sigmoid belief network also uses 0/1-valued 
units. Due to the symmetry of  the Boltzmann machine, there is no choice in 
ordering the units when trying to find an equivalent sigmoid belief network. 
The last unit in the sigmoid belief network (unit 4) must have the same 
weights as in the Boltzmann machine in order to reproduce the conditional 
probabilities for that unit's value given the values in the rest of the network. 

Now consider how we must set the weights into the second-to-last unit in 
the sigmoid belief network (unit 3). By symmetry, the two weights from the 
earlier units must be equal; call their value w. There is also a bias weight, 
b. Consider the odds in favour of unit 3 having the value 1 when unit 4 
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has the value 1 and there are zero, one, or two units with value 1 before 
unit 3. Equating these odds in the sigmoid belief network to the odds in the 
Boltzmann machine produces the constraints, respectively: 

a(1) 
e x p ( b ) - -  - exp(1), (A.3) 

a(0) 

a(2)  
exp(b + w) - exp(2), (A.4) 

a(1) 

a(3)  
exp(b + 2w) - -  _ exp(3). (A.5) 

a (2 )  

By taking logarithms, one obtains a system of linear equations in w and b 
which numerical calculation shows to be inconsistent. [] 

Claim A.5. The probability distribution produced by the O/l-valued sigmoid 
belief network of Fig. 2(b) cannot be duplicated by a Boltzmann machine 
with the same number of units. 

Proof. We can restrict consideration to Boltzmann machines with 0/1-valued 
units. Consider the unit in a candidate Boltzmann machine corresponding 
to the bottom unit in the sigmoid network. The weights into this unit must 
be the same as those in the sigmoid network, in order to reproduce the 
conditional probabilities for this unit given the various combinations of 
other unit values. Note that the value of the bottom unit is effectively a 
deterministic function of the values of the upper three units--i.e, there are 
only eight state vectors with significant probability. 

Now consider the constraints placed on the weights in the Boltzmann 
machine by the requirement that all combinations of values for the upper 
three units be equally probable, as they are in the sigmoid network. In the 
Boltzmann machine, this translates to the requirement that the energy of 
the network be the same for all eight possible state vectors. In particular, 
since the energy of the state vector (0, 0, 0, 0) is zero, the energy of the other 
seven state vectors must be zero as well. Applying this constraint to the 
three state vectors (1,0, 0, 1), (0, 1,0, 1), and (0, 0, 1, 1), we find that the bias 
weights into the three upper units must be -10.  Applying it to the the three 
state vectors (0, 1, 1, 1), (1,0, 1, 1), and (1, 1,0, 1), we get that the weights 
between the upper units must all be - 1 0  as well. The energy of the state 
(1, 1, 1, I) is now determined to be -10 ,  showing that a proper set of  weights 
is impossible. [] 

Claim A.6. The probability distribution produced by a three-unit noisy-OR 
belief network with O/l-valued units in which w3~ = w32 = 1 and all other 
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weights are zero cannot be duplicated by either a Boltzmann machine or a 
sigmoid belief network with only three units. 

Proof. In view of Claim A.3, it suffices to show that the noisy-OR network 
cannot be duplicated by a Boltzmann machine with 0/1-valued units. 

Consider the unit in a candidate Boltzmann machine corresponding to 
unit 3 in the noisy-OR network. In the noisy-OR network, this unit is 
always zero when the other units are both zero. To approximate this in the 
Boltzmann machine, the bias weight for this unit must be very large and 
negative. The probability of this unit being zero when one of the other two 
units is one is only e - l ,  however. The weights from the other two units 
must therefore be very large and positive, in order to nearly cancel out 
the large negative bias in this case. Now, however, the probability of the 
unit being one when both other units are one is nearly 1 in the Boltzmann 
machine, but only 1 - e -2 in the noisy-OR network. Thus no set of weights 
for the Boltzmann machine can produce (or even closely approximate) the 
required distribution. [] 
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