Advice for applying
machine learning

Deciding what
to try next

Machine Learning



Debugging a learning algorithm:
Suppose you have implemented regularized linear regression to predict housing
prices.
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However, when you test your hypothesis on a new set of houses, you find that
it makes unacceptably large errors in its predictions. What should you try next?

—> - Get more training examples

- Try smaller sets of features Koo Mg, L e
—> - Try getting additional features

- Try adding polynomial features (m%, x%, £U1£UQ,GtC )

- Try decreasing A

- Tryincreasing A
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Machine learning diagnostic:

Diagnostic: A test that you can run to gain insight what
is/isn’t working with a learning algorithm, and gain
guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so
can be a very good use of your time.
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Evaluating your hypothesis
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Evaluating your hypothesis
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Training/testing procedure for linear regression

~ - Learn parameter from training data (minimizing
training error J(Q))
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Training/testing procedure for logistic regression

- Learn parameter 6 from training data
- Compute test set error:

Mtest

Jtest(0) = _ﬁ Z yﬁé)st log hG(xwg?st) + (1 — yg?st) log h9(37§?st)
1=1
- Misclassification error (0/1 misclassification error):
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Overfitting example
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Once parameters 6y, 01, ...,0,4
were fit to some set of data
(training set), the error of the
parameters as measured on
that data (the training error
J(6))is likely to be lower
than the actual generalization
error.
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Problem: Jtest(9(5>) is likely to be an optimistic estimate of
generalization error. |.e. our extra parameter (d = degree of
polynomial) is fit to test set.
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Evaluating your hypothesis [ (2 y“T
Dataset: (x(z): y2))
Size Price :
2104 400 \__ (=™, y™) ]
1600 330 < "
, - nd
Coele 2400 369 | P (22O =Y
1416 232 ev ) Yew of Cy
: e~coole,
3000 540 (Mev)  (Mew) A (D
1985 300 (Tev ™" Yeu _2_; Kev, Yeu
Lod 1530 | 3157 Coons wkdaun TR DTS
1427 199 J st Cev) 2 (2 Mo 4
/ 1380 212 (xtestaytest)
—20 Y } f%*m['
1494 243 (Mtest) (Mmiest)
(xtest 7ytest )

Andrew Ng



Train/validation/test error

Training error:
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Model selection
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Bias/variance
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Bias/variance
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Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than
you were hoping. (Je, (0) or Jiest(0) is high.) Is it a bias
problem or a variance problem?
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Linear regression with regularization
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Choosing the regularization parameter \
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Choosing the regularization parameter \

Model: ho(z) = 6o + 012 + Or2% + 93333 + 9427
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Bias/variance as a function of the regularization parameter A
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Learning curves
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High bias
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If a learning algorithm is suffering
from high bias, getting more
training data will not (by itself)
help much.
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High variance
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Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict
housing prices. However, when you test your hypothesis in a new set
of houses, you find that it makes unacceptably large errors in its
prediction. What should you try next?

- Get more training examples —= Kva, \;ﬂ\\ Noflonie

- Try smaller sets of features —» &xes  high vosiona

- Try getting additional features —=» %wa hgh bies

- Try adding polynomial features(z?, T3, T11o,6tC) 2> e k;a\,. bias |
- Try decreasing\ - Cixes M:ﬁk Mg

- Tryincreasing\ - &xes high voriosn
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Neural networks and overfitting

— “Small” neural network —=> “large” neural network
(fewer parameters; more (more parameters; more prone
prone to underfitting) to overfitting)
AR
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Computationally cheaper Computationally more expensive.
Use regularization (A) to address overfitting.
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