

Introduction

Welcome

Machine Learning

Andrew Ng

- Grew out of work in Al
- New capability for computers

Examples:

- Database mining

Large datasets from growth of automation/web.

- E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.

E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.

- Grew out of work in Al

- Grew out of work in Al
- New capability for computers

Examples:

- Database mining

Large datasets from growth of automation/web.

- E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.

E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.

- Grew out of work in Al
- New capability for computers

Examples:

- Database mining

Large datasets from growth of automation/web.

- E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.

E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.

- Self-customizing programs

E.g., Amazon, Netflix product recommendations

- Grew out of work in Al
- New capability for computers

Examples:

- Database mining

Large datasets from growth of automation/web.

- E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.

E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.

- Self-customizing programs

E.g., Amazon, Netflix product recommendations

- Understanding human learning (brain, real AI).

Andrew Ng

Introduction

What is machine learning

Machine Learning

• Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

• Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

- Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

"A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting?

O Watching you label <u>emails as</u> spam or not spam.

Classifying emails as spam or not spam.

○ The number (or fraction) of emails correctly classified as spam/not spam.

○ None of the above—this is not a machine learning problem.

"A computer program is said to *learn* from experience E with respect to

S	M Tintedbox.com Mail - Test (on T,
a	← → C 🔒 https://ma	ail.google.com/mail/?shva=1#inbox/131d0094416e006e	
Supp	Mail Calendar Docum	nents Sites Groups more - ang@tintedbox.co	or do
not r	GMail	Search Mail Search the Web Show search opti Create a filter Manage this domain Get Marketp	filter
spam	Compose mail	Archive Spam Delete 🕑 🗩 Move to v Labels v More v	
	Starred 😭 Important Sent Mail Drafts	Test message X Inbox X Inbox About these links Andrew Y. Ng Aug 15 (6 days ago) Aug 15 (6 days ago) Aug 15 (6 days ago) Tarun Vir show details Aug 15 (6 days ago) Reply Image: Comparison of the show details	
	Follow up Misc Priority 4 more ▼		n.2.m
	<u>Contacts</u> <u>Tasks</u>		pam.
	Chat 💌		
	<		

"A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting?

O Watching you label <u>emails as</u> spam or not spam.

Classifying emails as spam or not spam.

○ The number (or fraction) of emails correctly classified as spam/not spam.

○ None of the above—this is not a machine learning problem.

Machine learning algorithms:

- Supervised learning
- Unsupervised learning

Others: <u>Reinforcement learning</u>, <u>recommender</u> systems.

Also talk about: Practical advice for applying learning algorithms.

Andrew Ng

Introduction

Supervised Learning

Machine Learning

Housing price prediction.

- Clump Thickness

...

- Uniformity of Cell Size
- Uniformity of Cell Shape

You're running a company, and you want to develop learning algorithms to address each of two problems.

1000's

Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.

Problem 2: You'd like software to examine individual customer accounts, and for each account decide if it has been hacked/compromised. - not hacked - hacked - hacked

Should you treat these as classification or as regression problems?

Treat both as classification problems.

Treat problem 1 as a classification problem, problem 2 as a regression problem.

----> O Treat problem 1 as a regression problem, problem 2 as a classification problem.

O Treat both as regression problems.

Andrew Ng

Introduction

Unsupervised Learning

Machine Learning

BP's costs for the Deepwater Horizon disaster have hit \$10bn. Photograph: Ho/Reuters - 0 X

Individuals

[Source: Daphne Koller]

Individuals

[Source: Daphne Koller]

Organize computing clusters

Market segmentation

Astronomical data analysis

Speaker #2

Microphone #2

Microphone #1: 🐠

Output #1: 🐠

Microphone #2: 🐠

Output #2: 🐠

Microphone #1: 🐠

Output #1: 🐠

Microphone #2: 🐠

Output #2: 🐠

[Audio clips courtesy of Te-Won Lee.]

Cocktail party problem algorithm

[W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');

[Source: Sam Roweis, Yair Weiss & Eero Simoncelli]

Of the following examples, which would you address using an <u>unsupervised</u> learning algorithm? (Check all that apply.)

Given email labeled as spam/not spam, learn a spam filter.

Given a set of news articles found on the web, group them into set of articles about the same story.

Given a database of customer data, automatically discover market segments and group customers into different market segments.

Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.

Andrew Ng