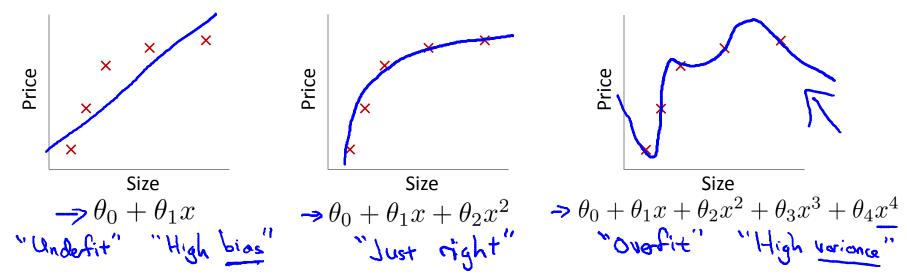
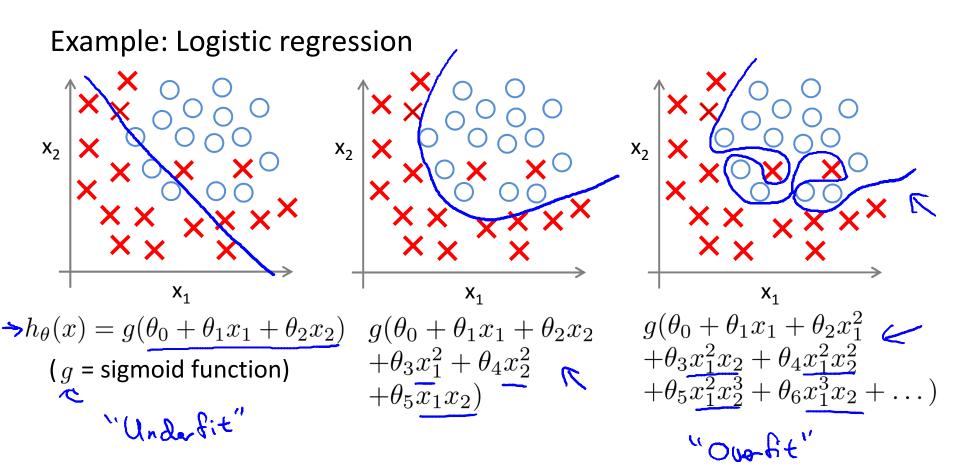


The problem of overfitting

Example: Linear regression (housing prices)



Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(\overline{J(\theta)} = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).



Addressing overfitting:

- $x_1 = size of house$ $x_2 = no. of bedrooms$

 - $x_3 =$ no. of floors
 - $x_4 = age of house$
 - $x_5 =$ average income in neighborhood
 - $x_6 =$ kitchen size

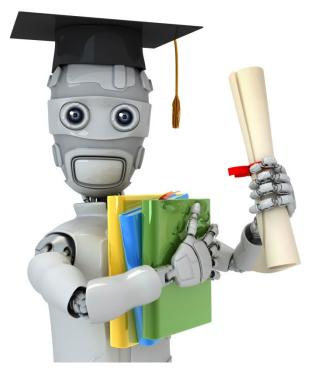
 x_{100}

Price	
	Size

Addressing overfitting:

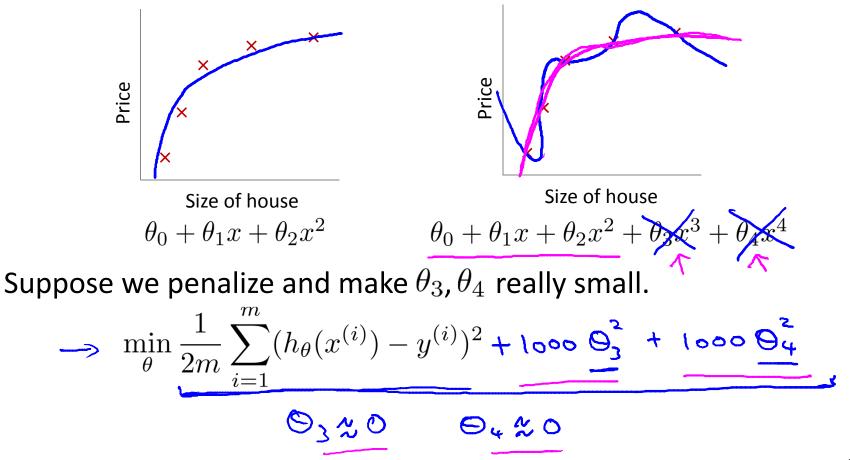
Options:

- 1. Reduce number of features.
- \rightarrow Manually select which features to keep.
- ——— Model selection algorithm (later in course).
- 2. Regularization.
 - \rightarrow Keep all the features, but reduce magnitude/values of parameters θ_{j} .
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.



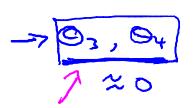
Cost function

Intuition



Small values for parameters $\theta_0, \theta_1, \ldots, \theta_n \in$

- "Simpler" hypothesis <---
- Less prone to overfitting <--



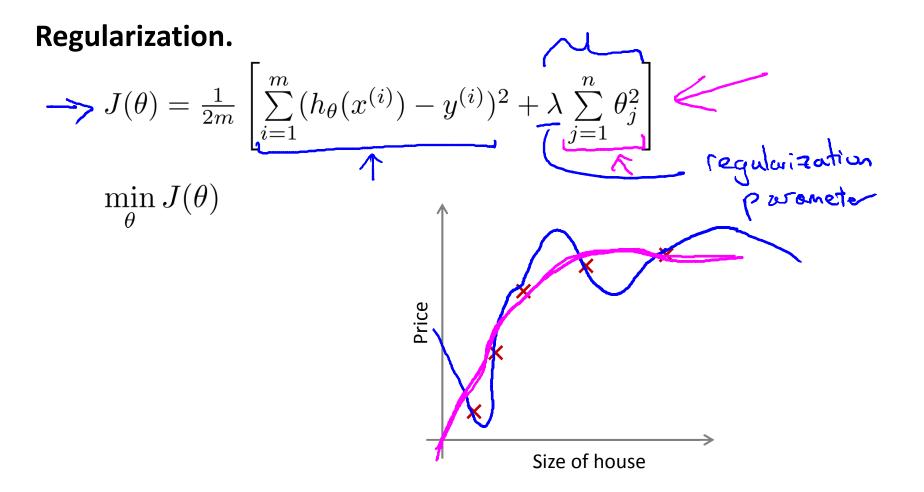
1

Housing:

– Features:
$$\underline{x_1}, \underline{x_2}, \dots, x_{100}$$

- Parameters:
$$\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \underbrace{\stackrel{\circ}{\leq} \mathfrak{S}}_{\mathfrak{I}} \right]$$



In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

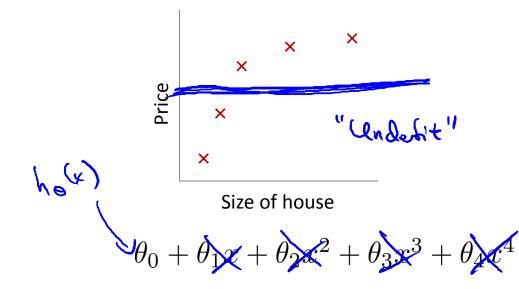
What if $\lambda\,$ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algortihm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

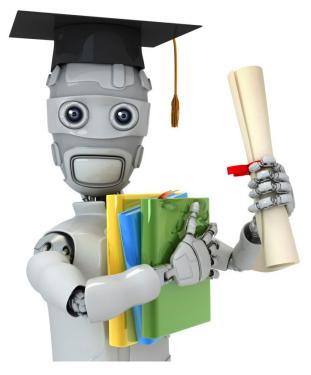
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?



$$9_{1}, 9_{2}, 0_{3}, 9_{4}$$

 $0, 20, 0_{2}, 20$
 $0_{3}, 20, 0_{4}, 20$
 $h_{0}(x) = 0_{0}$



Regularized linear regression

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + (\lambda) \sum_{j=1}^{n} \theta_j^2 \right]$$
$$\min_{\substack{\theta \\ \uparrow}} J(\theta)$$

Gradient descent
Repeat {

$$\Rightarrow \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

 $\Rightarrow \theta_j := \theta_j - \alpha$
 $\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} - \frac{\lambda}{m} \Theta_j$
 $(j = \mathbf{X}, 1, 2, 3, ..., n)$
 $\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$
 $- \alpha \frac{\lambda}{m} < 1$ $\Theta \cdot \mathbf{q} = \Theta_j \times \mathbf{q} \cdot \mathbf{q}$

Normal equation

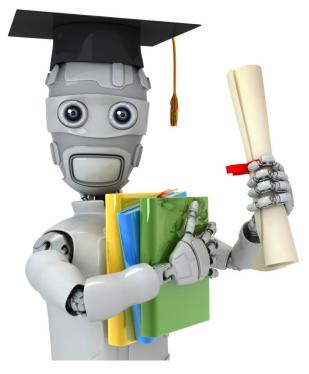
$$X = \begin{bmatrix} (x^{(1)})^{T} \\ \vdots \\ (x^{(m)})^{T} \end{bmatrix} \leftarrow \qquad \uparrow \qquad \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \qquad \mathbb{R}^{n}$$

$$\Rightarrow \min_{\theta} J(\theta) \qquad \qquad \Rightarrow \underbrace{\min_{\theta} J(\theta)}_{\theta} \qquad \qquad \Rightarrow \underbrace{\lim_{\theta \to 1} J(\theta)}_{\theta} \qquad \qquad \Rightarrow \underbrace{\lim_{\theta \to$$

Non-invertibility (optional/advanced).

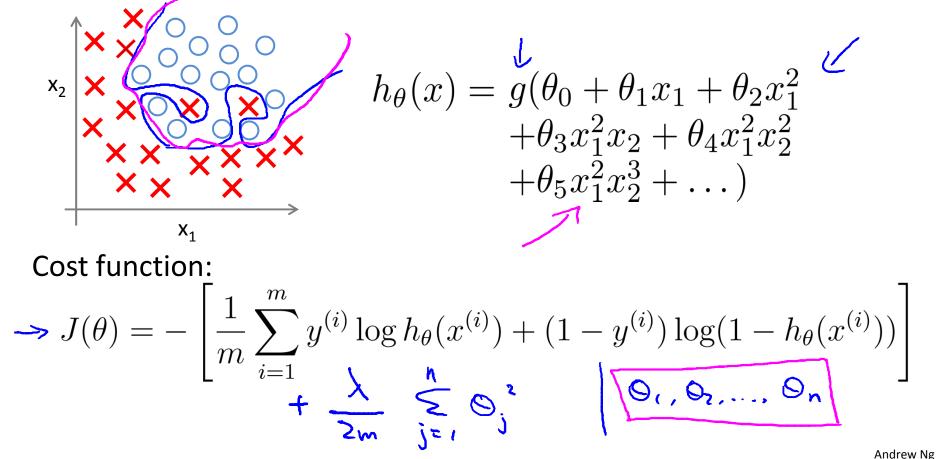
Suppose
$$m \leq n, \quad \leftarrow \quad (\text{#examples})$$

 $\theta = (X^T X)^{-1} X^T y$
 $non-invertible / singular$
If $\lambda > 0,$
 $\theta = \left(X^T X + \lambda \begin{bmatrix} 0 & 1 & \\ & 1 & \\ & & \ddots & 1 \end{bmatrix} \right)^{-1} X^T y$
invertible .



Regularized logistic regression

Regularized logistic regression.



Gradient descent

Repeat {

Advanced optimization
function [jVal, gradient] = costFunction (theta) theta(h+i)
jVal = [code to compute
$$J(\theta)$$
];
 $J(\theta) = \left[-\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log(h_{\theta}(x^{(i)}) + (1-y^{(i)})\log 1 - h_{\theta}(x^{(i)})\right] + \left[\frac{\lambda}{2m}\sum_{j=1}^{n}\theta_{j}^{2}\right]$
 $gradient(1) = [code to compute \left[\frac{\partial}{\partial\theta_{0}}J(\theta)\right];$
 $\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})x_{0}^{(i)} \in$
 $gradient(2) = [code to compute \left[\frac{\partial}{\partial\theta_{1}}J(\theta)\right];$
 $\left[\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})x_{1}^{(i)}\right] - \frac{\lambda}{m}\theta_{1} \in$
 $gradient(3) = [code to compute \left[\frac{\partial}{\partial\theta_{2}}J(\theta)\right];$
 $\left[\frac{1}{m}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})x_{2}^{(i)}\right] - \frac{\lambda}{m}\theta_{2}$
 $gradient(n+1) = [code to compute \left[\frac{\partial}{\partial\theta_{n}}J(\theta)\right];$