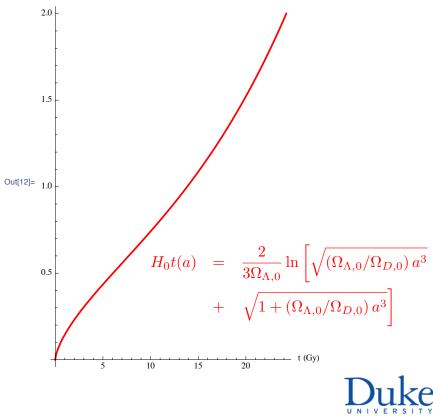

Introductory Astronomy

Week 8: Cosmology Clip 5: A Brief History of Everything

A Timeline: Early Years

- Using Best Data $\Omega_{Db,0} = 0.044$ $\Omega_{D,0} = 0.256$ $\Omega_{R,0} = 4.765 \times 10^{-5}$ $\Omega_{\Lambda,0} = 0.74$ construct history of scale factor
- Early epoch: radiation dominated until $z_{RT} \sim 3300 \ t_{RT} \sim 55 \, {\rm ky}$



2

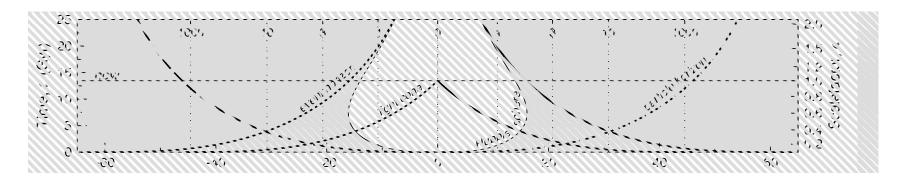
Now and Beyond

- Matter dominates until $a_{MT} = (\Omega_{D,0}/\Omega_{\Lambda,0})^{1/3} = 0.706$ $z_{MT} \sim 0.4 \ t_{MT} \sim 0.59t_0 = 8.18 \,\text{Gy}$ $a(t) = a_{MT} (t/t_{MT})^{2/3}$
- For large times Λ dominates and $a(t) \sim e^{\sqrt{\Lambda/3}ct}$

Particle Horizons

- How far can we see?
- By time t how much of the universe has a given observer seen?
- This size of observable universe – particle horizon
- Objects on particle horizon are seen at t = 0

• In radiation era


 $D_h(t) = 2ct$

- In matter era $D_h(t) = 3ct$
- Today $D_h(t_0) = 46 \operatorname{Gly}$
- In exponential expansion $D_h(t)
 ightarrow \sqrt{3/\Lambda} a(t) = 62 a(t) \, {
 m Gly}$

Event Horizons

- How far into today's universe will we ever see?
- Event horizon separates events from which light will reach us someday from those we will never see
- Exponential expansion means galaxies leave our visible region with time
- As object approaches event horizon its light infinitely redshifted

Credits

 Cosmological Horizons: From T.H. Davis and C.H. Lineweaver, <u>http://arxiv.org/pdf/astro-ph/0310808v2.pdf</u>

