The gravitational field has only a relative existence...

Because for an observer freely falling from the roof of a house - at least in his immediate surroundings - there exists no gravitational field. Einstein 1907

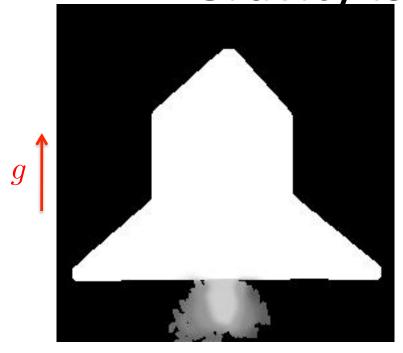
Introductory Astronomy

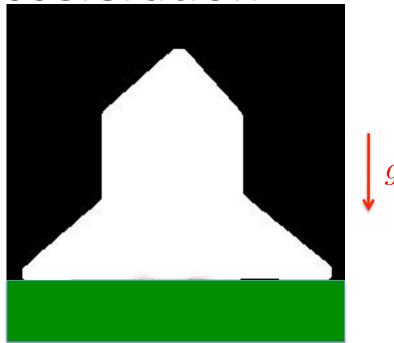
Week 6: Relativity and Black Holes

Clip 9: Happy Thoughts

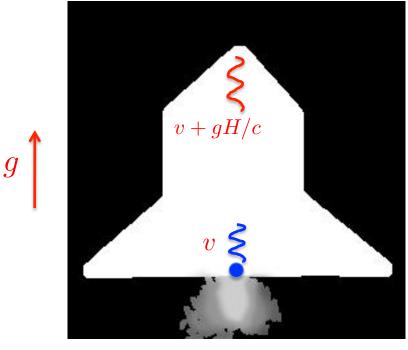
Relativistic Gravity

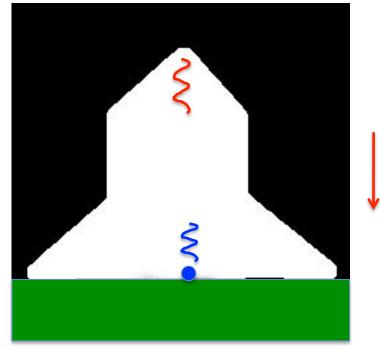
- $F=\frac{GMm}{R^2}$ is no good. Whose R? When?
 Maxwell gives a relativistic version of $F=\frac{kQq}{R^2}$ in terms of electromagnetic fields
- We need a field theory for gravity but Maxwell's idea will not work - mass is not conserved. **Energy-Momentum** is conserved but not invariant
- What is a gravitational force anyway??




The Principle of Equivalence

- Observer in free fall only gravity acts there is no gravitational force. Stars and galaxies are in free-fall!
- Conversely, accelerating frames exhibit gravitational force in the absence of gravity
- Gravitation at one event can be completely cancelled by choosing a suitably accelerating frame – letting go
- Gravity is acceleration?
- Tidal Forces the change in a_g in space and time are truly gravitational


Gravity is Acceleration



Gravitational Redshift

$$\lambda = \lambda_0 (1 + gH/c^2)$$

- Equivalence Principle: lower clock runs slow
- Pound Rebka 1959
 measure the effect
 over height of tower in
 Jefferson Lab:
 complete agreement
- GPS system needs to account for redshift

Credits

 Rocket Ship: D. Pape, University at Buffalo, http://resumbrae.com/ub/dms423 f05/13/

