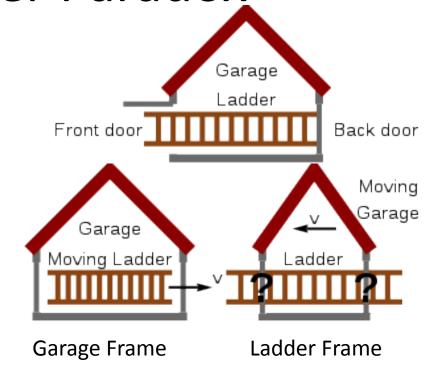
## Introductory Astronomy

Week 6: Relativity and Black Holes

Clip 8: Simultaneity Paradoxes




The Ladder Paradox

Ladder of length *L* fit in garage of length *G* < *L* by moving at *v* so

$$L\sqrt{1-v^2/c^2} < G$$

- Problem: as seen by observer moving with ladder, garage contracts
- Does the ladder fit?





## Solving with Lorentz

- Take a close look at events as seen by garage (t,x) and by ladder (t',x')
- Coordinates:

Garage: 
$$x_L = 0$$
  $x_R = G$ 

Ladder: 
$$x'_L = 0$$
  $x'_R = L$ 

• Event 1:  $t_1 = t'_1 = 0$   $x_1 = x'_1 = 0$ 

When left of ladder at left door of garage

- Event 2:  $x_2 = G \ x_2' = L$ When right of ladder at right door of garage
- Which came first?



## Order of Events

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}}$$
 $t' = \frac{t - vx/c^2}{\sqrt{1 - v^2/c^2}}$ 
 $x = \frac{x' + vt'}{\sqrt{1 - v^2/c^2}}$ 
 $t = \frac{t' + vx/c^2}{\sqrt{1 - v^2/c^2}}$ 

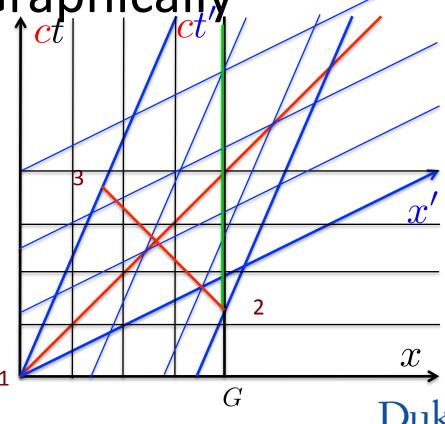
• Set 
$$x_2 = G \ x_2' = L$$
  $vt_2 = G - L\sqrt{1 - v^2/c^2} > 0$ 

Ladder is inside for

$$0 \le < t \le t_2$$

• But

$$vt_2' = G\sqrt{1 - v^2/c^2} - L < 0$$


Ladder never inside

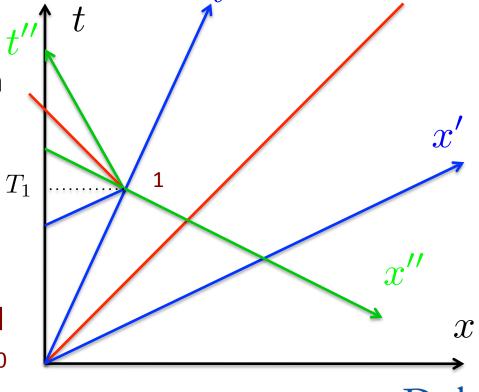


Solving Graphically

• Important: Distances on this plot mean nothing!  $x^2 + c^2t^2$ 

Right door closed?
 Front stops at 2, rear can learn of this at 3 or later




## Twin Paradox t'

0

- Twin 1 stays here
- Twin 2 travels away, then returns
- Who's younger?

$$T_1 = \frac{T_1'}{\sqrt{1 - v^2/c^2}}$$

• The one who accelerated

