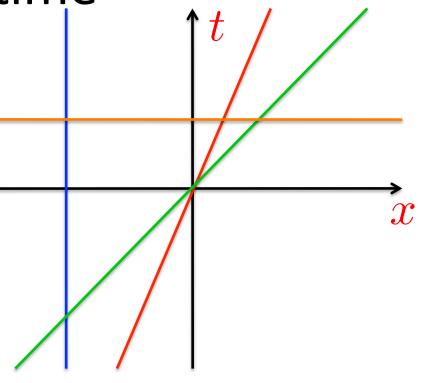
Introductory Astronomy

Week 6: Relativity and Black Holes

Clip 2: Spacetime

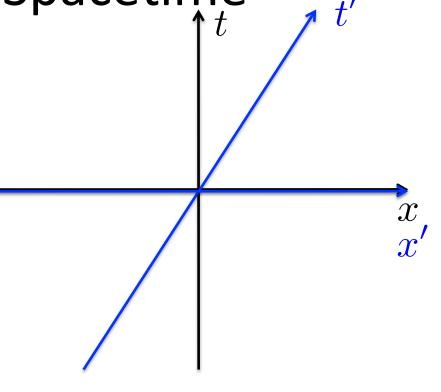

Space and Time

- Space: All possible positions $\vec{r} = (x, y, z)$
- Motion described by $\vec{r}(t) = (x(t), y(t), z(t))$
- Plot $\vec{r}(t)$ on three axes to produce worldline
- Spacetime: All possible events $(t, \vec{r}) = (t, x, y, z)$
- Newton I: Objects upon which no forces act have straight worldlines

• Velocity $v = \frac{\Delta x}{\Delta t}$ is slope of worldline from taxis

- Stationary objects have vertical worldlines
- Horizontal line (space) is Universe at some time

Relativity in Spacetime

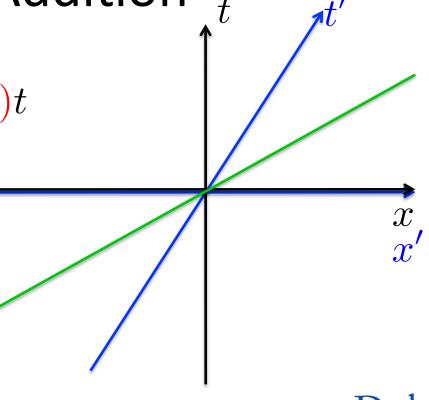

- O' moves at v relative to
- Describe same event by different coordinates

$$x' = x - vt$$

$$t' = t$$

$$x = x' + vt'$$

$$t = t'$$


Velocity Addition

$$x' = u't'$$

$$x = x' + vt' = (u' + v)t$$

$$t = t'$$

$$u = u' + v$$

Credits

 Animation created with Mathematica http://www.wolfram.com/mathematica

