Introductory Astronomy

Week 5: Stellar Evolution

Clip 15: Neutron Stars

What is Left of Core?

- Electron degeneracy cannot stop collapse – few electrons
- Neutron degeneracy pressure at density

$$6 - 7 \times 10^{17} \mathrm{kg/m^3}$$

- $1.4 M_{\odot}$ in $R \sim 10 \, \mathrm{km}$
- Surface gravity $1.9 \times 10^{11} g$

- Physics is relativistic
- Chandrasekhar Limit $MR^3 = \text{const}$

$$M_{Ch} = 2.2 - 2.9 M_{\odot}$$
 depends on rotation

- Rapid Rotation expected
- High magnetic field frozen in $B_{
 m ns} \sim B {
 m wd} \left(rac{R_{
 m ns}}{R_{
 m wd}}
 ight)^2$

Discovery

- **Physics Predictions:**
 - Rapid Rotation

$$MvR \sim MR^2/P$$

$$P_{\rm ns} = P_{\rm c} \left(\frac{R_{\rm ns}}{R_{\rm c}}\right)^2 \sim 0.005 \,\mathrm{s}$$

- Intense magnetic field $B_{\rm ns} \sim B{\rm c}\left(\frac{R_{\rm ns}}{R_c}\right) \sim 10^{12}B_{\odot}$ - Soon find many pulsars

High Temperature

$$T \sim 10^6 \, \text{K} \, \lambda_{\text{max}} = 2.9 \, \text{nm} \, L \sim 0.25 L_{\odot}$$

- Bell 1967: Periodic 1.337s Radio pulses: LGM?
- Quickly found other sources: natural

$$0.2 \, \mathrm{s} \leq P \leq 2 \, \mathrm{s}$$

Slow down in $10^7 \, \mathrm{yr}$

LGM Data

What are Pulsars?

Rotating star breaks up

$$v^{2}/R = 4\pi^{2}R/P^{2} \sim GM/R^{2}$$

$$P = 2\pi\sqrt{\frac{R^{3}}{GM}}$$

- Only NS dense enough to survive $P \sim 1s$
- Emission aligned to magnetic axis - tilted

• Crab pulsar $P = 0.0333 \,\mathrm{s}$:

Neutron star SN remnant

How They Work

- General Idea: Rapidly changing intense magnetic field creates intense electric field
- Lifts charged particles from polar regions into magnetosphere dragged around by rotation
- Accelerated to relativistic speeds emit synchrotron radiation at all wavelengths in direction of magnetic axis
- Emitted energy slows rotation
- Luminosity of Crab nebula agrees with observed rate of slowing of pulsar

Pulsars observed in all bands

Credits

- CP1919 Data, Animation: http://pulsar.ca.astro.it/pulsar/PSR.html
- Pulsar Model: NASA/GFC
 http://imagine.gsfc.nasa.gov/docs/science/
 know.ll/pulsars.html

