Introductory Astronomy

Week 5: Stellar Evolution

Clip 10: Mass Transfer

Roche Potential

- In a binary system matter orbits both stars
- Entire system rotates. If dropped from (rotating) rest, where will a stone fall?
- Combined gravity and rotation described by Roche potential
- Inside each star's Roche lobe orbits stay close to that star

Algol

 Eclipsing binary Algol is a puzzle:

$$M_A = 3.59 M_{\odot} \, \text{MS}$$

$$M_B = 0.79 M_{\odot}$$
 subgiant

 Massive A should have evolved earlier?

 $R = 0.062 \, \text{AU}$

- B started out as the more massive star
- In its subgiant phase, atmosphere leaked out of its Roche lobe
- Gas lost by B forms accretion disk around A

White Dwarf Nova

- White dwarves in close binaries can accrete Hydrogen at $10^{-8} \, M_{\odot}/{
 m yr}$ from partner when it overflows its Roche lobe
- Infalling gas compressed to degeneracy and heated by immense surface gravity
- Enriched with CNO by turbulent mixing at base
- When $10^{-4} M_{\odot}$ accumulates, base temperature $10^7 \, \mathrm{K}$

- CNO fusion explosively heats gas ${
 m to}10^8\,{
 m K}$ and luminosity $10^5\,{
 m L}_\odot$
- Radiation pressure ejects accreted material
- Total energy released 10³⁸ J over months
- Can recur in $10^5 \, \mathrm{yr}$
- Ejected matter glows at initial

$$T \sim 9000 \,\mathrm{K}$$

• 30/yr in M31

Nova Cygni 2010 in Visible Light

March 10, 19:08 UT

Nova Remnants

Type-la Supernova

- Accretion adds to white dwarf mass.
 What if it exceeds Chandrasekhar limit?
- It doesn't. As increased mass compresses dwarf, pressure and temperature increase
- A turbulent convection phase leads to ignition of Carbon fusion
- In degenerate dwarf heating does not lead to expansion so violent explosive process fuses substantial fraction of star in a few seconds
- Oxygen fusion less complete

- Internal temperature exceeds $10^9 \, {
 m K}$
- Fusion releases 10⁴⁴ J blowing star apart completely releasing shock wave ejecting matter at high speeds
- Luminosity reaches $10^{9-10} L_{\odot}$ decays over months
- Spectrum has absorption lines of Si but little H He
- Decay of readioactive fusion products near iron mass in shell contributes to luminosity at late times

What We Know

- Nature of Mass donor unclear
 - Single Degenerate: Donor is MS or giant
 - Double Degenerate: Donor is White dwarf ripped apart by tidal forces in merger
- Likely both occur

- Nature of explosion also debated: deflagration or detonation? Degenerate Helium flash trigger or internal CO ignition
- Fact: Luminosity (corrected by light curve) almost the same for all la Supernovae: Standard Candles!

A Standard Candle

Evidence for DD Model

Credits

- Nova Cygni 2010: K. Nishiyama and F. Kabashima/H. Maehara, Kyoto Univ. http://www.nasa.gov/mission_pages/GLAST/news/shocking-nova.html
- GkPer: WIYN/NOAO/NSF http://www.noao.edu/image_gallery/html/im0008.html
- T Pyxidis: Mike Shara, Bob Williams, and David Zurek (Space Telescope Science Institute); Roberto Gilmozzi (European Southern Observatory); Dina Prialnik (Tel Aviv University); and NASA http://hubblesite.org/newscenter/archive/releases/1997/29/
- SN Light Curves: From LLNL Science&Technology Review https://www.llnl.gov/str/SepOct08/hoffman.html
- SNR-0509-67.5: NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), J. Hughes (Rutgers University) http://www.nasa.gov/mission_pages/hubble/science/supernova-source.html
- Co-Registered X-ray Images: NASA/Swift/Stefan Immler http://www.nasa.gov/mission_pages/swift/bursts/supernova-narrowing.html

