Introductory Astronomy

Week 5: Stellar Evolution

Clip 5: Post-Main Sequence Sun-II

Helium Core Flash

- When core temperature reaches 10⁸K Helium fusion via triple-α process occurs explosively in degenerate core
- For a few seconds produce galactic luminosity absorbed in atmosphere, possibly leading to mass loss
- Expands shell decreasing output
- Envelope contracts and heats

Horizontal Branch

- Deep convection rises
- Convective core fusing Helium to Carbon, Oxygen
- Shell fusing Hydrogen to Helium
- Core contracts
- Envelope contracting and heating

 $T \sim 12.234 {\rm Gy}~R \sim 10 R_{\odot}~L \sim 41 L_{\odot}$

Early Asymptotic Giant Branch

- Inert CO core collapses to degeneracy
- Helium fusion in shell
- Hydrogen shell nearly inactive
- Envelope expands and cools
- Convective envelope deepens: second dredge-up
- Mass loss in outer layer

10.000

Temperature (K)

5,000

20,000

40,000

 $T \sim 12.365 \text{Gy } R \sim 180 R_{\odot} L \sim 3000 L_{\odot}$

2.500

Thermal Pulse AGB

- Hydrogen shell reignites
- Helium shell flashes intermittently
- Flash expands Hydrogen shell, luminosity drops and envelope contracts heats
- Hydrogen reignition increases luminosity envelope expands cools
- Convection between shells and deep convective envelope: third dredge-up and Carbon stars
- Rapid mass loss to superwind
- s-process neutron capture nucleosynthesis produces heavier elements

 $T \sim 12.365 \text{Gy } R \sim 213 R_{\odot} L \sim 5200 L_{\odot}$

Credits

- Stellar Evolution Figures: R. Pogge, OSU (with permission)
 http://www.astronomy.ohio-state.edu/~pogge/
 Lectures/vistas97.html
 http://www.astronomy.ohio-state.edu/~pogge/Ast162/
 Unit2/lowmass.html
- Triple-α process: Wikimedia/Borb <u>http://en.wikipedia.org/wiki/File:Triple-Alpha Process.png</u>

