## Introductory Astronomy

Week 4: Stars

Clip 4: Neutrinos and a Surprise



### How Do We Know?

- 1932) first
- Davis, Bahcall (1968): Detect the  $\nu_e$
- Pro: Penetrate Sun
- Con: Penetrate detector
- Flux at Earth:  $10^{11} \frac{\nu_e}{\text{m}^2 \text{ s}}$

• Theory (Eddington, Bethe • Put a tank with  $380 \,\mathrm{m}^3$  of **Chlorine** in Homestake Gold Mine

$$^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e$$

- Requires high-energy  $\nu_e$ produced in other processes
- Expect one atom per six days



### Where Are the Neutrinos?

- Flux Found is less than predictions
- Is Solar Model wrong?
- Is detector model wrong?
- Decided in 2001 by SNO: particle physics





# More Particles, More Charges

| Particle    | Q  | $N_{\rm e}$ | $N_{\mu}$ | $N_{\tau}$ | Mass  |
|-------------|----|-------------|-----------|------------|-------|
| p           | 1  | 0           | 0         | 0          | 935   |
| n           | 0  | 0           | 0         | 0          | 938   |
| e           | -1 | 1           | 0         | 0          | 0.511 |
| $ u_e$      | 0  | 1           | 0         | 0          | ?     |
| $\mu$       | -1 | 0           | 1         | 0          | 106   |
| $ u_{\mu}$  | 0  | 0           | 1         | 0          | ?     |
| au          | -1 | 0           | 0         | 1          | 1777  |
| $ u_{\tau}$ | 0  | 0           | 0         | 1          | ,     |



#### So What?

- Neutrinos change spontaneously en route
- pp process produces  $\nu_e$
- When they arrive, 1/3 are  $\nu_e$
- This implies, in particular, that neutrinos are not massless although light.



#### **Credits**

 SNO: View of the SNO detector after installation of the bottom PMT panels, but before cabling. Photo courtesy of Ernest Orlando Lawrence Berkeley National Laboratory

http://www.sno.phy.queensu.ca/sno/images/
publicity\_photos/index.html

