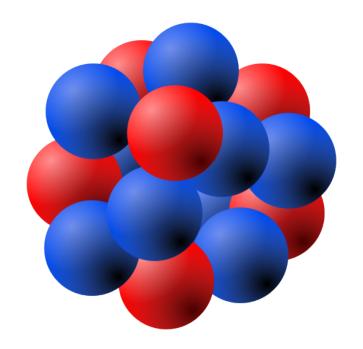
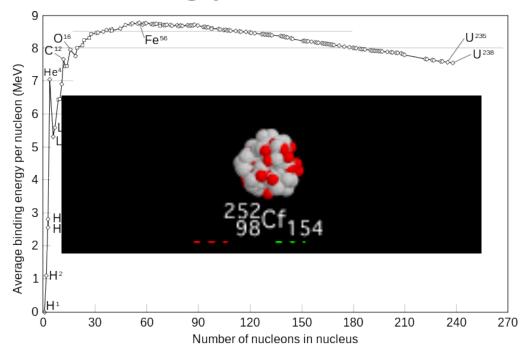
Introductory Astronomy

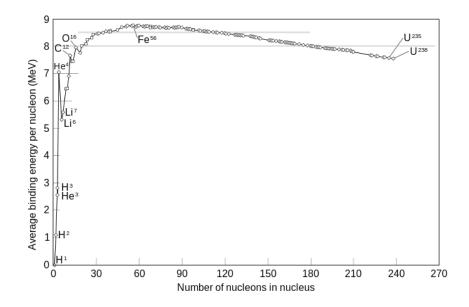

Week 4: Stars

Clip 2: Nuclear Physics

Nuclear Physics


- Why don't nuclei break up under electric repulsion?
- A strong attractive force binds nucleons
- Short-range $\sim 10^{-15}\,\mathrm{m}$ since atoms do not collapse

Nuclear Energy


- Rearranging nucleons recover nuclear energy
- In large nuclei distant nucleons barely attract
- Breaking up fission or α emission recover electromagnetic energy
- Heats planets powers reactors

Fusion?

- In small nuclei, less attractive interactions
- Liberate nuclear energy by fusion to Helium
- Problem: Hydrogen is all protons
- Strong interactions cannot change a proton to a neutron

Weak Interactions

- Something can do this!
- And the inverse
- A free neutron decays in 15min

$$n \to p^+ + e^- + \overline{\nu}_e$$

 Weak nuclear force mediates this decay

Some Questions and Answers

 Can a force change one particle into another?

Yes

- Is a neutron just a tiny Hydrogen atom? No
- What is $\overline{\nu}_e$?
- Are there any rules?

- Conservation Laws
 - Mass-Energy $E=mc^2$
 - Momentum
 - Angular Momentum
 - Electric Charge
 - Electron Number
- Weak interaction: rare

Particle Physics

Particle	Q	N _e
p	1	0
n	0	0
e	-1	1
$ u_e$	0	1
\overline{p}^-	-1	0
\overline{n}	0	0
e^+	1	-1
$\overline{ u}_e$	0	-1
γ	0	0

 Antiparticle: same mass opposite charges

 Discovered as missing energy in n decay

Credits

 Nuclear Animations: LBL/J. Mattis <u>http://ie.lbl.gov/education/glossary/</u> glossaryf.htm

