Introductory Astronomy

Week 3: Solar System(s)

Clip 6: Earth is a Planet

On the Surface

- 71% of Earth covered with water
- Above this is
 atmosphere of (mostly)
 N₂, O₂
- Surface is rocky (Si) crust

Inside Earth

- In molten Earth chemical differentiation. Fe, Ni rich core, Si crust and mantle
- Density 5500 kg/m³
- Pressure, density, temperature increase with depth
- Internal structure studied via seismology

Internal Heat

- Heat generated in interior by
 - Radioactive decay
 - Kelvin-Helmholtz
- Drives convection in mantle
- Crust broken into plates dragged by mantle
- Heat loss $87 \, \mathrm{W/m^2}$

Energy Balance

- Surface temperature nearly constant
- Absorb energy as radiation from Sun, with small contribution from internal heat
- Lose energy by radiation to space
- In equilibrium, these rates are equal

If Earth were Black

$$I_{\rm in} = b_{\odot} \pi R_{\oplus}^2 = \frac{1}{4} L_{\odot} \left(\frac{R_{\oplus}}{D_{\odot}} \right)^2 = \pi R_{\odot}^2 \sigma T_{\odot}^4 \left(\frac{R_{\oplus}}{D_{\odot}} \right)^2$$

$$I_{\rm out} = 4\pi R_{\oplus}^2 F = 4\pi R_{\oplus}^2 \sigma T_{\oplus}^4$$

Set them equal

$$T_{\oplus} = T_{\odot} \left(\frac{R_{\odot}}{2D_{\odot}}\right)^{1/2} = 278K$$

It's Blue?

- Earth reflects about 0.367 of the radiation
- This fraction is Earth's albedo
- So $I_{\rm abs} = (1-a)I_{\rm in} = (1-a)\pi R_{\odot}^2 \sigma T_{\odot}^4 \left(\frac{R_{\oplus}}{D_{\odot}}\right)^2$ • Hence $T_{\oplus} = (1-a)^{1/4} T_{\odot} \left(\frac{R_{\odot}}{2D_{\odot}}\right)^{1/2} = 248K$

• Hence
$$T_{\oplus} = (1-a)^{1/4} T_{\odot} \left(\frac{R_{\odot}}{2D_{\odot}} \right)^{1/2} = 248 K$$

The Greenhouse Effect

- Incoming Sunlight (visible) absorbed by surface through transparent atmosphere
- Radiated light (infrared) absorbed by molecules in atmosphere, heating this.
- Absorbed heat reradiated
- Surface warmer than equivalent blackbody

A Simple Model

- If atmosphere ideally transparent to
 V and absorbs a fraction g of IR
- Surface and atmosphere in equilibrium

• Surface
$$\sigma T_{\oplus}^4 = \sigma T_A^4 + F_{\mathrm{in}}$$

• Atmosphere $2\sigma T_A^4 = g\sigma T_\oplus^4$

$$(1 - g/2)\sigma T_{\oplus}^4 = F_{\text{in}} \quad T_{\oplus} = (1 - g/2)^{-1/4} T_{\text{nogh}}$$

More Greenhouse Effect

• We found
$$T_\oplus=T_\odot\left(rac{(1-a)}{4(1-g/2)}
ight)^{1/4}\left(rac{R_\odot}{D_\odot}
ight)^{1/2}$$

- With a=0.367, g=0.21 we find $T_{\oplus}=292K$
- Atmospheric greenhouse effect crucial to making Earth inhabitable
- Changes in a, g can alter climate drastically

Atmosphere?

- Where did gases and water come from?
- N₂, CO₂ released from minerals in volcanic outgassing
- H₂O imported from asteroid belt during heavy bombardment
- Rain creates oceans which dissolve CO₂ and fix it in sediments – accelerated by emergence of continents
- Plants release O₂ initially taken up by Fe, S

Oxygen Content of Earth's Atmosphere

During the Course of the Last Billion Years

Atmospheric Physics

- Heated surface heats lower atmosphere driving convection
- Differential heating guides convection cells
- Rotation twists vertical motion to global winds

What the Field Does

- Charged particles of Solar wind trapped by field lines into radiation belts
- Solar wind deforms field
- During Solar storms some particles break through to atmosphere – visible by ionization

Summary

- Features of Earth as a planet we know well can serve as benchmarks for comparison
 - Tectonics/Geological Activity
 - Atmosphere/Temperature
 - Magnetic Field
- Geologically active Earth erases past. Less active bodies like Moon provide better data

Credits

- Earth: NASA http://solarsystem.nasa.gov/multimedia/display.cfm?IM ID=9643
- Earth Interior: Wikimedia Commons http://en.wikipedia.org/wiki/File:Earth-crust-cutaway-english.svg
- Earth Density: Wikimedia Commons http://en.wikipedia.org/wiki/File:RadialDensityPREM.jpg
- Mantle Convection: Wikimedia Commons http://en.wikipedia.org/wiki/File:RadialDensityPREM.jpg
- Plates: USGS http://pubs.usgs.gov/publications/text/slabs.html
- Energy Budget: NASA Educational Materials
 http://www.nasa.gov/audience/foreducators/topnav/materials/listbytype/Earths_Energy_Budget.html
- Global Winds: NOAA http://www.srh.noaa.gov/jetstream/global/circ.htm
- Magnetic Field Schematics: USGS http://www.usgs.gov/faq/index.php?action=artikel&cat=11&id=477&artlang=en
- Magnetic Field Model: Dr. Gary A. Glatzmaier Los Alamos National Laboratory U.S. Department of Energy http://www.es.ucsc.edu/~glatz/geodynamo.html
- Radiation Belts: NASA/T. Benesch, J. Carns http://www.nasa.gov/mission_pages/rbsp/news/electric-atmosphere.html
- Magnetosphere Animation: NASA/T. Benesch, J. Carns <u>http://www.nasa.gov/mission_pages/rbsp/news/electric-atmosphere.html</u>
- Aurora: NASA/UC Berkeley http://www.nasa.gov/vision/universe/solarsystem/aurora1110.html

