Introductory Astronomy

Week 3: Solar System(s)

Clip 4: Terrestrial Planet Formation

Dust to Planetesimals

- Grains of dust (solids) collide and adhere
- Larger grains grow to 10⁹
 planetesimals of size 1km
 gravitationally bound
- Keplerian orbits sweep through dust
- Gravitational interaction increasingly important, growth rate ~R⁴ for 100Ky

Protoplanets

- Form hundreds of protoplanets R≤1000km
- Heat of collisions along with radioactivity melts protoplanets
 - Objects this large are spheres: no mountains in the ocean
 - Chemical differentiation: heavier material sinks to core
- Gravity opposed by pressure gradient
- Compression heats core

A Live Protoplanet

Planets

- Larger protoplanets accrete remaining planetesimals
- End with 100 Moon-Mars sized protoplanets in cleared gaps in disk
- Gravitational interactions distort orbits

- Remaining planetesimals ejected
- Collisions lead to merger or ejection leaving large Venus and Earth
- Mercury stripped to core
- Mars does not grow
- Orbits settle to nearcircular in 10-100My

Credits

- 51 Ophiuchi Disk: NASA/JPL-Caltech/T. Pyle (SSC) <u>http://www.nasa.gov/centers/goddard/news/topstory/2009/</u> dust disks.html
- Chemical Differentiation: Smithsonian Museum of Natural History: The Dynamic Earth http://www.mnh.si.edu/earth/text/5 1 4 0.html
- Vesta Rotation: NASA/Dawn Mission
 http://www.nasa.gov/multimedia/videogallery/index.html?
 collection id=65362&media id=152548561
- Planet formation animation: NASA/University of Copenhagen/Lars Buchhave http://www.nasa.gov/multimedia/videogallery/index.html? collection id=14471&media id=146251701

