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General Heuristics examined thus far
    Based on properties of small portions of game tree
    e.g. mobility, focus, goal proximity

Statistical Methods
    Based on Statistical analysis
    Many samples of larger portions of game trees

Methods:
    Monte Carlo Search
    Monte Carlo Tree Search (in particular UCT)

Statistical Methods

In our last lesson, we saw various approaches to incomplete search of game trees. 
In each approach, the evaluation of states is based on local properties of those 
states (i.e. properties that do not depend on the game tree as a whole). In many 
games, there is no correlation between these local properties and the likelihood of 
success in completing a game successfully.  In this lesson, we look at some 
alternative methods based on statistical analysis of game trees. We first examine a 
simple approach based on Monte Carlo game simulation; and we then we look at a 
more sophisticated variation called Monte Carlo Tree Search.
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Basic Idea
  (1) Explore game graph to some level storing states
  (2) Beyond this, explore to end of game
        making random choices for moves of all players,
        not storing states (to limit space growth)
  (3) Assign expected utilities to states by
        summing utilities and dividing by number of trials

Monte Carlo Search

The basic idea of Monte Carlo Search (MCS) is simple.  As with depth-limited 
search, we explore the game tree to some fixed depth. In order to estimate the 
value of a non-terminal state at this depth, we make some probes from that state to 
the end of the game by selecting random moves for the players. We sum up the 
total reward for all such probes and divide by the number of probes to obtain an 
estimated utility for that state. We can then use these expected utilities in 
comparing states and selecting actions.
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Example

As just mentione, the expansion phase of Monte Carlo is the same as depth-limited 
search. The tree is explored until some fixed depth is reached.
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Example

The probe phase of Monte Carlo takes the form of exploration from each of the 
fringe states reached in the expansion phase, for each making random probes 
from there to a terminal state.
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Example

The values produced by each probe are added up and divided by the number of 
probes for each state to obtain an expected utility for that state. These expected 
utilities are the compared to determine the relative utilities of the fringe states 
produced at the end of the expansion phase.



function maxscore (state,level)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  if (level>levels) {return montecarlo(state)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(actions[i],state,level);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

Implementation

A simple implementation of maxscore for Monte Carlo Search is shown here. The 
method is the same as ordinary fixed-depth heuristic search except that the player 
uses the montecarlo routine to evaluate states.



function montecarlo (state)
 {var total = 0;
  for (var i=0; i<count; i++)
      {total = total + depthcharge(state)};
  return total/count}

function depthcharge (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var move = seq();
  for (var i=0; i<roles.length; i++)
      {var options = findlegals(roles[i],state,library);
       var best = randomindex(options.length);
       move[i] = options[best]};
  var newstate = findnexts(move,state,library);
  return depthcharge(newstate)}

Implementation

The montecarlo routine takes a state as argument and returns the average utility 
obtained from a set of n probes (here called depth charges) where n is the value of 
the global parameter count.  The depthcharge subroutine first checks if a state is 
terminal.  If so, it returns that value.  Otherwise, it forms a joint move by taking 
random legal actions of all of the players.  It then simulates the state and calls itself 
recursively and returns the result.  The recursion terminates when the player 
encounters a terminal state.
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Problems
   Optimistic - opponent might not respect probabilities

Problems and Features

One downside on the Monte Carlo method is that it can be optimistic. It assumes 
all players are playing randomly when in fact it is possible that they know exactly 
what they are doing. It does not help if most of the probes from a position in Chess 
lead to success if one leads to a state in which one's player is checkmated and the 
the other player sees this. This issue is addressed to some extent in the UCT 
method described below.
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Problems
   Optimistic - opponent might not respect probabilities
   Does not utilize game structure in any useful way

Problems and Features

Another drawback of the Monte Carlo method is that it does not take into account 
the structure of a game. For example, it may not recognize symmetries or 
independences that could substantially decrease the cost of search. For that 
matter, it does not even recognize boards or pieces or piece count or any other 
features that might form the basis of game-specific heuristics.
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Problems
   Optimistic - opponent might not respect probabilities
   Does not utilize game structure in any useful way

Features
    Fast because no search
    Small space because nothing stored in probes 

Problems and Features

Even with these drawbacks, the Monte Carlo method is quite powerful.  It is fast 
and consumes little space.  And it is surprisingly effective.  Prior to its use, general 
game players were at best interesting novelties. Once players started using Monte 
Carlo, the improvement in game play was dramatic. Suddenly, automated general 
game players began to perform at a high level. Using a variation of this technique, 
CadiaPlayer won the International General Game Playing competition 3 times. 
Almost every general game playing program today includes some version of Monte 
Carlo Search.
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Monte Carlo Tree Search
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Monte Carlo Tree Search (MCTS) is a search method that 
relies on random probes to estimate state values.  Similar to 
MCS but different in an important way.

Similarity:
    Both build up game tree incrementally
    Both use random probes to estimate state values

Main Difference:
   MCS expands tree uniformly
   MCTS expands nonuniformly based on statistics

Basic Idea

Monte Carlo Tree Search (MCTS) is a more sophisticated variation of Monte Carlo 
Search that tackles some of the weaknesses of the simpler method. Both methods 
build up a game tree incrementally and both rely on random simulation of games; 
but they differ on the way the tree is expanded. MCS uniformly expands the partial 
game tree during its expansion phase and then simulates games starting at states 
on the fringe of the expanded tree. MCTS uses a more sophisticated approach in 
which the processes of expansion and simulation are interleaved.



Selection
    Player selects an unexpanded node of the tree
    chooses based on visit counts and stored utilities

Expansion
    successors of the selected state added to the tree

Simulation
    players simulates the game from selected node to end
    chooses actions at random at each node along the way

Backpropagation
    Value propagated back to the root node
    visit counts and utilities are updated accordingly

Monte Carlo Tree Search

MCTS processes the game tree in cycles of four steps each. After each cycle is 
complete, it repeats these steps so long as there is time remaining, at which point 
it selects an action based on the statistics it has accumulated to that point.
On the selection step, the player traverses the tree produced thus far to select an 
unexpanded node of the tree, making choices based on visit counts and utilities 
stored on nodes in the tree.
During expansion, the successors of the state chosen during the selection phase 
are added to the tree.
The player simulates the game starting at the node chosen during the selection 
phase. In so doing, it chooses actions at random until a terminal state is 
encountered.
Finally, the value of the terminal state is propagated back along the path to the root 
node and the visit counts and utilities are updated accordingly.



function select (node)
 {if (node.visits==0) {return node};
  for (var i=0; i<node.children.length; i++)
      {if (node.children[i].visits==0)
          {return node.children[i]}};
  score = 0;
  result = node;
  for (var i=0; i<node.children.length; i++)
      {var newscore = selectfn(node.children[i]);
       if (newscore>score)
          {score = newscore; result=node.children[i]}};
  return select(result)}

Selection

An implementation of the MCTS selection procedure is shown below. If the initial 
state has not been seen (i.e. it has 0 visits), then it is selected. Otherwise, the 
procedure searches the successors of the node. If any have not been seen, then 
one of the unseen nodes is selected. If all of the successors have been seen 
before, then the procedure uses the selectfn subroutine to find values for those 
nodes and chooses the one that maximizes this value.



Upper Confidence Bounds on Trees (UCT)

vi + sqrt(log(np) / ni)

Implementation

  function selectfn(node)
   {var vi = node.utility;
    var np = node.visits;
    var ni = node.parent.visits;
    return vi + Math.sqrt(Math.log(np)/ni)}

Selection Function

One of the most common ways of implementing selectfn is UCT (Upper 
Confidence bounds applied to Trees). A typical UCT formula is vi + sqrt(log np / ni). 
vi here is the average reward for that state. np is the total number of times the 
state's parent was picked. ni is the number of times this particular state was 
picked.  Of course, there are other ways that one can evaluate states. The formula 
here is based on a combination of exploitation and exploration. Exploitation here 
means the use of results on previously explored states (the first term). Exploration 
means expansion of as-yet unexplored states (the second term).



function expand (node)
 {var actions = findlegals(role,node.state,ruleset);
  for (var i=0; i<actions.length; i++)
      {var newstate = findnexts([actions[i]],state,ruleset);
       var newnode = makenode(newstate,0,0,node,[]);
       node.children[node.children.length]=newnode};
  return true}

Expansion

Expansion in MCTS is basically the same as that for MCS. An implementation for a 
single player game is shown below.  On large games with large time bounds, it is 
possible that the space consumed in this process could exceed the memory 
available to a player. In such cases, it is common to use a variation of the selection 
procedure in which no additional states are added to the tree. Instead, the player 
continues doing simulations and updating its numbers for already-known states.



function simulate (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var move = seq();
  for (var i=0; i<roles.length; i++)
      {var options = findlegals(roles[i],state,library);
       var best = randomindex(options.length);
       move[i] = options[best]};
  var newstate = findnexts(move,state,library);
  return depthcharge(newstate)}

Simulation

Simulation for MCTS is essentially the same as simulation for MCS. So the same 
procedure can be used for both methods.



function backpropagate (node,score)
 {node.visits = node.visits+1;
  node.utility = node.utility+score;
  if (node.parent) {backpropagate(node.parent,score)};
  return true}

Backpropagation

Backpropagation is easy. At the selected node, the method records a visit count 
and a utility. The visit count in this case is 1 since it was a newly processed state. 
The utility is the result of the simulation. The procedure then propagates to 
ancestors of this node. In the case of a single player game, the procedure adds 1 
to the visit count of each ancestor and augments its total utility by the utility 
obtained on the latest simulation. In the case of a multiple player game, the 
propagated value is the minimum of the values for all opponent actions.



23



24


