
General Game Playing

Statistical Methods

3

General Heuristics examined thus far
 Based on properties of small portions of game tree
 e.g. mobility, focus, goal proximity

Statistical Methods
 Based on Statistical analysis
 Many samples of larger portions of game trees

Methods:
 Monte Carlo Search
 Monte Carlo Tree Search (in particular UCT)

Statistical Methods

In our last lesson, we saw various approaches to incomplete search of game trees.
In each approach, the evaluation of states is based on local properties of those
states (i.e. properties that do not depend on the game tree as a whole). In many
games, there is no correlation between these local properties and the likelihood of
success in completing a game successfully. In this lesson, we look at some
alternative methods based on statistical analysis of game trees. We first examine a
simple approach based on Monte Carlo game simulation; and we then we look at a
more sophisticated variation called Monte Carlo Tree Search.

4

Basic Idea
 (1) Explore game graph to some level storing states
 (2) Beyond this, explore to end of game
 making random choices for moves of all players,
 not storing states (to limit space growth)
 (3) Assign expected utilities to states by
 summing utilities and dividing by number of trials

Monte Carlo Search

The basic idea of Monte Carlo Search (MCS) is simple. As with depth-limited
search, we explore the game tree to some fixed depth. In order to estimate the
value of a non-terminal state at this depth, we make some probes from that state to
the end of the game by selecting random moves for the players. We sum up the
total reward for all such probes and divide by the number of probes to obtain an
estimated utility for that state. We can then use these expected utilities in
comparing states and selecting actions.

5

Example

As just mentione, the expansion phase of Monte Carlo is the same as depth-limited
search. The tree is explored until some fixed depth is reached.

6

100 0 0 0 0 100 100 0 0 0 0 0 100 0 100 100

Example

The probe phase of Monte Carlo takes the form of exploration from each of the
fringe states reached in the expansion phase, for each making random probes
from there to a terminal state.

7

25 50 0 75

100 0 0 0 0 100 100 0 0 0 0 0 100 0 100 100

Example

The values produced by each probe are added up and divided by the number of
probes for each state to obtain an expected utility for that state. These expected
utilities are the compared to determine the relative utilities of the fringe states
produced at the end of the expansion phase.

function maxscore (state,level)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset)};
 if (level>levels) {return montecarlo(state)};
 var actions = findlegals(role,state,ruleset);
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var result = minscore(actions[i],state,level);
 if (result==100) {return 100};
 if (result>score) {score = result}};
 return score}

Implementation

A simple implementation of maxscore for Monte Carlo Search is shown here. The
method is the same as ordinary fixed-depth heuristic search except that the player
uses the montecarlo routine to evaluate states.

function montecarlo (state)
 {var total = 0;
 for (var i=0; i<count; i++)
 {total = total + depthcharge(state)};
 return total/count}

function depthcharge (state)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset)};
 var move = seq();
 for (var i=0; i<roles.length; i++)
 {var options = findlegals(roles[i],state,library);
 var best = randomindex(options.length);
 move[i] = options[best]};
 var newstate = findnexts(move,state,library);
 return depthcharge(newstate)}

Implementation

The montecarlo routine takes a state as argument and returns the average utility
obtained from a set of n probes (here called depth charges) where n is the value of
the global parameter count. The depthcharge subroutine first checks if a state is
terminal. If so, it returns that value. Otherwise, it forms a joint move by taking
random legal actions of all of the players. It then simulates the state and calls itself
recursively and returns the result. The recursion terminates when the player
encounters a terminal state.

10

Problems
 Optimistic - opponent might not respect probabilities

Problems and Features

One downside on the Monte Carlo method is that it can be optimistic. It assumes
all players are playing randomly when in fact it is possible that they know exactly
what they are doing. It does not help if most of the probes from a position in Chess
lead to success if one leads to a state in which one's player is checkmated and the
the other player sees this. This issue is addressed to some extent in the UCT
method described below.

11

Problems
 Optimistic - opponent might not respect probabilities
 Does not utilize game structure in any useful way

Problems and Features

Another drawback of the Monte Carlo method is that it does not take into account
the structure of a game. For example, it may not recognize symmetries or
independences that could substantially decrease the cost of search. For that
matter, it does not even recognize boards or pieces or piece count or any other
features that might form the basis of game-specific heuristics.

12

Problems
 Optimistic - opponent might not respect probabilities
 Does not utilize game structure in any useful way

Features
 Fast because no search
 Small space because nothing stored in probes

Problems and Features

Even with these drawbacks, the Monte Carlo method is quite powerful. It is fast
and consumes little space. And it is surprisingly effective. Prior to its use, general
game players were at best interesting novelties. Once players started using Monte
Carlo, the improvement in game play was dramatic. Suddenly, automated general
game players began to perform at a high level. Using a variation of this technique,
CadiaPlayer won the International General Game Playing competition 3 times.
Almost every general game playing program today includes some version of Monte
Carlo Search.

13

14

Monte Carlo Tree Search

16

Monte Carlo Tree Search (MCTS) is a search method that
relies on random probes to estimate state values. Similar to
MCS but different in an important way.

Similarity:
 Both build up game tree incrementally
 Both use random probes to estimate state values

Main Difference:
 MCS expands tree uniformly
 MCTS expands nonuniformly based on statistics

Basic Idea

Monte Carlo Tree Search (MCTS) is a more sophisticated variation of Monte Carlo
Search that tackles some of the weaknesses of the simpler method. Both methods
build up a game tree incrementally and both rely on random simulation of games;
but they differ on the way the tree is expanded. MCS uniformly expands the partial
game tree during its expansion phase and then simulates games starting at states
on the fringe of the expanded tree. MCTS uses a more sophisticated approach in
which the processes of expansion and simulation are interleaved.

Selection
 Player selects an unexpanded node of the tree
 chooses based on visit counts and stored utilities

Expansion
 successors of the selected state added to the tree

Simulation
 players simulates the game from selected node to end
 chooses actions at random at each node along the way

Backpropagation
 Value propagated back to the root node
 visit counts and utilities are updated accordingly

Monte Carlo Tree Search

MCTS processes the game tree in cycles of four steps each. After each cycle is
complete, it repeats these steps so long as there is time remaining, at which point
it selects an action based on the statistics it has accumulated to that point.
On the selection step, the player traverses the tree produced thus far to select an
unexpanded node of the tree, making choices based on visit counts and utilities
stored on nodes in the tree.
During expansion, the successors of the state chosen during the selection phase
are added to the tree.
The player simulates the game starting at the node chosen during the selection
phase. In so doing, it chooses actions at random until a terminal state is
encountered.
Finally, the value of the terminal state is propagated back along the path to the root
node and the visit counts and utilities are updated accordingly.

function select (node)
 {if (node.visits==0) {return node};
 for (var i=0; i<node.children.length; i++)
 {if (node.children[i].visits==0)
 {return node.children[i]}};
 score = 0;
 result = node;
 for (var i=0; i<node.children.length; i++)
 {var newscore = selectfn(node.children[i]);
 if (newscore>score)
 {score = newscore; result=node.children[i]}};
 return select(result)}

Selection

An implementation of the MCTS selection procedure is shown below. If the initial
state has not been seen (i.e. it has 0 visits), then it is selected. Otherwise, the
procedure searches the successors of the node. If any have not been seen, then
one of the unseen nodes is selected. If all of the successors have been seen
before, then the procedure uses the selectfn subroutine to find values for those
nodes and chooses the one that maximizes this value.

Upper Confidence Bounds on Trees (UCT)

vi + sqrt(log(np) / ni)

Implementation

 function selectfn(node)
 {var vi = node.utility;
 var np = node.visits;
 var ni = node.parent.visits;
 return vi + Math.sqrt(Math.log(np)/ni)}

Selection Function

One of the most common ways of implementing selectfn is UCT (Upper
Confidence bounds applied to Trees). A typical UCT formula is vi + sqrt(log np / ni).
vi here is the average reward for that state. np is the total number of times the
state's parent was picked. ni is the number of times this particular state was
picked. Of course, there are other ways that one can evaluate states. The formula
here is based on a combination of exploitation and exploration. Exploitation here
means the use of results on previously explored states (the first term). Exploration
means expansion of as-yet unexplored states (the second term).

function expand (node)
 {var actions = findlegals(role,node.state,ruleset);
 for (var i=0; i<actions.length; i++)
 {var newstate = findnexts([actions[i]],state,ruleset);
 var newnode = makenode(newstate,0,0,node,[]);
 node.children[node.children.length]=newnode};
 return true}

Expansion

Expansion in MCTS is basically the same as that for MCS. An implementation for a
single player game is shown below. On large games with large time bounds, it is
possible that the space consumed in this process could exceed the memory
available to a player. In such cases, it is common to use a variation of the selection
procedure in which no additional states are added to the tree. Instead, the player
continues doing simulations and updating its numbers for already-known states.

function simulate (state)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset)};
 var move = seq();
 for (var i=0; i<roles.length; i++)
 {var options = findlegals(roles[i],state,library);
 var best = randomindex(options.length);
 move[i] = options[best]};
 var newstate = findnexts(move,state,library);
 return depthcharge(newstate)}

Simulation

Simulation for MCTS is essentially the same as simulation for MCS. So the same
procedure can be used for both methods.

function backpropagate (node,score)
 {node.visits = node.visits+1;
 node.utility = node.utility+score;
 if (node.parent) {backpropagate(node.parent,score)};
 return true}

Backpropagation

Backpropagation is easy. At the selected node, the method records a visit count
and a utility. The visit count in this case is 1 since it was a newly processed state.
The utility is the result of the simulation. The procedure then propagates to
ancestors of this node. In the case of a single player game, the procedure adds 1
to the visit count of each ancestor and augments its total utility by the utility
obtained on the latest simulation. In the case of a multiple player game, the
propagated value is the minimum of the values for all opponent actions.

23

24

