
General Game Playing

Heuristic Search

Complete Search
 guarantees optimal play
 works only for games with small game trees

Incomplete search
 Depth-Limited Search

 Fixed-Depth Heuristic Search
 Variable-Depth Heuristic Search

 Statistical Methods (next lesson)

Search

In the last two lessons, we looked at approaches to playing *small*
games, i.e. games for which there is sufficient time for a complete search
of the game tree. Unfortunately, most games are not so small, and
complete search is usually impractical. In this lesson, we look at a variety
of techniques for incomplete search. We begin with simple Depth-Limited
Search. After that, we turn to two variations, first fixed-depth heuristic
search and then variable depth heuristic search. In the next lesson, we
examine statistical methods for dealing with incomplete search.

Idea - search tree to some depth-limit
 for terminal nodes, return goal values
 for non-terminal nodes, return 0

Legal and random players are degenerate depth-limited
search procedures with depth 0.

Depth-Limited Search

The simplest way of dealing with games for which there is insufficient
time to search the entire game tree is to limit the search in some way. In
depth-limited search, the player explores the game tree to a given depth.
A legal player is a special case of depth-limited search where the depth is
effectively zero.

function maxscore (state,level)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset);
 if (level>limit) {return 0};
 var actions = findlegals(role,state,ruleset);
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var result = minscore(actions[i],state,level);
 if (result>score) {score = result}};
 return score}

function minscore (action,state,level)
 {var actions = findlegals(opponent,state,ruleset);
 var score = 100;
 for (var i=0; i<actions.length; i++)
 {var move = [action, actions[i]];
 var newstate = findnexts(move,state,ruleset);
 var result = maxscore(newstate,level+1);
 if (result<score) {score = result}};
 return score}

Implementation

The implementation of depth-limited search is a small variation of the
implementation of the minimax player described in the preceding lesson.
The only difference is the addition of a level parameter to maxscore and
minscore. This parameter is incremented in minscore on each recursive
call in maxscore, as we see here at the botton. If the level of any
particular non-terminal node in the game tree exceeds a pre-determined
depth limit, rather than expanding, maxscore simply returns 0, a
conservative lower bound on the utility of the corresponding state.

50 80

0 0 0 0 100 0 80 0

Example

Here is an example of Depth-Limited Search. By limiting the depth, the
player does not need to explore the entire tree. Yet it is still able to find a
solution that nets it 80 points. Not as good as 100 points but better than
50 and a lot better than 0.

0 0 0 0

100 100 100 100 0 0 0 0 0 0 0 0 100 100 100 100

Problem - Insufficient Depth

The most obvious problem with depth-limited search is that the
conservative estimate of 0 for non-terminal states is not very informative.
In the worst case, none of the states at a given depth may be terminal, in
which case the search provides no real value. We discuss some ways of
dealing with this problem in the next segment and the next lesson.

10 20 30 40 50 60 70 80 0 0 0 0

Problem - Excessive Depth

100

There is also the opposite problem. The depth may be set at too great a
level, forcing the player to search deep into the tree before finding an
answer at a shallow level. This problem is serious if along the way the
player runs out of time before encountering the shallow solution.

Explore all nodes to level 1
Explore all nodes at level 2
Explore all nodes at level 3
And so forth

While time permits
Choose action that gives maximal value

Breadth-First Search

One solution to this problem is to use breadth-first search rather than
depth-first search.

Breadth-First Search

We start off at the root.

Breadth-First Search

Expand one level, checking each node for termination.

Breadth-First Search

100

Halt when encounter a terminal state with a sufficiently large value. If
time expires before this happens, we simply choose a branch that leads
to node with highest terminal value. Breadth-first search has the merit
that it finds the shortest path to a maximal goal. It has the disadvantage
that it consumes space that is proportional to the size of the expanded
game tree, which can be exponential in depth. Using this approach, in
some cases, a player can run out of memory and crash.

Use depth-limited search to explore entire tree to level 1
Use depth-limited search to explore entire tree to level 2
Use depth-limited search to explore entire tree to level 3
And so forth

While time permits
Choose action that gives maximal value

Iterative Deepening

An alternative solution to this problem is to use an iterative deepening
approach to game tree exploration, exploring the entire game tree
repeatedly at increasing depths until time runs out. We search the tree to
depth 1, then we search the entire tree to depth 2, then to depth 3, and so
forth, using depth-limited search on each iteration.

Advantages
 requires storage linear to depth rather than exponential
 still finds shortest path to an optimal solution

Disadvantages (?)
 Repeated work
 but
 Cost only a constant factor more than depth-first search

 Why? Tree is growing exponentially, so fringe of tree
 and size of tree above fringe are approximately same

Advantages and Disadvantages

The primary advantage of this approach is that it requires space that is
linear in the depth of the explored portion of the tree. The entire subtree
does not need to be stored. Yet it still finds the shortest path to an
optimal solution.

The downside is that portions of the tree may be explored multiple times.
However, as usual with iterative deepening, this waste is usually bounded
by a small constant factor. Why? The size of the fringe of the tree is
approximately the same as the size of the tree above the fringe. So
searching it each additional time requires only the same amount of work
as exploring the fringe at the next level. This means extra work but it is
bounded by a constant factor.

Heuristic Search

Alternative is to arbitrary 0 value for non-terminal states
is to apply a heuristic evaluation function to fringe states
(whether terminal or non-terminal).

Heuristic Search

One way of dealing with the conservative nature of depth-limited search
is to improve upon the arbitrary 0 value returned for nonterminal states. In
heuristic search, this is accomplished by applying a heuristic evaluation
function to non-terminal states. Such functions are based on features of
states, and so they can be computed without examining entire game tree.

Depth-Limited Search:
function maxscore (state,level)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset);
 if (level>limit) {return 0};
 var actions = findlegals(role,state,ruleset);
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var result = minscore(actions[i],state,level);
 if (result>score) {score = result}};
 return score}

Heuristic Depth-Limited Search
function maxscore (state,level)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset);
 if (level>limit) {return evalfun(state)};
 var actions = findlegals(role,state,ruleset);
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var result = minscore(actions[i],state,level);
 if (result>score) {score = result}};
 return score}

Implementation

The implementation of Fixed-depth Heuristic Search is easy. At the top
here, we have the implementation of depth-limited search that we saw
earlier. At the bottom, we have an implementation of Heuristic fixed-
depth search. The only difference is that we have replaced the default
value of 0 with the result of calling the evaluation subroutine evalfun on
the state being considered whenever the depth limit is exceeded. The
tough part of the implementation is figuring out how to evaluate non-
terminal states.

Chess examples:
 Piece count
 Board control

Comments
 Not necessarily successful
 Usually work on specific games
 However, there are some interesting general heuristics

Evaluation Functions

Fortunately, examples of heuristic functions abound. For example, in chess, we often use piece
count to compare states, with the idea that, in the absence of immediate threats, having more
material is better than having less material. Similarly, we sometimes use board control, with the
idea that having control of the center of the board is more valuable than controlling the edges or
corners.
The downside of using heuristic functions is that they are not necessarily guaranteed to be
successful. They may work in many cases but they can occasionally fail, as happens, for
example in chess, when a player is checkmated even though he has more material and a better
board control. Still, games often admit heuristics that are useful in the sense that they work more
often than not.
While, for specific games, such as chess, programmers are able to build in evaluation functions
in advance, this is unfortunately not possible for general game playing, since the rules of the
game are not known in advance. Rather, the game *player* must analyze the game itself in order
to find a useful evaluation function. In an upcoming lesson, we discuss how to find such
heuristics.
That said, there are some heuristics for game playing that have arguable merit across all games.
In this section, we examine some of these heuristics. We also show how to build game players
that utilize these general heuristics.

Mobility is a measure of the number of things a player
can do.

Basis - number of actions in a state or number of states
reachable from that state.

Horizon - current state or n moves away.

Example - Mobility

Mobility is one such heuristic. Mobility is a measure of the number of
things a player can do. This could be the number of actions available in
the given state or n steps away from the given state. Or it could be the
number of states reachable within n steps. (This could be different from
the number of actions since different action sequences can lead to the
same state.)

function mobility (state)
 {var actions = findlegals(role,state,ruleset);
 var feasibles = findinputs(role,ruleset);
 return (actions.length/feasibles.length * 100)}

Implementation

A simple implementation of the mobility heuristic is shown here. The
method simply computes the number of actions that are legal in the given
state and returns as value the percentage of all possible actions
represented by this set of legal actions.

Focus is a measure of the narrowness of the search
space. It is the inverse of mobility.

Sometimes it is good to focus to cut down on search
space.

Often better to restrict opponents’ moves while
keeping one’s own options open.

Example - Focus

Focus is another heuristic. Focus is a measure of the narrowness of the
search space. It is the inverse of mobility. Sometimes it is good to focus to
cut down on search space. Often, it is better to restrict opponents' moves
while keeping one's own options open.

function focus (state)
 {var actions = findlegals(role,state,ruleset);
 var feasibles = findinputs(role,ruleset);
 return (100 - actions.length/feasibles.length * 100)}

Implementation

A simple implementation of the focus heuristic is shown here. It is the
dual of mobility. Again we divide the number of legal actions by the
number of all possible actions; but, in this case instead of returning that
value, we return the result of subtracting it from 100.

Goal proximity is a measure of the proximity of a state
to a goal state.

Number of propositions shared between state and
some goal state. Problem - difficult to find /
enumerate terminal states.

Use goal value of non-terminal state as indicator of
proximity to terminal state with high goal value.
Problem - there may be no correlation (e.g. chess
checkmates). Good news: Sometimes possible to find
and prove a correlation.

Goal Proximity

Goal proximity is a measure of how similar a given state is to desirable
terminal state. There are various ways this can be computed.
One common method is to count how many propositions are true in the
current state are also true in a terminal state with adequate utility. The
difficulty of implementing this method is obtaining a set of desirable
terminal states with which the current state can be compared.
Another alternative is to use the goal value of a state as a measure of
progress toward the goal, with the idea being that the goal value of a non-
terminal state, the closer the actual goal. Of course, this is not always
true. However, in many games the goal values are indeed monotonic,
meaning that values do increase with proximity to the goal. Moreover, it is
sometimes possible to compute this by a simple examination of the game
description, using methods we describe in later lessons.

Definition

f(s) = w1× f1(s) + … + wn × fn(s)

Examples:
 Mobility
 Focus
 Goal proximity

Many players estimate weights by experimentation
during the start clock.

Weighted Linear Combinations

None of these heuristics is guaranteed to work in all games, but all have
strengths in some games. To deal with this fact, some designers of GGP
players have opted to use a weighted combination of heuristics in place
of a single heuristic. The equation shown here is a typical formula. Each fi
here is a heuristic function (such as mobility or focus or goal proximity),
and wi is the corresponding weight.
Of course, there is no way of knowing in advance what the weights
should be, but sometimes playing a few instances of a game (e.g. during
the start clock) can suggest weights for the various heuristics.

Horizon Problem
 white gains a rook but loses queen or loses game
 example - sequence of captures in chess

Horizon Problem

As mentioned earlier, depth-limited search is not guaranteed to succeed
in all cases. Failing is never good. However, it is particularly
embarrassing in situations where just a little more search would have
revealed significant changes in the player's circumstances, for better or
worse. In the research literature, this is often called a horizon problem.
As an example of a horizon problem in Chess, consider a situation where
the players are exchanging piece, with white capturing black's pieces and
vice versa. Now imagine cutting off the search at an arbitrary depth, say 2
captures each. At this point, white might believe it has an advantage
since it has more material. However, if the very next move by black is a
capture of the white queen, this evaluation could be misleading.

Idea - use expansion function in place of fixed depth as
a termination criterion.

Variable Depth Search

A common solution to this problem is to forego the fixed depth limit in
favor of one that is itself dependent on the current state of affairs,
searching deeper in some areas of the tree and searching less deep in
other areas.

function maxscore (state,level)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset);
 if (!expfun(state,level)) {return evalfun(state)};
 var actions = findlegals(role,state,ruleset);
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var result = minscore(actions[i],state,level);
 if (result>score) {score = result}};
 return score}

Variable-Depth Heuristic Search

Here is an implementation of variable depth heuristic search. This version
of maxscore differs from the fixed-depth version in that there is a
subroutine (here called expfn) that is called to determine whether the
current state and/or depth meets an appropriate condition. If so, the tree
expansion continues; otherwise, the player terminates the expansion and
simply returns the result of applying its evaluation function to the non-
terminal state.

Example - Quiescence
 Evaluation function values changing slowly

Expansion Functions

The challenge in variable-depth heuristic search is finding an appropriate
definition for expfn. One common technique is to focus on differentials of
heuristic functions. For example, a significant change in mobility or goal
proximity might indicate that further search is warranted whereas actions
that do not lead to dramatic changes might be less important. In Chess,
a good example of this is to look for quiescence, i.e. a state in which
there are no immediate captures.

29

30

