
General Game Playing



Heuristic Search



Complete Search
    guarantees optimal play
    works only for games with small game trees

Incomplete search
    Depth-Limited Search

    Fixed-Depth Heuristic Search
    Variable-Depth Heuristic Search

    Statistical Methods (next lesson)

Search

In the last two lessons, we looked at approaches to playing *small* 
games, i.e. games for which there is sufficient time for a complete search 
of the game tree. Unfortunately, most games are not so small, and 
complete search is usually impractical. In this lesson, we look at a variety 
of techniques for incomplete search. We begin with simple Depth-Limited 
Search.  After that, we turn to two variations, first fixed-depth heuristic 
search and then variable depth heuristic search. In the next lesson, we 
examine statistical methods for dealing with incomplete search.



Idea - search tree to some depth-limit
    for terminal nodes, return goal values
    for non-terminal nodes, return 0

Legal and random players are degenerate depth-limited 
search procedures with depth 0.

Depth-Limited Search

The simplest way of dealing with games for which there is insufficient 
time to search the entire game tree is to limit the search in some way. In 
depth-limited search, the player explores the game tree to a given depth. 
A legal player is a special case of depth-limited search where the depth is 
effectively zero.



function maxscore (state,level)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset);
  if (level>limit) {return 0};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(actions[i],state,level);
       if (result>score) {score = result}};
  return score} 

function minscore (action,state,level)
 {var actions = findlegals(opponent,state,ruleset);
  var score = 100;
  for (var i=0; i<actions.length; i++)
      {var move = [action, actions[i]];
       var newstate = findnexts(move,state,ruleset);
       var result = maxscore(newstate,level+1);
       if (result<score) {score = result}};
  return score} 

Implementation

The implementation of depth-limited search is a small variation of the 
implementation of the minimax player described in the preceding lesson. 
The only difference is the addition of a level parameter to maxscore and 
minscore. This parameter is incremented in minscore on each recursive 
call in maxscore, as we see here at the botton.  If the level of any 
particular non-terminal node in the game tree exceeds a pre-determined 
depth limit, rather than expanding, maxscore simply returns 0, a 
conservative lower bound on the utility of the corresponding state.



50 80

0 0 0 0 100 0 80 0

Example

Here is an example of Depth-Limited Search.  By limiting the depth, the 
player does not need to explore the entire tree.  Yet it is still able to find a 
solution that nets it 80 points.  Not as good as 100 points but better than 
50 and a lot better than 0.



0 0 0 0

100 100 100 100 0 0 0 0 0 0 0 0 100 100 100 100

Problem - Insufficient Depth

The most obvious problem with depth-limited search is that the 
conservative estimate of 0 for non-terminal states is not very informative. 
In the worst case, none of the states at a given depth may be terminal, in 
which case the search provides no real value. We discuss some ways of 
dealing with this problem in the next segment and the next lesson.
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Problem - Excessive Depth

100

There is also the opposite problem.  The depth may be set at too great a 
level, forcing the player to search deep into the tree before finding an 
answer at a shallow level.  This problem is serious if along the way the 
player runs out of time before encountering the shallow solution. 



Explore all nodes to level 1
Explore all nodes at level 2
Explore all nodes at level 3
And so forth

While time permits
Choose action that gives maximal value

Breadth-First Search

One solution to this problem is to use breadth-first search rather than 
depth-first search.



Breadth-First Search

We start off at the root.



Breadth-First Search

Expand one level, checking each node for termination.



Breadth-First Search

100

Halt when encounter a terminal state with a sufficiently large value.  If 
time expires before this happens, we simply choose a branch that leads 
to node with highest terminal value.  Breadth-first search has the merit 
that it finds the shortest path to a maximal goal.  It has the disadvantage 
that it consumes space that is proportional to the size of the expanded 
game tree, which can be exponential in depth.  Using this approach, in 
some cases, a player can run out of memory and crash.



Use depth-limited search to explore entire tree to level 1
Use depth-limited search to explore entire tree to level 2
Use depth-limited search to explore entire tree to level 3
And so forth

While time permits
Choose action that gives maximal value

Iterative Deepening

An alternative solution to this problem is to use an iterative deepening 
approach to game tree exploration, exploring the entire game tree 
repeatedly at increasing depths until time runs out.  We search the tree to 
depth 1, then we search the entire tree to depth 2, then to depth 3, and so 
forth, using depth-limited search on each iteration.



Advantages
    requires storage linear to depth rather than exponential
    still finds shortest path to an optimal solution

Disadvantages (?)
    Repeated work
            but
    Cost only a constant factor more than depth-first search

   Why?  Tree is growing exponentially, so fringe of tree
   and size of tree above fringe are approximately same
    

Advantages and Disadvantages

The primary advantage of this approach is that it requires space that is 
linear in the depth of the explored portion of the tree.  The entire subtree 
does not need to be stored.  Yet it still finds the shortest path to an 
optimal solution.

The downside is that portions of the tree may be explored multiple times. 
However, as usual with iterative deepening, this waste is usually bounded 
by a small constant factor.  Why?  The size of the fringe of the tree is 
approximately the same as the size of the tree above the fringe.  So 
searching it each additional time requires only the same amount of work 
as exploring the fringe at the next level.  This means extra work but it is 
bounded by a constant factor.



Heuristic Search



Alternative is to arbitrary 0 value for non-terminal states 
is to apply a heuristic evaluation function to fringe states 
(whether terminal or non-terminal).

Heuristic Search

One way of dealing with the conservative nature of depth-limited search 
is to improve upon the arbitrary 0 value returned for nonterminal states. In 
heuristic search, this is accomplished by applying a heuristic evaluation 
function to non-terminal states. Such functions are based on features of 
states, and so they can be computed without examining entire game tree.



Depth-Limited Search:
function maxscore (state,level)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset);
  if (level>limit) {return 0};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(actions[i],state,level);
       if (result>score) {score = result}};
  return score} 

Heuristic Depth-Limited Search
function maxscore (state,level)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset);
  if (level>limit) {return evalfun(state)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(actions[i],state,level);
       if (result>score) {score = result}};
  return score}

Implementation

The implementation of Fixed-depth Heuristic Search is easy.  At the top 
here, we have the implementation of depth-limited search that we saw 
earlier.  At the bottom, we have an implementation of Heuristic fixed-
depth search.  The only difference is that we have replaced the default 
value of 0 with the result of calling the evaluation subroutine evalfun on 
the state being considered whenever the depth limit is exceeded.  The 
tough part of the implementation is figuring out how to evaluate non-
terminal states.



Chess examples:
    Piece count
    Board control

Comments
    Not necessarily successful
    Usually work on specific games
    However, there are some interesting general heuristics

Evaluation Functions

Fortunately, examples of heuristic functions abound. For example, in chess, we often use piece 
count to compare states, with the idea that, in the absence of immediate threats, having more 
material is better than having less material. Similarly, we sometimes use board control, with the 
idea that having control of the center of the board is more valuable than controlling the edges or 
corners. 
The downside of using heuristic functions is that they are not necessarily guaranteed to be 
successful. They may work in many cases but they can occasionally fail, as happens, for 
example in chess, when a player is checkmated even though he has more material and a better 
board control. Still, games often admit heuristics that are useful in the sense that they work more 
often than not.
While, for specific games, such as chess, programmers are able to build in evaluation functions 
in advance, this is unfortunately not possible for general game playing, since the rules of the 
game are not known in advance. Rather, the game *player* must analyze the game itself in order 
to find a useful evaluation function. In an upcoming lesson, we discuss how to find such 
heuristics.
That said, there are some heuristics for game playing that have arguable merit across all games. 
In this section, we examine some of these heuristics. We also show how to build game players 
that utilize these general heuristics.



Mobility is a measure of the number of things a player 
can do.

Basis - number of actions in a state or number of states 
reachable from that state.

Horizon - current state or n moves away.

Example - Mobility

Mobility is one such heuristic.  Mobility is a measure of the number of 
things a player can do. This could be the number of actions available in 
the given state or n steps away from the given state. Or it could be the 
number of states reachable within n steps. (This could be different from 
the number of actions since different action sequences can lead to the 
same state.)



function mobility (state)
 {var actions = findlegals(role,state,ruleset);
  var feasibles = findinputs(role,ruleset);
  return (actions.length/feasibles.length * 100)}

Implementation

A simple implementation of the mobility heuristic is shown here. The 
method simply computes the number of actions that are legal in the given 
state and returns as value the percentage of all possible actions 
represented by this set of legal actions.



Focus is a measure of the narrowness of the search 
space.  It is the inverse of mobility.

Sometimes it is good to focus to cut down on search 
space.

Often better to restrict opponents’ moves while 
keeping one’s own options open.

Example - Focus

Focus is another heuristic.  Focus is a measure of the narrowness of the 
search space. It is the inverse of mobility. Sometimes it is good to focus to 
cut down on search space. Often, it is better to restrict opponents' moves 
while keeping one's own options open.



function focus (state)
 {var actions = findlegals(role,state,ruleset);
  var feasibles = findinputs(role,ruleset);
  return (100 - actions.length/feasibles.length * 100)}

Implementation

A simple implementation of the focus heuristic is shown here. It is the 
dual of mobility.  Again we divide the number of legal actions by the 
number of all possible actions; but, in this case instead of returning that 
value, we return the result of subtracting it from 100.



Goal proximity is a measure of the proximity of a state 
to a goal state.

Number of propositions shared between state and 
some goal state.   Problem - difficult to find / 
enumerate terminal states.

Use goal value of non-terminal state as indicator of 
proximity to terminal state with high goal value.  
Problem - there may be no correlation (e.g. chess 
checkmates).  Good news: Sometimes possible to find 
and prove a correlation.

Goal Proximity

Goal proximity is a measure of how similar a given state is to desirable 
terminal state. There are various ways this can be computed.
One common method is to count how many propositions are true in the 
current state are also true in a terminal state with adequate utility. The 
difficulty of implementing this method is obtaining a set of desirable 
terminal states with which the current state can be compared.
Another alternative is to use the goal value of a state as a measure of 
progress toward the goal, with the idea being that the goal value of a non-
terminal state, the closer the actual goal. Of course, this is not always 
true. However, in many games the goal values are indeed monotonic, 
meaning that values do increase with proximity to the goal. Moreover, it is 
sometimes possible to compute this by a simple examination of the game 
description, using methods we describe in later lessons.



Definition

f(s) = w1× f1(s) + … + wn × fn(s)

Examples:
    Mobility
    Focus
    Goal proximity

Many players estimate weights by experimentation 
during the start clock.

Weighted Linear Combinations

None of these heuristics is guaranteed to work in all games, but all have 
strengths in some games. To deal with this fact, some designers of GGP 
players have opted to use a weighted combination of heuristics in place 
of a single heuristic. The equation shown here is a typical formula. Each fi 
here is a heuristic function (such as mobility or focus or goal proximity), 
and wi is the corresponding weight.
Of course, there is no way of knowing in advance what the weights 
should be, but sometimes playing a few instances of a game (e.g. during 
the start clock) can suggest weights for the various heuristics.



Horizon Problem
   white gains a rook but loses queen or loses game
   example - sequence of captures in chess

Horizon Problem

As mentioned earlier, depth-limited search is not guaranteed to succeed 
in all cases. Failing is never good. However, it is particularly 
embarrassing in situations where just a little more search would have 
revealed significant changes in the player's circumstances, for better or 
worse. In the research literature, this is often called a horizon problem.
As an example of a horizon problem in Chess, consider a situation where 
the players are exchanging piece, with white capturing black's pieces and 
vice versa. Now imagine cutting off the search at an arbitrary depth, say 2 
captures each. At this point, white might believe it has an advantage 
since it has more material. However, if the very next move by black is a 
capture of the white queen, this evaluation could be misleading.



Idea - use expansion function in place of fixed depth as 
a termination criterion.

Variable Depth Search

A common solution to this problem is to forego the fixed depth limit in 
favor of one that is itself dependent on the current state of affairs, 
searching deeper in some areas of the tree and searching less deep in 
other areas.



function maxscore (state,level)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset);
  if (!expfun(state,level)) {return evalfun(state)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(actions[i],state,level);
       if (result>score) {score = result}};
  return score}

Variable-Depth Heuristic Search

Here is an implementation of variable depth heuristic search. This version 
of maxscore differs from the fixed-depth version in that there is a 
subroutine (here called expfn) that is called to determine whether the 
current state and/or depth meets an appropriate condition. If so, the tree 
expansion continues; otherwise, the player terminates the expansion and 
simply returns the result of applying its evaluation function to the non-
terminal state.



Example - Quiescence
    Evaluation function values changing slowly

Expansion Functions

The challenge in variable-depth heuristic search is finding an appropriate 
definition for expfn. One common technique is to focus on differentials of 
heuristic functions. For example, a significant change in mobility or goal 
proximity might indicate that further search is warranted whereas actions 
that do not lead to dramatic changes might be less important.  In Chess, 
a good example of this is to look for quiescence, i.e. a state in which 
there are no immediate captures.
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