
General Game Playing



Small Multiple Player Games



Example:

More complicated that single-player games
    Changes depend on actions of others
    and those actions cannot be controlled
    So player must consider all possible actions of others

Multiple Player Games

Having discussed single-player games, we turn now to multiple player games, 
such as Chess and Othello and Chinese Checkers. In most cases, the other 
players in these games are general game playing programs or humans. However, 
in some cases, the other players represent uncertainty in the game itself. For 
example, it is common to model some card games by representing a randomly 
shuffled deck of cards as an additional player in the game, one that deals or 
reveals cards as the game progresses.



Fixed Sum Games
    Total reward in all states is the same
    For one player to get more, the others must get less

    Also called zero sum in cases where sum is 0
    Note that, in GGP, all rewards are non-negative.
    However, can be scaled - to 50, for example.

    Many common games are zero sum
    e.g. Chess - winner and loser

Variable Sum Games
     Possible for one player to get more
     without other players getting less
     Some games are even cooperative

Fixed Sum and Variable Sum Games

Before proceeding, it is worth emphasizing that multiple player games need not be 
fixed sum. In a fixed sum game, the total number of points is fixed. (When this 
number is zero, such games are usually said to be zero-sum.) In order for one 
player to get more points, some other player must lose points. For this reason, 
fixed sum games are necessarily competitive. In general game playing, there is no 
such restriction. Some games are competitive; but others are cooperative - it may 
be that the only way for one player to get a higher reward is to help the other 
players get higher rewards as well.



Resources
    Sufficient time and space
    to search the entire game tree

Results
   Players can find optimal strategy
   Not necessarily sequential, as with single player games
   Plans may be conditional on the actions others
   NB: Sometimes possible without searching entire tree

Small size rules out games like Chess and Othello, which
require more complicated techniques, some of which are
discussed in subsequent lessons.

Small Games

In this lesson, as in the preceding lesson, we look at settings in which there is 
sufficient time for players to search the game tree entirely. That said, as in single-
player games, it is sometimes possible to find optimal actions even without 
searching the entire game tree.



Approaches covered
    Minimax and Bounded Minimax
    Alpha-Beta Search

Interesting Approach not covered:
    Conditional Planning

Programme

We begin this lesson with a procedure called Minimax and a more efficient 
variation called Bounded Minimax. We then turn to an even more efficient 
procedure called Alpha-Beta Search, which produces the same results but 
eliminates some of the needless computation of minimax.  There is also an analog 
to sequential planning, called conditional planning.  However, it is a little 
complicated and is not used all that often; so we bypass that for now.
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Minimax



Opponent Modeling
  May assume opponent will play rationally
                     but
  Assumption may be wrong

  Also, players do not know identities of other players

Common Alternative - pessimistic / conservative
  Assume the other player will do the worst possible thing

Opponent

In general game playing, a player may choose to make assumptions about the 
actions of the other players. For example, a player might assume that the other 
players are behaving rationally. By eliminating irrational actions on the part of the 
other players, a player can decrease the number of possibilities it needs to 
consider.
Unfortunately, in general game playing, as currently constituted, no player knows 
the identity of the other players. The other players might be irrational or they might 
behave the same as the player itself. Since there is no information about the other 
players, many general game players take a pessimistic approach - they assume 
that the other players will perform the worst possible actions. This pessimistic 
approach is the basis for a game-playing technique called Minimax.



Intuition - Select a move that is guaranteed to produce 
the highest possible return no matter what the 
opponents do.

In the case of a one move game, a player should 
choose an action such that the value of the resulting 
state for any opponent action is greater than or equal to 
the value of the resulting state for any other action and 
opponent action.

In the case of a multi-move game, minimax goes to the 
end of the game and “backs up” values.

Basic Idea

The basic idea of Minimax is to select moves that are guaranteed to produce the 
highest possible return no matter what the opponents do.  The player tries to 
maximize its own value and assumes that the opponents are trying to minimize its 
value.  Hence the name Minimax.



Max node

Min node

Bipartite Game Tree

In the case of a one-step game, Minimax chooses an action such that the value of 
the resulting state for any opponent action is greater than or equal to the value of 
the resulting state for any other action. In the case of a multi-step game, Minimax 
goes to the end of the game and backs up value.  In general, we can think about 
Minimax as search of a bipartite tree consisting of alternating max nodes (shown 
here as grey squares) and min nodes (shown here as beige circles). The max 
nodes represent the choices of the player while the min nodes represent the 
choices of the other players.
Note that, in the case of games with more than two players, there can be multiple 
layers of min nodes between each layer of max node, one layer for each opponent.
Note also that, although we have separated the choices of the player and its 
opponents, this does not mean that play alternates between the opponents or that 
the opponents know the player's action. The player and its opponents make their 
choices simultaneously, without knowledge of each other's choices.



The value of a max node for player p is either the utility of 
that state if it is terminal or the maximum of all values for 
the min nodes that result from its legal actions. 

value(p,x) =
  goal(p,x) if terminal(x)
  max({value(p,minnode(p,a,x)) | legal(p,a,x)})

The value of a min node is the minimum value that results 
from any legal opponent action.

    value(p,n) =
        min({value(p,maxnode(P-p,b,n))⏐legal(P-p ,b,n)})

State Value

The value of a max node for a player is the utility of the corresponding state if the 
state is terminal.  Otherwise, it is the maximum of the values for the min nodes that 
result from its legal actions. The value of a min node is the minimum value that 
results from any legal opponent action.
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Bipartite Game Tree

The following game tree illustrates this. The nodes at the bottom of the tree are 
terminal states, and the values are the player's goal values for those states. The 
values shown in the other nodes are computed according to the rules just stated. 
For example, the value of the minnode at the lower left is 1 because that is the 
minimum of the the values of its maxnodes below it, viz. 1 and 2. The value of the 
minnode next to that minnode is 3 because that is the value of the two maxnodes 
below it, viz. 3 and 4. The value of the maxnode above these two minnodes is 3 
because that is the maximum of the values of the two minnodes. And so forth.



var ruleset;
var role;
var roles;
var state;

function info (id)
  {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
  role = player;
  roles = findroles(rules);
  state = findinits(rules);
  return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
  if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
  return undoesify(bestmove(state))}

function stop (id,move)
  {return 'done'}

function abort (id)
  {return 'done'}

Implementation

Here is an implementation of a minimax player.  This is identical to the 
implementation of compulsive deliberation for single player games *except* that it 
has a different bestmove procedure.
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function bestmove (state)
 {var actions = findlegals(role,state,ruleset);
  var action = actions[0];
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(actions[i],state);
       if (result>score)
          {score = result; action = actions[i]}};
  return action[2]}

bestmove

The main difference between the bestmove subroutine for single player games and 
the bestmove for multiple player games is the way scores are computed. Rather 
than comparing subsequent states, it compares min nodes as described above.



function minscore (action,state)
 {var actions = findlegals(opponent,state,ruleset);
  var score = 100;
  for (var i=0; i<actions.length; i++)
      {var move = [action, actions[i]];
       var newstate = findnexts(move,state,ruleset);
       var result = maxscore(newstate);
       if (result<score) {score = result}};
  return score}

function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset);
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var result = minscore(actions[i],state);
       if (result>score) {score = result}};
  return score}

minscore and maxscore

The minscore subroutine for minimax takes an action and a state as arguments 
and produces the minimum values for the given role associated with the given 
player action for any of the opponent's legal actions in the given state.  The 
maxscore subroutine, which is called by minscore, takes a state as argument and 
conducts a recursive exploration of the game tree below the given state. If the 
state is terminal, the output is just the role's reward for that state. Otherwise, the 
output is the maximum of the utilities of the min nodes associated with the player's 
legal actions in the given state.
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If the minvalue for an action is determined to be 100, 
then there is no need to consider other actions.

In computing the minvalue for a state if the value to 
the first player of an opponent’s action is 0, then there 
is no need to consider other possibilities.

Bounded Minimax

One disadvantage of the Minimax procedure is that it examines the entire game 
tree in all cases. While this is sometimes necessary, there are cases where it is 
possible to get the same result without examining the entire game tree. For 
example, if in processing a state the maxscore subroutine finds an action that 
produces 100 points, it does not need to look at any additional actions since it 
cannot do better; and if the minscore subroutine finds an action that produces 0 
points, it does not need to look at any additional actions since it cannot get the 
score any lower.
Bounded Minimax is just the Minimax procedure with two minor changes. Rather 
than processing all actions on every node, maxscore and minscore checks first for 
these bounds; and, if they occur on any node, they terminate their search and 
return the corresponding values.
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Bounded Minimax Example

Here is an example. The nodes in this tree with values are those examined by 
Bounded Minimax. The other nodes are not examined at all and do not need to be 
examined.  In this case, more than half of the tree is pruned from consideration.
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As stated
   100 is the limiting case for maxscore
   0 is the limiting case for minscore

Other possibilities
    Satsificing - fixed minimal score all that is needed
    Fixed sum game - 51 is sufficient

Generalization

Note that 100 and 0 are not the only values that can be used here. For example, if 
a player is in a satisficing game, where it just needs to get a certain minimum 
score, then it can use that threshold rather than 100. If a player simply wants to win 
a fixed sum game, then it can use 51 as the threshold, knowing that if it gets this 
amount it has won the game.
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Alpha Beta Pruning
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Alpha-Beta Example

While Bounded Minimax helps avoid some wasted work, we can do even better. 
Consider the game tree shown here.  In this case, unlike the earlier examples, 
there are many terminal values that are not 0 or 100. In determining its maximum 
score for the top node of this tree, a Minimax player, even a Bounded Minimax 
player, would examine the entire tree. However, not all of this work is necessary. 
As an example, consider the fourth terminal node on the lower left.  Even before 
that node is examined, the player knows that its opponent can keep it to at most 10 
points on that branch (based on the third node), and it already has a move of its 
own that gets it 11 points.  Exploring the fourth node can only decrease the min 
node’s score, and the player is not going to choose it anyway, so there is no point 
in examining it.  In this case, the saving is only one node; in other cases, it can 
allow a player to prune whole subtrees, as we shall see in just a bit.



Alpha-Beta Search - Same as Bounded Minimax 
except that bounds are computed dynamically and 
passed along as parameters.

If partial result of min node less than alpha, can only 
decrease score and player need not consider.

If partial result of max node greater than beta, can only 
increase score and opponent will not allow.

Alpha-Beta Search

Alpha-Beta Search is a variation on Bounded Minimax that eliminates such wasted 
work by computing bounds dynamically and passing them along as parameters. 
One bound, called alpha, is the best score the player has seen thus far. The other 
bound, called beta, is the worst score the player has seen. In examining new 
nodes, alpha-beta search uses these bounds to decide whether to look at further 
nodes.
If the partial result at a min node is less than alpha, then there is no point in 
examining other descendants of that node since it could only decrease this value 
and the player would not take that choice given that it has a higher value 
elsewhere.
Analogously, if the partial result at a max node is greater than beta, then there is 
no point in considering other options since they can only increase the score and 
the player's opponents would not allow that since they know they can keep the 
value to no more than beta.



function maxscore (state,alpha,beta)
  {if (findterminalp(state,ruleset))
      {return reward(role,state,ruleset)};
   for (var action in findlegals(role,state,ruleset))
       {var minval = minscore(action,state,alpha,beta);
        alpha = max(alpha,minval);
        if (alpha>=beta) then {return beta}};
   return alpha}

function minscore (action,state,alpha,beta)
  {var actions = findlegals(opponent,state,ruleset);
   for (i=0; i<actions.length; i++)
       {var move = [action, actions[i]];
        var newstate = findnexts(move,state,ruleset);
        var maxval = maxscore(newstate,alpha,beta);
        beta = min(beta,maxval);
        if (beta<=alpha) then {return alpha}};
   return beta}

maxscore and minscore

Here is an implementation of maxscore and minscore for an alpha-beta player.  In 
computing the maxscore of a max node, the player takes the max of alpha and the 
minscore of the node obtained by performing any legal action in the corresponding 
state.  To compute the minscore of a node, the player takes the minimum of beta 
and the maxscore of the node for the state obtained by executing the joint move for 
any legal action.
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Alpha-Beta Example

Now let's apply the maxscore procedure to the tree shown above with initial value 
0 and 100 for alpha and beta. In the tree shown here, we have written in values 
produced by the alpha-beta procedure in this case, and we have left the other 
nodes blank.  As you can see there is substantial saving.



Best case of alpha-beta pruning can reduce search 
space to square root of the unpruned search space, 
thereby dramatically increasing depth searchable 
within given time bound.

For example, it could in some cases reduce a tree with 
branching factor of 25 to branching factor of 5.

Benefits

In this particular case, the improvement of Alpha-Beta over Minimax is modest. 
However, in general, Alpha-Beta Search can save a significant amount of work 
over full Minimax. In the best case, given a tree with branching factor b and depth 
d, Alpha-Beta Search needs to examine at most O(b^d/2) nodes to find the 
maximum score instead of O(b^d). This means that an Alpha-Beta player can look 
ahead twice as far as a Minimax player in the same amount of time. Looked at 
another way, the effective branching factor of a game in this case is sqrt(b) instead 
of b. It would be the equivalent of searching a tree with just 5 moves instead 25 
moves.
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Caching



32

The game graph is virtual - it is computed on the fly 
from the game description.  Hence, our subroutines are 
not cheap.

May be good to cache results (build an explicit game 
graph) rather than call repeatedly.

Virtual Game Graph
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Consider a game in which the actions allow one to 
explore an 8x8 board by making moves left, right, up, 
and down.

Game tree  has branching factor 4 and depth 16.  
Fringe of tree has 4^16 = 4,294,967,296 nodes.

Only 64 states.  Space searched much faster if 
duplicate states detected. 

Benefit - Avoiding Duplicate Work



34

Finding duplicate states takes time proportional to the 
log of the number of states and takes space linear in 
the number of states.

Work wasted when duplicate states rare.  (We shall see 
two common examples of this next week.)

Memory might be exhausted.  Need to throw away old 
states.

Disadvantage - Extra Work
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