
General Game Playing

Small Multiple Player Games

Example:

More complicated that single-player games
 Changes depend on actions of others
 and those actions cannot be controlled
 So player must consider all possible actions of others

Multiple Player Games

Having discussed single-player games, we turn now to multiple player games,
such as Chess and Othello and Chinese Checkers. In most cases, the other
players in these games are general game playing programs or humans. However,
in some cases, the other players represent uncertainty in the game itself. For
example, it is common to model some card games by representing a randomly
shuffled deck of cards as an additional player in the game, one that deals or
reveals cards as the game progresses.

Fixed Sum Games
 Total reward in all states is the same
 For one player to get more, the others must get less

 Also called zero sum in cases where sum is 0
 Note that, in GGP, all rewards are non-negative.
 However, can be scaled - to 50, for example.

 Many common games are zero sum
 e.g. Chess - winner and loser

Variable Sum Games
 Possible for one player to get more
 without other players getting less
 Some games are even cooperative

Fixed Sum and Variable Sum Games

Before proceeding, it is worth emphasizing that multiple player games need not be
fixed sum. In a fixed sum game, the total number of points is fixed. (When this
number is zero, such games are usually said to be zero-sum.) In order for one
player to get more points, some other player must lose points. For this reason,
fixed sum games are necessarily competitive. In general game playing, there is no
such restriction. Some games are competitive; but others are cooperative - it may
be that the only way for one player to get a higher reward is to help the other
players get higher rewards as well.

Resources
 Sufficient time and space
 to search the entire game tree

Results
 Players can find optimal strategy
 Not necessarily sequential, as with single player games
 Plans may be conditional on the actions others
 NB: Sometimes possible without searching entire tree

Small size rules out games like Chess and Othello, which
require more complicated techniques, some of which are
discussed in subsequent lessons.

Small Games

In this lesson, as in the preceding lesson, we look at settings in which there is
sufficient time for players to search the game tree entirely. That said, as in single-
player games, it is sometimes possible to find optimal actions even without
searching the entire game tree.

Approaches covered
 Minimax and Bounded Minimax
 Alpha-Beta Search

Interesting Approach not covered:
 Conditional Planning

Programme

We begin this lesson with a procedure called Minimax and a more efficient
variation called Bounded Minimax. We then turn to an even more efficient
procedure called Alpha-Beta Search, which produces the same results but
eliminates some of the needless computation of minimax. There is also an analog
to sequential planning, called conditional planning. However, it is a little
complicated and is not used all that often; so we bypass that for now.

7

8

Minimax

Opponent Modeling
 May assume opponent will play rationally
 but
 Assumption may be wrong

 Also, players do not know identities of other players

Common Alternative - pessimistic / conservative
 Assume the other player will do the worst possible thing

Opponent

In general game playing, a player may choose to make assumptions about the
actions of the other players. For example, a player might assume that the other
players are behaving rationally. By eliminating irrational actions on the part of the
other players, a player can decrease the number of possibilities it needs to
consider.
Unfortunately, in general game playing, as currently constituted, no player knows
the identity of the other players. The other players might be irrational or they might
behave the same as the player itself. Since there is no information about the other
players, many general game players take a pessimistic approach - they assume
that the other players will perform the worst possible actions. This pessimistic
approach is the basis for a game-playing technique called Minimax.

Intuition - Select a move that is guaranteed to produce
the highest possible return no matter what the
opponents do.

In the case of a one move game, a player should
choose an action such that the value of the resulting
state for any opponent action is greater than or equal to
the value of the resulting state for any other action and
opponent action.

In the case of a multi-move game, minimax goes to the
end of the game and “backs up” values.

Basic Idea

The basic idea of Minimax is to select moves that are guaranteed to produce the
highest possible return no matter what the opponents do. The player tries to
maximize its own value and assumes that the opponents are trying to minimize its
value. Hence the name Minimax.

Max node

Min node

Bipartite Game Tree

In the case of a one-step game, Minimax chooses an action such that the value of
the resulting state for any opponent action is greater than or equal to the value of
the resulting state for any other action. In the case of a multi-step game, Minimax
goes to the end of the game and backs up value. In general, we can think about
Minimax as search of a bipartite tree consisting of alternating max nodes (shown
here as grey squares) and min nodes (shown here as beige circles). The max
nodes represent the choices of the player while the min nodes represent the
choices of the other players.
Note that, in the case of games with more than two players, there can be multiple
layers of min nodes between each layer of max node, one layer for each opponent.
Note also that, although we have separated the choices of the player and its
opponents, this does not mean that play alternates between the opponents or that
the opponents know the player's action. The player and its opponents make their
choices simultaneously, without knowledge of each other's choices.

The value of a max node for player p is either the utility of
that state if it is terminal or the maximum of all values for
the min nodes that result from its legal actions.

value(p,x) =
 goal(p,x) if terminal(x)
 max({value(p,minnode(p,a,x)) | legal(p,a,x)})

The value of a min node is the minimum value that results
from any legal opponent action.

 value(p,n) =
 min({value(p,maxnode(P-p,b,n))⏐legal(P-p ,b,n)})

State Value

The value of a max node for a player is the utility of the corresponding state if the
state is terminal. Otherwise, it is the maximum of the values for the min nodes that
result from its legal actions. The value of a min node is the minimum value that
results from any legal opponent action.

3 3

3

1 2 3 4

1 3

3

5 6 7 8

5 7

7

8 7 6 5

7 5

7

4 3 2 1

3 1

3

Bipartite Game Tree

The following game tree illustrates this. The nodes at the bottom of the tree are
terminal states, and the values are the player's goal values for those states. The
values shown in the other nodes are computed according to the rules just stated.
For example, the value of the minnode at the lower left is 1 because that is the
minimum of the the values of its maxnodes below it, viz. 1 and 2. The value of the
minnode next to that minnode is 3 because that is the value of the two maxnodes
below it, viz. 3 and 4. The value of the maxnode above these two minnodes is 3
because that is the maximum of the values of the two minnodes. And so forth.

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(bestmove(state))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Implementation

Here is an implementation of a minimax player. This is identical to the
implementation of compulsive deliberation for single player games *except* that it
has a different bestmove procedure.

16

function bestmove (state)
 {var actions = findlegals(role,state,ruleset);
 var action = actions[0];
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var result = minscore(actions[i],state);
 if (result>score)
 {score = result; action = actions[i]}};
 return action[2]}

bestmove

The main difference between the bestmove subroutine for single player games and
the bestmove for multiple player games is the way scores are computed. Rather
than comparing subsequent states, it compares min nodes as described above.

function minscore (action,state)
 {var actions = findlegals(opponent,state,ruleset);
 var score = 100;
 for (var i=0; i<actions.length; i++)
 {var move = [action, actions[i]];
 var newstate = findnexts(move,state,ruleset);
 var result = maxscore(newstate);
 if (result<score) {score = result}};
 return score}

function maxscore (state)
 {if (findterminalp(state,ruleset))
 {return findreward(role,state,ruleset);
 var actions = findlegals(role,state,ruleset);
 var score = 0;
 for (var i=0; i<actions.length; i++)
 {var result = minscore(actions[i],state);
 if (result>score) {score = result}};
 return score}

minscore and maxscore

The minscore subroutine for minimax takes an action and a state as arguments
and produces the minimum values for the given role associated with the given
player action for any of the opponent's legal actions in the given state. The
maxscore subroutine, which is called by minscore, takes a state as argument and
conducts a recursive exploration of the game tree below the given state. If the
state is terminal, the output is just the role's reward for that state. Otherwise, the
output is the maximum of the utilities of the min nodes associated with the player's
legal actions in the given state.

18

If the minvalue for an action is determined to be 100,
then there is no need to consider other actions.

In computing the minvalue for a state if the value to
the first player of an opponent’s action is 0, then there
is no need to consider other possibilities.

Bounded Minimax

One disadvantage of the Minimax procedure is that it examines the entire game
tree in all cases. While this is sometimes necessary, there are cases where it is
possible to get the same result without examining the entire game tree. For
example, if in processing a state the maxscore subroutine finds an action that
produces 100 points, it does not need to look at any additional actions since it
cannot do better; and if the minscore subroutine finds an action that produces 0
points, it does not need to look at any additional actions since it cannot get the
score any lower.
Bounded Minimax is just the Minimax procedure with two minor changes. Rather
than processing all actions on every node, maxscore and minscore checks first for
these bounds; and, if they occur on any node, they terminate their search and
return the corresponding values.

19

100

100

0 100 100

0 100

100

100 50 100 100

50 100

100

Bounded Minimax Example

Here is an example. The nodes in this tree with values are those examined by
Bounded Minimax. The other nodes are not examined at all and do not need to be
examined. In this case, more than half of the tree is pruned from consideration.

20

As stated
 100 is the limiting case for maxscore
 0 is the limiting case for minscore

Other possibilities
 Satsificing - fixed minimal score all that is needed
 Fixed sum game - 51 is sufficient

Generalization

Note that 100 and 0 are not the only values that can be used here. For example, if
a player is in a satisficing game, where it just needs to get a certain minimum
score, then it can use that threshold rather than 100. If a player simply wants to win
a fixed sum game, then it can use 51 as the threshold, knowing that if it gets this
amount it has won the game.

21

22

23

Alpha Beta Pruning

24

11 3

11

12 11 10 9

11 9

11

16 15 14 13

15 13

15

4 3 2 1

3 1

3

 8 7 6 5

 7 5

 7

Alpha-Beta Example

While Bounded Minimax helps avoid some wasted work, we can do even better.
Consider the game tree shown here. In this case, unlike the earlier examples,
there are many terminal values that are not 0 or 100. In determining its maximum
score for the top node of this tree, a Minimax player, even a Bounded Minimax
player, would examine the entire tree. However, not all of this work is necessary.
As an example, consider the fourth terminal node on the lower left. Even before
that node is examined, the player knows that its opponent can keep it to at most 10
points on that branch (based on the third node), and it already has a move of its
own that gets it 11 points. Exploring the fourth node can only decrease the min
node’s score, and the player is not going to choose it anyway, so there is no point
in examining it. In this case, the saving is only one node; in other cases, it can
allow a player to prune whole subtrees, as we shall see in just a bit.

Alpha-Beta Search - Same as Bounded Minimax
except that bounds are computed dynamically and
passed along as parameters.

If partial result of min node less than alpha, can only
decrease score and player need not consider.

If partial result of max node greater than beta, can only
increase score and opponent will not allow.

Alpha-Beta Search

Alpha-Beta Search is a variation on Bounded Minimax that eliminates such wasted
work by computing bounds dynamically and passing them along as parameters.
One bound, called alpha, is the best score the player has seen thus far. The other
bound, called beta, is the worst score the player has seen. In examining new
nodes, alpha-beta search uses these bounds to decide whether to look at further
nodes.
If the partial result at a min node is less than alpha, then there is no point in
examining other descendants of that node since it could only decrease this value
and the player would not take that choice given that it has a higher value
elsewhere.
Analogously, if the partial result at a max node is greater than beta, then there is
no point in considering other options since they can only increase the score and
the player's opponents would not allow that since they know they can keep the
value to no more than beta.

function maxscore (state,alpha,beta)
 {if (findterminalp(state,ruleset))
 {return reward(role,state,ruleset)};
 for (var action in findlegals(role,state,ruleset))
 {var minval = minscore(action,state,alpha,beta);
 alpha = max(alpha,minval);
 if (alpha>=beta) then {return beta}};
 return alpha}

function minscore (action,state,alpha,beta)
 {var actions = findlegals(opponent,state,ruleset);
 for (i=0; i<actions.length; i++)
 {var move = [action, actions[i]];
 var newstate = findnexts(move,state,ruleset);
 var maxval = maxscore(newstate,alpha,beta);
 beta = min(beta,maxval);
 if (beta<=alpha) then {return alpha}};
 return beta}

maxscore and minscore

Here is an implementation of maxscore and minscore for an alpha-beta player. In
computing the maxscore of a max node, the player takes the max of alpha and the
minscore of the node obtained by performing any legal action in the corresponding
state. To compute the minscore of a node, the player takes the minimum of beta
and the maxscore of the node for the state obtained by executing the joint move for
any legal action.

27

15 4

15

16 15 14

15 14

15

12 6

50

50

2 3 4 5

2 4

4

Alpha-Beta Example

Now let's apply the maxscore procedure to the tree shown above with initial value
0 and 100 for alpha and beta. In the tree shown here, we have written in values
produced by the alpha-beta procedure in this case, and we have left the other
nodes blank. As you can see there is substantial saving.

Best case of alpha-beta pruning can reduce search
space to square root of the unpruned search space,
thereby dramatically increasing depth searchable
within given time bound.

For example, it could in some cases reduce a tree with
branching factor of 25 to branching factor of 5.

Benefits

In this particular case, the improvement of Alpha-Beta over Minimax is modest.
However, in general, Alpha-Beta Search can save a significant amount of work
over full Minimax. In the best case, given a tree with branching factor b and depth
d, Alpha-Beta Search needs to examine at most O(b^d/2) nodes to find the
maximum score instead of O(b^d). This means that an Alpha-Beta player can look
ahead twice as far as a Minimax player in the same amount of time. Looked at
another way, the effective branching factor of a game in this case is sqrt(b) instead
of b. It would be the equivalent of searching a tree with just 5 moves instead 25
moves.

29

30

Caching

32

The game graph is virtual - it is computed on the fly
from the game description. Hence, our subroutines are
not cheap.

May be good to cache results (build an explicit game
graph) rather than call repeatedly.

Virtual Game Graph

33

Consider a game in which the actions allow one to
explore an 8x8 board by making moves left, right, up,
and down.

Game tree has branching factor 4 and depth 16.
Fringe of tree has 4^16 = 4,294,967,296 nodes.

Only 64 states. Space searched much faster if
duplicate states detected.

Benefit - Avoiding Duplicate Work

34

Finding duplicate states takes time proportional to the
log of the number of states and takes space linear in
the number of states.

Work wasted when duplicate states rare. (We shall see
two common examples of this next week.)

Memory might be exhausted. Need to throw away old
states.

Disadvantage - Extra Work

35

36

