
General Game Playing



Small Single Player Games



Example:

Terminology:
    Single Player Games = Puzzles
    Playing Single Player Games = Problem Solving

Easier than multiple player games
    World static (except when single player acts)
    Changes determined entirely by player’s actions

Single Player Games

1 3
4 2 5
7 8 6

We start our in-depth tour of general game playing by looking at single player 
games, such as Sudoku, Sliding Tile Puzzles, and Rubik’s Cube.  In the game-
playing community, these are often called puzzles rather than games; and the 
process of solving such puzzles is often called problem-solving rather than game-
playing.  Puzzles are simpler than multiple player games because everything is 
under the control of the single player. The world is static, except when the player 
acts; and changes to the world are determined entirely by the current state and the 
actions of the player.



Game Description tells player:
    Initial state
    Legal actions in every state
    Results of performing every action in every state
    Reward for every state
    Whether or not a state is terminal

Complete Information

In this lesson, as in most of the course, we assume that the player has complete 
information about the puzzle. We assume that it knows the initial state; it knows all 
of its legal actions in every state; it knows the effects of its actions in every state; 
for every state, it knows its reward; and, for every state, it knows whether or not the 
state is terminal.



Resources
    Sufficient time and space
    to search the entire game tree

Results
    Players can find optimal actions on each time step
    NB: Sometimes possible without searching entire tree

This rules out puzzles like Rubik’s Cube, which requires
more complicated techniques, some of which are
discussed in subsequent lessons.

Small Games

In this lesson, we also assume the games are small, i.e. the player has sufficient 
space and time to search the entire game tree. This guarantees that the player can 
find optimal actions to perform. That said, as we shall see, it is sometimes possible 
to find optimal actions even without searching the entire game tree.



Many real world problems can be viewed as puzzles

Techniques for more complicated settings are variations
    Multiple player games
    Large game trees
    Games with incomplete information

Still Interesting

Despite these strong assumptions (just one player, complete information, and the 
availability of adequate time to search the game tree), the study of single player 
games is a good place to start our look at general game playing.  First of all, many 
real world problems can be cast as single player games with these same 
restrictions, such as finding possible protein foldings as suggested by the 
illustration here.  More importantly for us, as we shall see, the techniques we 
examine later can be viewed as more elaborate versions of the basic techniques 
introduced here.



/42



/42



Eight Puzzle



1 3

4 2 5

7 8 6

Eight Puzzle

Let’s begin this lesson with a look at a common single player game called 8-
puzzle.  8-puzzle is a sliding tile game.  The game board is a 3x3 square with 
numbered tiles in all but one of the cells.



1 3

4 2 5

7 8 6

4 1 3

2 5

7 8 6

1 3

4 2 5

7 8 6

down right

Legal Moves

The state of the game is modified by sliding numbered tiles into the empty space 
from adjacent cells, thus moving the empty space to a new location. There are four 
possible moves - moving the empty space up, down, left, or right. Obviously, not all 
moves are possible in all states. The states shown on the left and right here 
illustrate the possible moves from the state shown in the center.



1 2 3

4 5 6

7 8

Ultimate Objective

The ultimate object of the game is to place the tiles in order and position the empty 
square in the lower right cell, as shown here. The game terminates after 8 moves 
or when all of the tiles are in the right positions, whichever comes first. 



13

1 3

4 2 5

7 8 6

1 2 3

4 5 6

7 8

Reward: 40 points

Reward: 100 points

Partial Credit

Partial credit is given for states that approximate the ultimate goal, with 10 points 
being allocated for each numbered tile in the correct position and 20 points being 
allocated for having the empty tile in the correct position. For example, the first 
state shown here is worth 40 points; and the goal state is worth 100 points.



/42

role(robot)

base(cell(M,N,T)) :-
  index(M) &
  index(N) &
  tile(T)

base(step(1))

base(step(N)) :-
  successor(M,N)

input(robot,up)
input(robot,down)
input(robot,left)
input(robot,right)

init(cell(1,1,b))
init(cell(1,2,3))
init(cell(2,1,2))
init(cell(2,2,1))
init(step(1))

legal(robot,left) :-
  true(cell(M,2,b))

legal(robot,right) :-
  true(cell(M,1,b))

legal(robot,up) :-
  true(cell(2,N,b))

legal(robot,down) :-
  true(cell(1,N,b))

next(cell(1,N,b)) :-
  does(robot,up) &
  true(cell(2,N,b))

next(cell(2,N,b)) :-
  does(robot,down) &
  true(cell(1,N,b))

next(cell(M,1,b)) :-
  does(robot,left) &
  true(cell(M,2,b))

next(cell(M,2,b)) :-
  does(robot,right) &
  true(cell(M,1,b))

next(cell(2,N,X)) :-
  does(robot,up) &
  true(cell(2,N,b)) &
  true(cell(1,N,X))

next(cell(1,N,X)) :-
  does(robot,down) &
  true(cell(1,N,b)) &
  true(cell(2,N,X))

next(cell(M,2,X)) :-
  does(robot,left) &
  true(cell(M,2,b)) &
  true(cell(M,1,X))

next(cell(M,1,X)) :-
  does(robot,right) &
  true(cell(M,1,b)) &
  true(cell(M,2,X))

goal(robot,100) :-
  true(cell(1,1,1)) &
  true(cell(1,2,2)) &
  true(cell(2,1,3))

goal(robot,0) :-
  ~true(cell(1,1,1))

goal(robot,0) :-
  ~true(cell(1,2,2))

goal(robot,0) :-
  ~true(cell(2,1,3))

terminal :- true(step(7))

index(1)
index(2)

tile(1)
tile(2)
tile(3)
tile(b)

successor(1,2)
successor(2,3)
successor(3,4)
successor(4,5)
successor(5,6)
successor(6,7)

GDL for Three Puzzle
next(cell(M,N,W)) :-
  does(robot,up) &
  true(cell(X,Y,b)) &
  true(cell(M,N,W)) &
  distinct(Y,N)

next(cell(M,N,W)) :-
  does(robot,down) &
  true(cell(X,Y,b)) &
  true(cell(M,N,W)) &
  distinct(Y,N)

next(cell(M,N,W)) :-
  does(robot,left) &
  true(cell(X,Y,b)) &
  true(cell(M,N,W)) &
  distinct(X,M)

next(cell(M,N,W)) :-
  does(robot,right) &
  true(cell(X,Y,b)) &
  true(cell(M,N,W)) &
  distinct(X,M)

next(step(N)) :-
  true(step(M)) &
  successor(M,N)

As with other games, it is possible to describe Eight Puzzle in GDL.  Here are the rules for 
Three Puzzle (a version of Eight Puzzle on a 2x2 board) with no partial credit.  The rules for 
Eight Puzzle *with* partial credit are analogous but a little verbose.    We won’t go through the 
details of either rule set in this lesson, but it may be worth your while to pause and look over 
the rules to be sure you understand them.



/42



/42



Compulsive Deliberation



18

Play Method
    Compute best move
    Execute
    Update state

Pure compulsive deliberation
    State is updated and move is computed but
    No information preserved from one step to next

Obviously wasteful but ...
   Does not hurt if sufficient resources available
   Simple and template for more sophisticated methods

Compulsive Deliberation

Compulsive Deliberation is a particularly simple approach to game playing. On 
each step, the player examines the then-current game tree to determine its best 
move for that step; and it then makes this move. It repeats this process on the next 
step and so forth until the end of the game.

In pure compulsive deliberation, each step of the computation is independent of 
every other step. No data computed during any step is accessible on subsequent 
steps. The player treats each step as if it were a new game.

This is obviously wasteful, but it does not hurt so long as there is enough time to 
do the repeated calculations. We start with this method because it is simple to 
understand and at the same time serves as a template for the more sophisticated, 
less wasteful methods to come.



var ruleset;
var role;
var roles;
var state;

function info (id)
  {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
  role = player;
  roles = findroles(rules);
  state = findinits(rules);
  return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
  if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
  return undoesify(bestmove(state))}

function stop (id,move)
  {return 'done'}

function abort (id)
  {return 'done'}

Implementation

Using the basic subroutines provided in the GGP starter pack, building a 
compulsive deliberation player is not difficult.  The implementation looks like this.  
As shown, it is almost identical to our implementation of legal and random players.



Legal Player:

function play (id,actions)
 {var move = doesify(roles,actions);
  if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
  return undoesify(legalx(role,state,ruleset))}

Compulsive Deliberation Player:

function play (id,actions)
 {var move = doesify(roles,actions);
  if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
  return undoesify(bestmove(state))}

Play Handler

The only difference lies in the play handler.  In selecting an action, a legal player 
uses legalx to compute a legal move for the given state.  In compulsive 
deliberation, the play handler instead uses a subroutine called bestmove that does 
a more sophisticated computation.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

Before looking at bestmove, let’s look at a slightly simpler subroutine called 
maxscore.  maxscore takes a state as argument and returns the best score that 
the player can obtain by any sequence of actions in the specified state.  Let’s see 
how it works.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

As its first step, the procedure checks whether the given state is terminal.  If so, 
then the best possible score is the reward for the specified state.  It computes this 
by calling the predefined findreward subroutine on the role, the state, and the rule 
set.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

If the state is not terminal, then it tries each of the actions legal in that state, 
computes the maximum score for the state that results from executing that action, 
and returns the best score it finds.  The first step in doing this is to compute a list of 
all legal actions.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

It initializes its score to 0.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

It then loops over the possible actions.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

Since, in general, there can be multiple players, findnexts takes as arguments a list 
of actions of all players.  In this case, we have a single player game, so the player 
creates a list of just one element.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

The player then uses findnexts to compute the next state resulting from this move 
in the current state.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

It then finds the maxscore for the successor state.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

If the result is 100, then it simply returns that value, as there is no way to get more 
than 100 points.  Otherwise, if the result is greater than the current score, it 
updates the score and goes on.



function maxscore (state)
 {if (findterminalp(state,ruleset))
     {return findreward(role,state,ruleset)};
  var actions = findlegals(role,state,ruleset);
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return 100};
       if (result>score) {score = result}};
  return score}

maxscore

Finally, if it has not encountered a 100 value in this process, it returns the current 
score, which is by construction the maximum score for all possible actions.



function bestmove (state)
 {var actions = findlegals(role,state,ruleset);
  var action = actions[0];
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return actions[i]};
       if (result>score)
          {score = result; action = actions[i]}};
  return action}

bestmove

Okay, now that we have maxscore, let’s return to bestmove.  The definition uses 
maxscore and is actually quite similar to maxscore.



function bestmove (state)
 {var actions = findlegals(role,state,ruleset);
  var action = actions[0];
  var score = 0;
  for (var i=0; i<actions.length; i++)
      {var move = [actions[i]];
       var newstate = findnexts(move,state,rules);
       var result = maxscore(newstate);
       if (result==100) {return actions[i]};
       if (result>score)
          {score = result; action = actions[i]}};
  return action}

bestmove

There are just a few differences.  First of all, bestmove is not itself recursive, 
though it calls maxscore, which *is* recursive.  bestmove does not need to check 
whether the state it is given is terminal, because it would not be called if the game 
were in a terminal state.  It initializes a variable called action to the first legal 
action.  And it then behaves like maxscore, trying each possible action to see if it 
can fine one with a higher score than any previous action it has seen.  If it ever 
encounters a maxscore of 100, it simply returns the corresponding action.  
Otherwise, it proceed until it had tried all actions, at which point it returns the action 
with the highest maxscore that it has seen.



/42



/42



Sequential Planning



36

Problems
    Wasteful - work repeated on every step
    Computation done during play clock

Problems with Compulsive Deliberation

Compulsive deliberation is wasteful in that computations are repeated 
unnecessarily. Once a player is able to find a path to a terminal state with maximal 
reward, it should not have to repeat that computation on every step. Sequential 
planning is the antithesis of compulsive deliberation in which no work is repeated. 
Once a sequential planner finds a good path, it simply saves the sequence of 
actions along that path and then executes the actions step by step until the game 
is done without any further deliberation.



Start Method - Compute optimal plan
Play Method - Execute action n on the n-th step

Comments
   Plan computed just once (during start clock)
   Benefits from long start clocks
   Great for short play clocks

Sequential Planning

A sequential planning player is one that produces an optimal sequential plan 
(usually during the start clock) and then executes the steps of that plan during 
game play.

Sequential planning has multiple benefits relative to compulsive deliberation.  First 
and most obvious is that it is not as wasteful, since it searches the game tree just 
once.  If the start clock is sufficiently long, teh planning can be done entirely during 
the startclock.  After that the execution time is very low, since all the player needs 
on a step to do is to look up the action for that step without doing any search 
whatsoever.

Note that, although the planning is usually done during the start-up period of a 
game, it can also be done during regular game play.  It is also possible to mix 
sequential planning with other techniques. For example, in the case of large 
games, a player might play randomly during the initial part of a game and then 
switch to sequential planning once the game tree becomes small enough. Of 
course, in this last case, the player's ability to succeed depends on the strategy 
used before sequential planning commences.



Sequential Plan - sequence of action that leads from 
initial state to terminal state such that (1) every action 
is legal in the state in which that action is performed 
and (2) none of intermediate states is terminal.

Optimal - no other sequential plan has greater reward

Sequential Plans

Let’s start our look at sequential planning with a couple of definitions.  A sequential 
plan for a single player game is a sequence of actions that leads from the initial 
state of the game to a terminal state such that (1) every action in the sequence in 
legal in the state in which that action is performed and (2) none of the intermediate 
states produced during the execution is terminal.  A sequential plan is optimal if 
and only if no other sequential plan produces a greater final reward.



Eight Puzzle

Legal, Minimal, Optimal Plans
  [right,down,right,down]                         100
  [right,down,left,right,right,down]              100
  [right,down,left,right,left,right,right,down]   100

Legal, Minimal, Non-Optimal Plan
  [right,left,right,left,right,left,right,left]    40

Examples

1 3

4 2 5

7 8 6

Here are some example of sequential plans for Eight Puzzle.  The first plan 
prescribes a move to the right followed by a move down followed by another move 
to the right and another move down.  This leads to a state in which all tiles are in 
their goal positions and the empty cell is on the lower right; and the value for this 
state is 100.  Of course, this is not the only plan that works.  The player could also 
move right, down, left, right, right, and down and arrive at the same state.  Or it 
could move right, down. left, right, left, right, right, and down to get there as well.  
These latter two plans are longer but they are both optimal in that they produce a 
terminal state with maximal value.  By contrast, the sequential plan right, left, right, 
left, right, left, right, left.  This plan leads to a terminal state since any plan with 
eight steps is terminal.  However, it is not an optimal plan because the resulting 
reward is only 40 points and there are other plans that produce higher value.



var ruleset;
var role;
var roles;
var state;
var plan;
var step;

function info (id)
  {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
  role = player;
  roles = findroles(rules);
  state = findinits(rules);
  plan = reverse(bestplan(state));
  step = 0;
  return 'ready'}

function play (id,move)
 {var action = plan[step]; step++; return undoesify(action)}

function stop (id,move)
  {return 'done'}

function abort (id)
  {return 'done'}

Implementation

The implementation of a sequential planner is very similar to that for compulsive 
deliberation.



var ruleset;
var role;
var roles;
var state;
var plan;
var step;

function info (id)
  {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
  role = player;
  roles = findroles(rules);
  state = findinits(rules);
  plan = reverse(bestplan(state));
  step = 0;
  return 'ready'}

function play (id,move)
 {var action = plan[step]; step++; return undoesify(action)}

function stop (id,move)
  {return 'done'}

function abort (id)
  {return 'done'}

Implementation

We set up a couple of additional global variables = one to hold the plan and the 
other to keep track of the current step.



var ruleset;
var role;
var roles;
var state;
var plan;
var step;

function info (id)
  {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
  role = player;
  roles = findroles(rules);
  state = findinits(rules);
  plan = reverse(bestplan(state));
  step = 0;
  return 'ready'}

function play (id,move)
 {var action = plan[step]; step++; return undoesify(action)}

function stop (id,move)
  {return 'done'}

function abort (id)
  {return 'done'}

Implementation

During the startclock, the player uses the bestplan subroutine to produce a 
sequential plan. (It has to reverse the plan, since, as we shall see, bestplan builds 
the plan backward.  The plan is then stored in the plan variable, and the step 
counter is initialized to 0.



var ruleset;
var role;
var state;
var plan;
var step;

function info (id)
  {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
  role = player;
  state = inits(rules);
  plan = reverse(bestplan(role,state,ruleset)[1]);
  step = 0;
  return 'ready'}

function play (id,move)
 {var action = plan[step]; step++; return undoesify(action)}

function stop (id,move)
  {return 'done'}

function abort (id)
  {return 'done'}

Implementation

The play handler on each step simply reads off the action corresponding to that 
step, updates the step counter, and returns the action for that step.



function bestplan (state)
 {if (findterminalp(state,ruleset))
     {return [findreward(role,state,description),[]]};
  var actions = findlegals(role,state,rules);
  var newstate = findnexts([actions[0]],state,ruleset);
  var result = bestplan(newstate);
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {newstate = findnexts([actions[i]],state,ruleset);
       var result = bestplan(newstate);
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return [score,plan]}

bestplan

The bestplan subroutine is analogous to maxscore.  It takes a state as argument; 
but, instead of returning a simple score, it returns a pair consisting of a score and a 
plan to achieve that score.  Let’s see how this works.



function bestplan (state)
 {if (findterminalp(state,ruleset))
     {return [findreward(role,state,description),[]]};
  var actions = findlegals(role,state,rules);
  var newstate = findnexts([actions[0]],state,ruleset);
  var result = bestplan(newstate);
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {newstate = findnexts([actions[i]],state,ruleset);
       var result = bestplan(newstate);
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return [score,plan]}

bestplan

As in maxscore, the first step is to check whether the state is terminal.  If so, then 
the procedure simply computes the player’s reward for that state and returns that 
score paired with an empty plan, i.e. an empty list of actions.



function bestplan (state)
 {if (findterminalp(state,ruleset))
     {return [findreward(role,state,description),[]]};
  var actions = findlegals(role,state,rules);
  var newstate = findnexts([actions[0]],state,ruleset);
  var result = bestplan(newstate);
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {newstate = findnexts([actions[i]],state,ruleset);
       var result = bestplan(newstate);
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return [score,plan]}

bestplan

Otherwise, it computes all legal actions for the specified state.



function bestplan (state)
 {if (findterminalp(state,ruleset))
     {return [findreward(role,state,description),[]]};
  var actions = findlegals(role,state,rules);
  var newstate = findnexts([actions[0]],state,ruleset);
  var result = bestplan(newstate);
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {newstate = findnexts([actions[i]],state,ruleset);
       var result = bestplan(newstate);
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return [score,plan]}

bestplan

It computes the nextstate corresponding to the first of these actions and computes 
the best score and bestplan for that state.



function bestplan (state)
 {if (findterminalp(state,ruleset))
     {return [findreward(role,state,description),[]]};
  var actions = findlegals(role,state,rules);
  var newstate = findnexts([actions[0]],state,ruleset);
  var result = bestplan(newstate);
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {newstate = findnexts([actions[i]],state,ruleset);
       var result = bestplan(newstate);
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return [score,plan]}

bestplan

It then searches the remaining possible actions.



function bestplan (state)
 {if (findterminalp(state,ruleset))
     {return [findreward(role,state,description),[]]};
  var actions = findlegals(role,state,rules);
  var newstate = findnexts([actions[0]],state,ruleset);
  var result = bestplan(newstate);
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {newstate = findnexts([actions[i]],state,ruleset);
       var result = bestplan(newstate);
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return [score,plan]}

bestplan

For each, it computes the nextstate, gets the best score and best plan for that 
state, and compares the score to the best score seen so far.  If the score is better, 
then it saves that score and the corresponding plan (with the action appended to 
the end).



function bestplan (state)
 {if (findterminalp(state,ruleset))
     {return [findreward(role,state,description),[]]};
  var actions = findlegals(role,state,rules);
  var newstate = findnexts([actions[0]],state,ruleset);
  var result = bestplan(newstate);
  var score = result[0];
  var plan = result[1];
  plan[plan.length] = actions[0];
  for (var i=1; i<actions.length; i++)
      {newstate = findnexts([actions[i]],state,ruleset);
       var result = bestplan(newstate);
       if (result[0]>score}
          {score = result[0];
           plan = result[1];
           plan[plan.length] = actions[i]};
  return [score,plan]}

bestplan

After all actions are executed, bestplan returns a pair of the best score and the 
best plan.



/42



52


