
General Game Playing

Game Playing

Possible to use logical reasoning for game play
 Computing legality of moves
 Computing consequences of actions
 Computing goal achievement
 Computing termination

Easy to convert from logic to other representations
 many orders or magnitude speedup on simulation
 no asymptotic change

Logic

Having a formal description of a game is one thing; being able to use that
description to play the game effectively is something else entirely. In this lesson,
we discuss strategies for building general games players and some of the
difficulties that need to be handled.

Since game descriptions are written in logic, it is obviously necessary for a game
player to do some amount of automated reasoning. There are two extremes here.
(1) One possibility is for the game player to process the game description
interpretively throughout a game. (2) The second possibility is for the player to use
the description to devise a specialized program and then use that program to play
the game. This is effectively automatic programming. In this lesson, we discuss the
first possibility and leave it to you to think about the second possibility and various
hybrid approaches. We discuss the alternative approach later in the course.

Lesson 4 (this lesson):
 Infrastructure
 Creating a Legal Player
 Creating a Random Player

Lessons 5-8:
 Complete and Incomplete Search

Lessons 9-12
 Propositional Nets rather than State Machines

Lessons 13-16
 Logic rather than State Machines or Propnets

Programme

We begin the lesson by talking about some infrastructure that frames the problem
more precisely. We then consider a couple of search-free uses of this
infrastructure, viz. legal players and random players. In Lessons 5-8, we look at
complete search techniques (which are appropriate for small game graphs) as well
as incomplete search techniques (which are necessary for large game graphs). In
Lessons 9-12, we examine some game playing techniques based on properties of
states rather than monolithic states. Finally, in Lessons 13-16, we show ways that
game descriptions can be used to deduce general properties of games without
enumerating states or properties of those states.

Listen Loop
 Receives messages from Game Manager
 Calls appropriate event handler
 Sends result back to Game Manager

Event handlers
 each handles a different type of message
 responds with time bounds

Architecture

A game player is typically implemented as a web service. As soon as it begins
running, the player enters a loop listening for messages from the Game Manager.
Upon receipt of a message, the player calls an appropriate handler for that type of
message. When the handler is finished, the player sends the return value to the
Game Manager. Given this architecture, building a player means writing event
handlers for the different types of messages in the GGP communication protocol.

(info)

(start id role ruleset startclock playclock)

(play id move)

(stop id move)

(abort id)

Event Types

There is typically one handler for each type of message in the GGP protocol - info,
start, play, stop, and abort. So, that means writing 5 event handlers.

findroles(rules)
findbases(rules)
findinputs(role, rules)
findinits(rules)
findlegalp(role, action, state, rules)
findlegalx(role, state, rules)
findlegals(role, state, rules)
findnexts(move, state, rules)
findreward(role, state, rules)
findterminalp(state, rules)

doesify(roles, actions)
undoesify(sentence)

Predefined Subroutines

In order to facilitate the implementation of these message handlers, the GGP code
base available in the course website contains definitions for the subroutines shown
here. There are subroutines for computing the key components of a game. For
example, findroles produces a list of roles in the game. findinits gives a list of
sentences true in the initial state. There are also come utility subroutines to make
our job easier. For example, doesify takes a list of roles and a list of actions as
argument and produces a list of *sentences* stating that that each role specified in
the roles argument executes the corresponding action in the actions argument.
Undoesify reverses the process.

function info()
 {...code that calls predefined subroutines...}

function start()
 {...code that calls predefined subroutines...}

function play()
 {...code that calls predefined subroutines...}

function stop()
 {...code that calls predefined subroutines...}

function abort()
 {...code that calls predefined subroutines...}

Event Handlers

Your job in building a player is to use the subroutines provided to write the
handlers called by the message listener. In the next two segments, we look at a
couple of simple approaches for doing this. We will present the definitions in
Javascript. You can use these yourself if you are building your player in Javascript
or you can adjust as appropriate to implement the Java-based versions.
Alternatively, you can click the appropriate box in the parametric player to select
from among the different approaches. In this latter case, you do not need to type
in any code, but you should look at the code so that you know what is going on
when you make your selections.

/42

/42

Creating a Legal Player

Simple behavior
 Maintains current state of the game.
 On each step, selects first legal action it finds.

NB: Selects same action every time in a state.

Legal Player

A legal player is one of the simplest types of game player. In each state, a legal
player selects an action based solely on its legality, without consideration of the
consequences. Typically, the choice of action is consistent - it selects the same
action every time it finds itself in the same state. (In this way, a legal player differs
from a random player, which selects different legal actions on different occasions.)

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Implementation

Using the basic subroutines provided in the GGP starter pack, building a legal
player is simple. Here we see the entire implementation. Throughout this course,
we use Javascript for Computer code. This is a compromise between Lisp and
Java. Lisp is a powerful language, is highly efficient and is easy to use in building
players; however, it is not very widely known. Building programs in Java is more
difficult, but the language is familiar to more people these days. Javascript has the
flexibility of Lisp and at the same time is easily converted to Java. It can also be
used directly to implement players in Web browsers or in standalone applications.
Let’s walk through this implementation.

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Initialization

We start by setting up some global variables to maintain state while a match is in
progress. There is a variable to hold the game rule set, a variable to hold the
player's role in that game, and a variable to hold the current state. (Properly, we
should create a data structure for each match; and we should attach these values
to this data structure. However, we are striving for simplicity of implementation in
our presentation here.)

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Info

Next, we define a handler for each type of message. The info handler does
nothing and simply returns ‘ready’.

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,move)
 {if (move!=‘nil’)
 {state=findnexts(doesify(roles,move),state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Start

The start event handler assigns values to the ruleset and role variables based on
the incoming start message; it initializes roles and the state variable; and it then
returns ready, as required by the GGP protocol.

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Play

The play event handler takes a match identifier and a move as arguments. If the
move is not ‘nil’, and it uses nexts to compute the state resulting from the
preceding state and the actions supplied in the move. Once the player has the
latest state, it uses legalx to compute a legal move.

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Stop

The stop event handler for our legal player does nothing. It ignores the inputs and
simply returns done as required by the GGP protocol.

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Abort

Like the stop message handler, the abort message handler for our player also does
nothing. It simply returns done.

Example
roleruleset

state

roles

Just to be clear on how this works, let's work through a short Tic-Tac-Toe match.
When a player is initialized, it sets up data structures to hold the game description,
the role, and the state. These are initially empty. The player does not retain
startclock and playclock since it does not do extensive computation for which those
limits are relevant.

Example
roleruleset

state

roles

Message: start(m23, white, [role(white),role(black),...], 10, 10)

Let's assume that the player receives a start message from the Game Manager of
the sort shown below. The match identifier is m23. The player is told to be the
white player. There are the usual axioms of Tic-Tac-Toe. The startclock and
playclock are both 10 seconds.

Message: start(m23, white, [role(white),role(black),...], 10, 10)

Example
roleruleset

state

roles

role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

On receipt of this message, the player code calls the start handler. This records
the game description and the player’s role in the corresponding global variables. It
also computes and saves the initial state.

Reply: ready

Example
roleruleset

state

roles

Message: start(m23, white, [role(white),role(black),...], 10, 10)

role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

The returned value is ready, which is then sent back to the Game Manager.

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

Play begins after all of the players have responded or after the startclock has
expired, whichever comes first.

Message: play(m23, nil)

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

Once the Game Manager is ready, it sends a suitable play message to all players.
Here we have a request for the player to choose an action for match m23. The
value nil signifies that this is the first step of the match.

Message: play(m23, nil)

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

On receipt of this message, the player code invokes the play handler with the
arguments passed to it by the Game Manager. Since the move argument is nil, no
changes are made to the data structures.

Reply: mark(1,1)

Message: play(m23, nil)

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

Using this state, together with the role and description associated with this match,
the player then computes the first legal move, i.e. mark(1,1) and returns that as
answer.

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

The Game manager checks that the actions of all players are legal, simulates their
effects and updates the state of the game, and then sends play messages to the
players to solicit their next actions.

Message: play(m23, [mark(1,1),noop])

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

In this case, the player will receive the message shown here.

Message: play(m23, [mark(1,1),noop])

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,x))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(black))

state

roles

[white, black]

Again, the player invokes its play handler with the arguments passed to it by the
Game Manager. This time, the move is not nil, and so the player uses findnexts to
compute the next state. This results in the dataset shown here on the lower right.

Reply: noop

Message: play(m23, [mark(1,1),noop])

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,x))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(black))

state

roles

[white, black]

Using this state, the player then computes the first legal action in this state, its only
legal action, viz. noop, and returns that as answer.

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,x))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(black))

state

roles

[white, black]

This process then repeats until the end of the game.

Message: stop(m23, [mark(3,3),noop])

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,x))
true(cell(1,2,o))
true(cell(1,3,o))
true(cell(2,1,b))
true(cell(2,2,x))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

When the game is over, the player receives a message like the one shown here.

Message: stop(m23, [mark(3,3),noop])

Reply: done

Example
role

whiterole(white)
role(black)

...

terminal :- ~open

ruleset
true(cell(1,1,x))
true(cell(1,2,o))
true(cell(1,3,o))
true(cell(2,1,b))
true(cell(2,2,x))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

state

roles

[white, black]

While some players are able to make use of the information in a stop message, our
legal player simply ignores this information and returns done, terminating its
activity on this match.

/42

/42

Creating a Random Player

Simple behavior
 Maintains current state of the game.
 On each step, selects random legal action it finds.

NB: May take different action each time in a state.

Random Player

A random player is similar to a legal player in that it maintains a state and selects
an action for each state based solely on its legality, without consideration of the
consequences. A random player differs from a legal player in that it does not
simply take the first legal move it finds but rather selects randomly from among the
legal actions available in the state, usually choosing a different move on different
occasions.

var ruleset;
var role;
var roles;
var state;

function info (id)
 {return 'ready'}

function start (id,player,rules,sc,pc)
 {ruleset = rules;
 role = player;
 roles = findroles(rules);
 state = findinits(rules);
 return 'ready'}

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 var actions=findlegals(role,state,game);
 return actions[randomindex(actions.length)]}

function stop (id,move)
 {return 'done'}

function abort (id)
 {return 'done'}

Implementation

The implementation of a random player is almost identical to the implementation of
a legal player. The only difference is in the play handler.

Legal Player:

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 return undoesify(findlegalx(role,state,ruleset))}

Random Player:

function play (id,actions)
 {var move = doesify(roles,actions);
 if (move!=‘nil’) {state=findnexts(move,state,ruleset)};
 var actions=findlegals(role,state,game);
 return actions[randomindex(actions.length)]}

Play Handler

In a legal player, the play handler simply returns the first legal move. In a random
player, the play handler first computes all legal moves and then selects one at
random.

Random Players are no “smarter” than legal players.
 Appear more interesting because unpredictable.

 Sometimes avoid traps that befall consistent players
 like Legal.

 Often used as a comparison to show that a player or
 method performs statistically better than chance.

Random players take slightly more time than legal
 Compute all legal actions rather than just one

 Noticeable only on games with many legal actions

Remarks on Random Players

Random players are no “smarter” than legal players. However, they often appear
more interesting because they are unpredictable. Also, they sometimes avoid
traps that befall consistent players like legal, which can sometimes maneuver
themselves into corners from which they are unable to escape. Random players
are also used as standards to show that general game players or specific methods
perform better than chance.

A random player consumes slightly more compute time than a legal player, since it
must compute all legal moves rather than just one. For most games, this is not a
problem; but for games with a large number of possible actions, the difference can
be noticeable.

/42

