
General Game Playing

Game Management

/42

Game / Match Management

Game Communication Protocol

Game Playing Example

Programme

This lesson is an overview of game management. More properly, it should be
called match management, as the issue is how to manage individual matches of
games, not the games themselves. We start with an overview of the General
Game Playing ecosystem and the central role of the Game Manager. We then
discuss the General Game Playing communication protocol. Finally, we see how it
is used in a sample game.

Game Manager

Here is a diagram of a typical general game playing ecosystem. At the center of
the ecosystem is the game manager. The game manager maintains a database of
game descriptions, maintains some temporary state for matches while they are
running, and maintains a database of match results. The game manager
communicates with game players using the Internet’s TCP/ip protocol. It also
provides a user interface for users who want to schedule matches, and it provides
graphics for spectators watching matches in progress.

(info)

(start id role (s1 … sn) startclock playclock)

(play id (a1 ... ak))

(stop id (a1 ... ak))

(abort id)

Messages

In the current GGP communication language, there are five types of messages
used for communication between the Game Manager and game players - namely
info, start, play, stop, and abort. Let’s look at each of them in turn.

An info message is used to determine if a player is
running, communicating, and ready to play a match.

General Form:
 (info)

Replies:
 ready - ready to play
 nil/busy - not ready

The info Message

An info message is used to confirm that a player is running, communication, and
ready to play a match. The general form is shown here. Upon receipt of an info
message, a player is expected to return ready if it is ready to receive messages.
Otherwise, it should return nil. Of course, if a player is not running or not
connected, there will be no response. So, in practice info messages sometimes
evoke no reply at all.

A start message initiates a match.

General Form:
 (start id role (s1 … sn) startclock playclock)

Reply:
 ready - ready to begin play

NB: Match begins as soon as all players have replied or
when startclock seconds have elapsed whichever comes first.

The start Message

A start message is used to initialize a match. The general form of a start message
is shown here. The message begins with the keyword start, and this is followed by
five arguments, viz. a match identifier (a sequence of alphanumeric characters
beginning with a lower case letter), a role for the player to play (chosen from the
roles mentioned in the game description), a list of game rules (written as sentences
in Prefix GDL), a startclock (in seconds), and a playclock(also in seconds).

Upon receipt of a start message, a player should prepare itself to play the match.
Once it is done, it should reply ready to tell the Game Manager that it is ready to
begin the match. The GGP protocol requires that the player reply before startclock
seconds have elapsed. If the Game Manager has not received a reply by this time,
it will proceed on the assumption that the player is ready.

A play message is a request for an action.

General Form:
 (play id nil)
 (play id (a1 ... ak))

Replies:
 legal action

NB: nil is argument on first step, (a1 ... ak) thereafter,
where a1 ... ak are actions of players on preceding step.

NB: If player returns an illegal action or playclock has
elapsed, Manager substitutes a random legal action.

The play Message

A play message is used to request an action from a player. The general forms of
the play message are shown here. In each case, there is an identifier for the
match. On the first request, where there is no preceding move, the second
argument is nil. On all subsequent requests, the second argument is a list of the
actions of all players on the preceding step. The order of the actions in the record
is the same as the order of roles in the game description. Note that if a player
fails to reply or does reply in time, the Manager substitutes a random legal action.

Upon receipt of a play message, a player uses the move information to update its
state as necessary. It then computes its next move and returns that as answer.
The GGP protocol requires that the player reply before playclock seconds have
elapsed. If the Game Manager has not received a reply by this time or if it receives
an illegal action, it substitutes an arbitrary legal action.

A stop message is used to inform players that the
match has terminated successfully.

General Form:
 (stop id (a1 ... ak))

Replies:
 done

The stop Message

A stop message is used to tell a player that a match has reached completion. The
general form of the stop message is shown here. There is a match id and a record
of the actions of all players on the preceding step.

Upon receipt of a stop message, a player can clean up after playing the match.
The move is sent along in case the player wants to know the action that terminated
the game. After finishing up, the player should return done.

An abort message is used to tell players that a match
has terminated abnormally.

General Form:
 (abort id)

Replies:
 done

The abort Message

An abort message is used to tell players that a match has terminated abnormally.
It differs from a stop message in that the match need not be in a terminal state.
Upon receipt of an abort message, a player can eliminate any data structures and
return to a ready state. Once it is finished, it should return done.

Begins with receipt of request to run a match of a
given game with given players and given startclock
and playclock.

(1) send info messages to players.
(2) send start message with appropriate parameters.
(3) send play messages to receive plays
(4) send stop message when game terminates
(5) send abort for abnormal termination

Match Management Procedure

In summary, the process of running a match goes as follows. It begins with receipt
of a request to run a match. The Game Manager may at its discretion send info
messages to the players to ensure that they are ready to play. When it is ready, it
sends a start message with appropriate arguments to each player to initiate the
match. Once game play begins, the manager sends play messages to each player
to get their plays; and it then simulates the results. This part of the process
repeats until the game is over. The Manager then sends a stop message to each
player. If anything goes wrong, the Manager may send an abort message at any
time to terminate the match.

Game Manager to Player x: (start m23 white description 10 10)
Game Manager to Player y: (start m23 black description 10 10)
Player x to Game Manager: ready
Player y to Game Manager: ready

Tic-Tac-Toe Example

Here is a sample of messages for a quick game of Tic-Tac-Toe. The game
manager initiates the match by sending a start message to all of the players, each
with a different role. The players then respond with ready. They can respond
immediately or they can wait until the start clock is exhausted before responding.

Game Manager to Player x: (play m23 nil)
Game Manager to Player y: (play m23 nil)
Player x to Game Manager: (mark 1 1)
Player y to Game Manager: noop

Tic-Tac-Toe Example

Play begins after all of the players have responded to the start message or after
the startclock has expired, whichever comes first. The manager initiates play by
sending a play message to all of the players. Since this is the first step and there
are no previous moves, the move argument in the play message is nil. In this
case, the first player responds with the action (mark 1 1), one of its nine legal
actions; and the second player responds with noop, its only legal action.

Game Manager to Player x: (play m23 ((mark 1 1) noop))
Game Manager to Player y: (play m23 ((mark 1 1) noop))
Player x to Game Manager: noop
Player y to Game Manager: (mark 1 2)

Tic-Tac-Toe Example

The Game manager checks that these actions are legal, simulates their effects and
updates the state of the game, and then sends play messages to the players to
solicit their next actions. the second argument in the play message is a list of the
actions received in response to the preceding play message. In this case, the first
player responds with noop, its only legal action; and the second player responds
with (mark 1 2), which is not a good choice.

Game Manager to Player x: (play m23 (noop (mark 1 2)))
Game Manager to Player y: (play m23 (noop (mark 1 2)))
Player x to Game Manager: (mark 2 2)
Player y to Game Manager: noop

Tic-Tac-Toe Example

Again, the Game Manager checks legality, simulates the move and updates its
state, and sends play messages requesting the players’ next actions. The first
player takes advantage of the situation and plays (mark 2 2) while the second
player does noop.

Game Manager to Player x: (play m23 ((mark 2 2) noop))
Game Manager to Player y: (play m23 ((mark 2 2) noop))
Player x to Game Manager: noop
Player y to Game Manager: (mark 1 3)

Tic-Tac-Toe Example

There is not much the second player can do in this situation to save itself. Instead
of staving off the immediate loss, it plays (mark 1 3), while the first player does
noop.

Game Manager to Player x: (play m23 (noop (mark 1 3)))
Game Manager to Player y: (play m23 (noop (mark 1 3)))
Player x to Game Manager: (mark 3 3)
Player y to Game Manager: noop

Tic-Tac-Toe Example

The Game manager again simulates, updates, and requests a move. In this case,
the first player goes in for the kill, playing (mark 3 3).

Game Manager to Player x: (stop m23 ((mark 3 3) noop))
Game Manager to Player y: (stop m23 ((mark 3 3) noop))
Player x to Game Manager: done
Player y to Game Manager: done

Tic-Tac-Toe Example

With this move, the game is over. As usual, in such cases, the Manager lets the
players know by sending a suitable stop message. It then stores the results in its
database for future references and terminates.

/42

