
General Game Playing

Game Description

General Game Players are systems able to play
arbitrary games effectively based solely on formal
descriptions supplied at “runtime”.

Translation: They don’t know the rules until the game
starts.

General Game Playing

The defining characteristic of General Game Playing is that players do not know
the rules of games before those games begin. Game rules are communicated at
"runtime", and the players must be able to read and understand the descriptions
they are given in order to play legally and effectively. This characteristic carries
with it the requirement of language for writing game rules.

Game Description Language (or GDL) is a formal
language for encoding the rules of games.

GDL is widely used in the research literature and is used
in virtually all General Game Playing competitions.

GDL extensions are applicable in real-world applications
such as Enterprise Management and Computational Law.

Game Description Language

In general game playing, information about games is typically communicated to
players in a formal language called Game Description Language, or GDL. As
mentioned in the Introduction, GDL is widely used in the research literature and is
used in virtually all General Game Playing competitions. Moreover, it forms the
basis for some more expressive variants that have significant value in real-world
applications, such as Enterprise Management and Computational Law.

role(x)
role(o)

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(x))

legal(P,mark(X,Y)) :-
 true(cell(X,Y,b)) &
 true(control(P))

legal(x,noop) :-
 true(control(o))

legal(o,noop) :-
 true(control(x))

next(cell(M,N,P)) :-
 does(P,mark(M,N))

next(cell(M,N,Z)) :-
 does(P,mark(M,N)) &
 true(cell(M,N,Z)) & Z!=b

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(M,J)

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(N,K)

next(control(x)) :-
 true(control(o))

next(control(o)) :-
 true(control(x))

terminal :- line(P)
terminal :- ~open

goal(x,100) :- line(x) & ~line(o)
goal(x,50) :- ~line(x) & ~line(o)
goal(x,0) :- ~line(x) & line(o)
goal(o,100) :- ~line(x) & line(o)
goal(o,50) :- ~line(x) & ~line(o)
goal(o,0) :- line(x) & ~line(o)

row(M,P) :-
 true(cell(M,1,P)) &
 true(cell(M,2,P)) &
 true(cell(M,3,P))

column(N,P) :-
 true(cell(1,N,P)) &
 true(cell(2,N,P)) &
 true(cell(3,N,P))

diagonal(P) :-
 true(cell(1,1,P)) &
 true(cell(2,2,P)) &
 true(cell(3,3,P))

diagonal(P) :-
 true(cell(1,3,P)) &
 true(cell(2,2,P)) &
 true(cell(3,1,P))

line(P) :- row(M,P)
line(P) :- column(N,P)
line(P) :- diagonal(P)

open :-
true(cell(M,N,b))

Tic-Tac-Toe

GDL is a Logic Programming Language

As we shall see, GDL is a logic programming language. Game descriptions are
logic programs consisting of rules that define the key elements of games, such as
initial conditions, move legality, game dynamics, rewards, and termination.

Logic Programs in GDL

Game Description Example
Game Simulation Example

Game Requirements
Prefix GDL

Programme

This lesson is an overview of GDL. We begin with a detailed introduction to GDL.
We then look at a sample game description, and we look at the use of this
description in simulating a match of the game. Finally, we talk about additional
requirements on games that ensure that they are interesting; and we summarize
the prefix syntax for GDL used in most GGP competitions.

/42

/42

Game Description Language

A logic program is a collection of logical rules that
define relations either (1) directly by enumeration or (2)
indirectly in the form of rules.

Logic Programs

A logic program is a collection of logical rules that define relations either (1) directly
by enumeration or (2) indirectly in the form of rules.

Data:
parent(art,bob)
parent(amy,bob)
parent(bob,cal)
parent(bob,coe)

Rule:
grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

Output:
grandparent(art,cal)
grandparent(art,coe)
grandparent(amy,cal)
grandparent(amy,coe)

Simple Example

Here is a simple example. The first four sentences here define the parent relation
by enumeration. Art is the parent of Bob, and Amy is the parent of Bob. Bob is the
parent of Cal and Coe. The rule in the middle defines the grandparent relation in
terms of the parent relation. X is the grandparent of Z if X is a parent of some
person Y and Y is a parent of Z. As we shall see, given these definitions of parent
and grandparent, we can conclude that Art and Amy are the grandparents of Cal
and Coe.

 Semantics is purely declarative
 No assert or retract
 No cut

Restrictions assure decidability of pertinent questions
 Safety
 Stratified Recursion
 Stratified Negation
 No nested functional terms

Reserved Words
 role, init, legal, next, goal, terminal, ...
 described in next segment

GDL Similar to Prolog but ...

GDL is a logic programming language and in many ways resembles Prolog, the
most popular logic programming language. However, there are several important
differences. (1) First of all, the semantics of GDL is purely declarative, i.e. there
are no imperative features, such as assert, retract, and cut. (2) Second, GDL has
restrictions that ensure that all pertinent questions are decidable; in particular, all
relations can be computed in finite time. (3) Finally there are some reserved
words, which tailor the language to the task of defining games. Despite these
restrictions, we frequently use the phrase logic program to refer to a game
descriotion in GDL.

Components:
 Object Constants: a, b, c
 Function Constants: f, g, h
 Relation Constants: p, q, r
 Variables: X, Y, Z

The arity of a function constant or relation constant is the
number of arguments that can be associated with the
function constant or relation constant in writing complex
expressions in the language.

Vocabulary

Logic programs in GDL are built up from four disjoint classes of symbols, viz.
object constants, function constants, relation constants, and variables. In what
follows, we write such symbols as strings of letters, digits, and a few non-
alphanumeric characters (e.g. "_"). Constants must begin with a lower case letter
or digit. Variables must begin with an upper case letter.

The arity of a function constant or relation constant is the number of “arguments”
that can be “associated” with the function or relation when writing expressions (as
we shall see).

Terms:
 Object Constants: a, b
 Variables: X, Y, Z
 Functional Terms: f(a), g(X,b)

In traditional logic programs, functional terms can be
nested within other functional terms, but this is not
permitted in GDL.

Syntax

A term is either an object constant, a variable, or a functional term. A functional
term is an expression consisting of an n-ary function constant and n simpler terms.
In what follows, we write functional terms in traditional mathematical notation - the
function constant followed by its arguments enclosed in parentheses and
separated by commas. For example, if f is a unary function constant and g is a
binary function constant, if a and b are object constants, and if X is a variable, then
f(a) is a functional term, and so is g(X,b).

Atoms
 p(a,b), p(a,f(a)), p(g(a,b),c)

Negations
~p(a,b)

A literal is either an atom or a negation of an atom.
p(a,b), ~p(a,b)

An atom is a positive literal.
A negations is a negative literal.

Atoms, Negations, and Literals

An atom is an expression consisting of an n-ary relation constant and n terms. In
what follows, we write atoms in traditional mathematical notation - the relation
constant followed by its arguments enclosed in parentheses and separated by
commas. For example, if p is a binary relation constant and if a and b are object
constants, then p(a,b) is an atom. A negation is an expression formed using the
negation sign ~ and an atom. For example, ~p(a,b). A literal is either an atom or a
negation. An atom is sometimes called a positive literal, and a negation is
sometimes called a negative literal.

 subgoal … subgoal
p(x1, ... , xn) :- [~]p1(x11, ... , x1n1) & ... & [~]pk(xk1, ... , xknk)

head	
 	
 	
 	
 	
 	
 	
 body

Rules

A rule is an expression consisting of a distinguished atom, called the head, and a
conjunction of zero or more literals, called the body, separated by the :- operator.
The literals in the body are called subgoals. The intended meaning is that an
instance of the head is true whenever corresponding instances of all of the positive
subgoals are true and all of the negative subgoals are false.

A logic program is a finite set of atoms and rules
(subject to conditions described shortly).

Example:
p(X,Y) :- f(X,Y)
p(X,Y) :- m(X,Y)

Example:
g(X,Z) :- p(X,Y) & p(Y,Z)

Example:
a(X,Z) :- p(X,Z)
a(X,Z) :- p(X,Y) & a(Y,Z)

Example:
ra(X,Y) :- a(X,Y) & ~p(X,Y)

GDL Descriptions

A logic program in GDL is a finite set of atoms and rules of this form. In order to
simplify our definitions and analysis, we occasionally talk about infinite sets of
rules. While these sets are useful, they are not themselves logic programs. Here
are some examples. In this first example, we define the parent relation p in terms
of father f and mother m. In the second example, we define grandparent in terms
of parent. In the third, we define ancestor in terms of parent. Note that the
definition in this case is recursive. Finally, we define remote ancestor as any
ancestor that is not a parent.

Although every GDL description is a finite set of atoms and rules, not every finite
set of atoms and rules is a GDL description. As mentioned earlier, there are some
restrictions to ensure that such descriptions have desirable properties.

A rule is safe if and only if every variable in the head
appears in some positive subgoal in the body.

Safe Rule:
r(X,Z) :- p(X,Y) & q(Y,Z) & ~r(X,Y)

Unsafe Rule:
r(X,Z) :- p(X,Y) & q(Y,X)

Unsafe Rule:
r(X,Y) :- p(X,Y) & ~q(Y,Z)

In GDL, we require all rules to be safe.

Safety

The first of these restrictions is called safety. A rule in a logic program is safe if
and only if every variable that appears in the head or in any negative literal in the
body also appears in at least one positive literal in the body. The first rule shown
here is safe. Variables X and Z appear in the head and Y appears in a negative
subgoal. Fortunately, all three of those variables appear in positive subgoals as
well, and so the rule is safe. The second is not safe because variable Z appears in
the head but not in any positive subgoal. The third rule is not safe because the
variable Z appears in a negative subgoal but not in a positive subgoal. In GDL, we
require all rules to be safe.

The dependency graph for a set of rules is a directed graph in
which (1) the nodes are the relations mentioned in the head and
bodies of the rules and (2) there is an arc from a node p to a
node q whenever p occurs with the body of a rule in which q is
in the head.

 r(X,Y) :- p(X,Y) & q(X,Y)
 s(X,Y) :- r(X,Y)
 s(X,Z) :- r(X,Y) & t(Y,Z)
 t(X,Z) :- s(X,Y) & s(Y,X)

A set of rules is recursive if it contains a cycle. Otherwise, it is
non-recursive.

r

p q

s

t

Dependency Graph

The next two restrictions on GDL descriptions have to do with recursion. The
restrictions are best defined using the notion of dependency graphs. The
dependency graph for a set of rules is a directed graph in which (1) the nodes are
the relations mentioned in the head and bodies of the rules and (2) there is an arc
from a node p to a node q whenever p occurs with the body of a rule in which q is
in the head. A set of rules is recursive if and only if its dependency graph contains
a cycle.

The recursion in a set of rules is said to be stratified if
and only if every variable in a subgoal relation occurs in
a subgoal with a relation at a lower stratum.

Stratified Recursion:
r(X,Z) :- p(X,Y) & q(Z) & r(Y,Z)

Recursion that is not stratified:

r(X,Z) :- r(X,Y) & r(Y,Z)

In GDL, we require that all recursions be stratified.

Stratified Recursion

A recursion in a set of rules is said to be stratified if and only if every variable in a
subgoal relation occurs in a subgoal with a relation at a lower stratum. The
recursion in the first rule shown here is stratified because all of the variables
involved in the recursion occur in relations that are not defined in terms of r. The
recursion in the second rule is not stratified because the variables involved in the
recursion do not appear in other relations. In GDL, we require that all recursions
be stratified.

The negation in a set of rules is said to be stratified if
and only if there is no recursive cycle in the dependency
graph involving a negation.

Negation that is not stratified:
	
 r(X,Z) :- p(X,Y,Z)
! r(X,Z) :- p(X,Y,Z) & ~r(Y,Z)

Stratified Negation:
	
 t(X,Y) :- q(X,Y) & ~r(X,Y)
! r(X,Z) :- p(X,Y)
! r(X,Z) :- r(X,Y) & r(Y,Z)

In GDL, we require that all negations be stratified.

Stratified Negation

A negation in a set of rules is said to be stratified if and only if there is no recursive
cycle in the dependency graph involving a negation. For example, the first rule set
shown here is not stratified because there is a cycle involving a negative
occurrence of r. By contrast, the second set of rules is stratified. The rule set is
recursive, but there is no negation in the cycle. The only negative occurrence of r
occurs in the definition of t and is not part of any recursion. In GDL, we require all
negations to be stratified.

The Herbrand universe for a logic program is the set of
all ground terms in the language.

Example 1:
 Object Constants: a, b
 Herbrand Universe: a, b

Example 2:
 Object Constants: a, b
 Unary Function Constants: f
 Binary Function Constant: g
 Herbrand Universe: a, b, f(a), f(b), g(a,a), …

Herbrand Universe

With these definitions behind us, we can formalize the semantics, i.e. the meaning,
of GDL descriptions. We start with the notion of a Herbrand universe. The
Herbrand universe is the set of all ground terms in the language. In the case of a
language without function constants, the Herbrand universe is exactly the set of all
object constants. In the presence of function constants, we add in the functional
terms that can be formed using those function constants. Since nested functional
terms are forbidden in GDL, the Herbrand universe is always finite.

The Herbrand base for a logic program is the set of all
ground atoms in the language.

Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q
Herbrand Universe: a, b

Herbrand Base:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Herbrand Base

The Herbrand base for a logic program is the set of all ground atoms that can be
formed from the relation constants in the language and the elements of its
Herbrand universe. For example, given the language shown here, the Herbrand
base consists of the six atoms p(a), p(b), q(a,a), and so forth.

An interpretation for a logic program is an arbitrary
subset of the Herbrand base for the program.

Herbrand Base:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Interpretation 1:
{p(a), q(a,b), q(b,a)}

Interpretation 2:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Interpretation 3:
{}

Herbrand Interpretations

A Herbrand interpretation is an arbitrary subset of the Herbrand base for a
program. Intuitively, we can think of a Herbrand interpretation as listing the atoms
that are true in that interpretation. Given the Herbrand base we just saw, here are
three different interpretations. Since there are 6 atoms in the Herbrand base, there
are 2^6 or 64 distinct interpretations.

An interpretation Δ satisfies a ground sentence (i.e. it is a
model) under the following conditions:

 Δ satisfies an atom ϕ iff ϕ∈Δ.

 Δ satisfies ~ϕ iff Δ does not satisfy ϕ.

 Δ satisfies ϕ1 & … & ϕn iff Δ satisfies every ϕi.

 Δ satisfies ϕ2 :- ϕ1 iff
 Δ satisfies ϕ2 whenever it satisfies ϕ1.

An interpretation satisfies a non-ground sentence if and
only if it satisfies every ground instance of that sentence.

Herbrand Models

We say that an interpretation Delta satisfies an expression under the following
conditions. Delta satisfies a ground atom phi if and only if phi is in Delta. Delta
satisfies ~phi if and only if phi is *not* in Delta. Delta satisfies phi1 and phi2 and
so forth if and only if it satisfies every phi_i. Finally, Delta satisfies a rule if and
only if it satisfies the head or fails to satisfy the body. Equivalently, Delta satisfies a
rule if and only if it satisfies the head whenever it satisfies the body. Finally, we
say that Delta satisfies a rule with variables if and only if it satisfies very ground
instance.

In general, a logic program can have more than one
model.

Logic Program:
{p(a,b), q(X,Y):-p(X,Y)}

Model 1: {p(a,b), q(a,b)}

Model 2: {p(a,b), q(a,b), q(b,a)}

Multiple Models

In general, a logic program can have more than one model. Consider the program
consisting of p(a,b) and the rule q(X,Y) if p(X,Y). This program has one model with
just p(a,b) and q(a,b), and it has another model with p(a,b) and q(a,b) and q(b,a).
And it has other models as well. However, it is worth noting that the first model is a
subset of the second. It is clear that p(a) and q(a,b) must be in any model of this
program, but q(b,a) is optional.

To eliminate ambiguity, we adopt a minimal model
semantics. A model D is a minimal model of a program
O iff no proper subset of D is a model of O.

Logic Program:
{p(a,b), q(X,Y):-p(X,Y)}

 Good Model 1: {p(a,b), q(a,b)}
 Bad Model 2: {p(a,b), q(a,b), q(b,a)}

Theorem: Given our various restrictions, every logic
program has a unique minimal model. Therefore,
unambiguous answers. Also, all models are finite!

Minimality

To eliminate such ambiguities, we usually adopt a minimal model semantics for
logic programs. A model D of a program O is minimal if and only if no proper
subset of D is a model of O. One interesting property of our language is that every
logic program has a unique minimal model. Also all models are finite.

Logic programs as just defined are closed in that they fix
the meaning of all relations.

In open logic programs, some of the relations are given
as inputs (rather than being defined) and other relations
are produced as outputs (defined in terms of the inputs).
In other words, open logic programs can be used with
different input datasets to produce different output
datasets.

Open versus Closed Logic Programs

Logic programs as just defined are closed in that they fix the meaning of all
relations in the program. In open logic programs, some of the relations (the inputs)
are undefined, and other relations (the outputs) are defined in terms of these. The
same program can be used with different input relations, yielding different output
relations in each case.

An open logic program is a logic program together with
a partition of the relations into two types - input
relations and output relations.

Output relations can appear anywhere in the program,
while input relations can appear only in the bodies of
rules (never in the heads of rules).

Open Logic Programs

Formally, an open logic program is a logic program together with a partition of the
relation constants into two types - input relations and output relations. Output
relations can appear anywhere in the program, but input relations can appear only
in the subgoals of rules, not in their heads. The input base for an open logic
program is the set of all atoms that can be formed from the base relations of the
program and the entities in the program's domain. An input model is an arbitrary
subset of its input base. The output base for an open logic program is the set of all
atoms that can be formed from the output relations of the program and the entities
in the program's domain. An output model is an arbitrary subset of its output base.

An overall model of an open logic program O with an
input model D is is the minimal model of O∪D.

The output of an open logic program for input D is the
subset of the overall model of O and D that mentions
only output relations.

Inputs and Outputs

Given an open logic program P and an input model D, we define the overall model
corresponding to D to be the minimal model of P U D. The output model
corresponding to D is the intersection of the overall model with the program's
output base; in other words, it consists of those sentences in the overall model that
mention only the output relations.

Base Relations: p, q
View Relations: r
Rules: {r(X,Y) :- p(X,Y) & ~q(Y)}

Input 1: {p(a,b), p(b,b), q(b)}
Output 1: {r(a,b)}

Input 2: {p(a,b), p(b,b)}
Output 2: {r(a,b), r(b,b)}

Example

Finally, we can think of the meaning of an open logic program as a function that
maps each input model for the program into the corresponding output model. For
example, the simple logic program shown here gives different outputs for different
inputs. Given p(a,b) and p(b,b) and q(b), the output is r(a,b). Given just p(a,b) and
p(b,b), the output is r(a,b) and r(b,b).

f(a)

p(a)
p(b)
q(b,a)

p(b)
q(b,a)

p(a)
q(b,a)q(b,a)

p(a)
p(b)
q(a,b)

p(b)
q(a,b)

p(a)
q(a,b)q(a,b)

f(a)

f(b) f(a)

f(a)f(b)

f(b) f(b)

0 50 50 100

0 25 25 50

f(b) f(b)f(b) f(b)f(b) f(b)

Structured State Machine

Okay, now back to game description. As mentioned in the introduction, we can
conceptualize a game as a structured state graph, like the one shown here. GDL
gives us a way of describing such graphs in compact form.

Relation Constants:
 role(role)
 base(proposition)
 input(role,action)
 init(proposition)
 true(proposition)
 next(proposition)
 legal(role,action)
 does(role,action)
 goal(role,number)
 terminal

Object Constants:
 0, 1, 2, 3, … , 100 - numbers (i.e. entities)

Game-Independent Vocabulary

The content of a structured state graph can be expressed in GDL using some
reserved, game-independent vocabulary. The vocabulary is game-independent in
that the same words are used in describing all games. There are ten game-
independent relation constants, viz. the ones shown here. For example, role(a)
means that a is a role in the game. base(p) means that p is a proposition in the
game. action(a) means that a is an action in the game. init(p) means that the
proposition p is true in the initial state. true(p) means that the proposition p is true
in the current state. does(r,a) means that player r performs action a in the current
state. next(p) means that the proposition p is true in the next state. legal(r,a)
means it is legal for role r to play action a in the current state. goal(r,n) means that
player the current state has utility n for player r. terminal means that the current
state is a terminal state. GDL has no game-independent function constants.
However, there are 101 game-independent object constants in GDL, viz. the base
ten representations of the integers from 0 to 100, inclusive, i.e. 0, 1, 2, ... , 100.
These are included for use as utility values for game states, with 0 being low and
100 being high.

Object constants:
 Roles: white, black
 Entities in propositions and actions: a, b, c

Function Constants:
 Relationships in propositions: p, q
 Operations in actions: f, g

Relation Constants:
 Helper relations: r, s

Game-Specific Vocabulary

The first step in writing a game description is to select some game specific
vocabulary to capture the structure of states and actions. For example, here we
have object constants white and black as names for the two roles of our game.
We use a, b, and c to refer to primitive entities in the game. We have names p and
q for relationships among primitive entities and we have f and g as operations that
can be performed on primitive entities. Finally, we have some helper relations r
and s.

Propositions and actions are terms in GDL.

Object constants: a, b, c
Relationship functions: p, q
Action functions: f, g

Propositions as terms: p(a), q(b,c)
Actions as terms: f(a), g(b,c)

Logic program rules say which propositions are true and
which actions are performed (as shown in what follows)
and specify the results of performing actions in states.

Propositions and Actions

The propositions comprising states can be thought of as either object constants or
functional terms in our language formed using relationship functions. Similarly,
actions can be either object constants or functional terms formed using action
functions. For example, applying relationship functions p and q to primitive objects
a, b, and c, we end up with propositions like p(a) and q(b,c). And applying
operations f and g to these objects, we end up with actions f(a) and g(b,c) and so
forth. The rules in a game description say which propositions are true and which
actions are performed (as shown in what follows) and specify the results of
performing actions.

A game description in GDL is an open logic program using
GDL’s game-independent and the game’s game-specific
vocabulary subject to the following constraints.

Inputs: true, does
Outputs: role, base, input, init, legal, next, goal, terminal

(1) role, base, input, init - independent of true and does
(2) legal, goal, terminal - depend on true
(3) next - depends on true and does

GDL Descriptions

Finally, we define a game description as an open logic program using GDL’s game-
independent vocabulary together with the game’s game-specific vocabulary
subject to the following restrictions. true and does are the input relations to the
program. (1) A GDL game description must give complete definitions for role,
action, base, init. (2) It must define legal and goal and terminal in terms of an input
true relation. (3) It must define next in terms of input true and does relations.
Since does and true are treated as inputs, there must not be any rules with either
of these relations in the head.

Okay, that’s a lot to digest. In the abstract, these concepts are difficult to master,
and they are not well-motivated. In practice, things are much simpler. In the next
couple of segments, we illustrate these notions by looking at a specific game
description and how it is used in simulating a game.

/42

/42

Game Description Example

Object constants:
 white, black - roles
 1, 2, 3 - indices of rows and columns
 x, o, b - marks
 noop - no-op action

Function Constants:
 cell(index,index,mark) --> proposition
 control(role) --> proposition
 mark(index,index) --> action

Relation Constants:
 row(index,mark)
 column(index,mark)
 diagonal(mark)
 line(mark)
 open

Game-Specific Vocabulary

Let's look at GDL in the context of a specific game, viz. Tic-Tac-Toe. As
fundamental entities, we include white and black (the roles of the game), 1, 2, 3
(indices of rows and columns on the Tic-Tac-Toe board), and x, o, b (meaning
blank).
We use the ternary function constant cell together with a row index and a column
index and a mark to designate the proposition that the cell in the specified row and
column contains the specified mark. For example, the datum cell(2,3,o) asserts
that there is an o in the cell in row 2 and column 3. We use control to say whose
turn it is to mark a cell. For example, the proposition control(white) asserts that it is
white's turn.
In Tic-Tac-Toe, there only two types of actions a player can perform - it can mark a
cell or it can do nothing (which is what a player does when it is not his turn to mark
a cell). The binary relation mark together with a row m and a column n designates
the action of placing a mark in row m and column n. The mark placed there
depends on who does the action. The object constant noop refers to the act of
doing nothing. Finally, we have some helper vocabulary, whose purpose will soon
become clear.

! ! ! ! ! cell(1,1,x)
! ! ! ! ! cell(1,2,b)
! ! ! ! ! cell(1,3,b)
! ! ! ! ! cell(2,1,b)
! ! ! ! ! cell(2,2,o)
! ! ! ! ! cell(2,3,b)
! ! ! ! ! cell(3,1,b)
! ! ! ! ! cell(3,2,b)
! ! ! ! ! cell(3,3,x)
! ! ! ! ! control(black)

X
O

X

State Representation

A state of a game is an arbitrary subset of the system's propositions. The
propositions in a state are assumed to be true whenever the game in is that state,
and all others are assumed to be false. For example, we can describe the Tic-Tac-
Toe state shown here on the left with the set of propositions shown on the right.

role(white)
role(black)

base(cell(M,N,Z)) :-
 index(M) &
 index(N) &
 filler(Z)

base(control(W)) :- role(W)

input(W,mark(X,Y)) :-
 role(W) &
 index(X) &
 index(Y)

input(W,noop) :- role(W)

init(cell(X,Y,b)) :-
 index(X) &
 index(Y)

init(control(white))

legal(P,mark(X,Y)) :-
 true(cell(X,Y,b)) &
 true(control(P))

legal(x,noop) :-
 true(control(black))

legal(o,noop) :-
 true(control(white))

terminal :- line(P)
terminal :- ~open

row(M,P) :-
 true(cell(M,1,P)) &
 true(cell(M,2,P)) &
 true(cell(M,3,P))

column(N,P) :-
 true(cell(1,N,P)) &
 true(cell(2,N,P)) &
 true(cell(3,N,P))

diagonal(P) :-
 true(cell(1,1,P)) &
 true(cell(2,2,P)) &
 true(cell(3,3,P))

diagonal(P) :-
 true(cell(1,3,P)) &
 true(cell(2,2,P)) &
 true(cell(3,1,P))

line(P) :- row(M,P)
line(P) :- column(N,P)
line(P) :- diagonal(P)

open :- true(cell(M,N,b))

index(1) filler(x)
index(2) filler(o)
index(3) filler(b)

next(cell(M,N,x)) :-
 does(white,mark(M,N))

next(cell(M,N,0)) :-
 does(black,mark(M,N))

next(cell(M,N,Z)) :-
 does(P,mark(M,N)) &
 true(cell(M,N,Z)) & Z!=b

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(M,J)

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(N,K)

next(control(white)) :-
 true(control(black))

next(control(black)) :-
 true(control(white))

goal(white,100) :- line(x) & ~line(o)
goal(white,50) :- ~line(x) & ~line(o)
goal(white,0) :- ~line(x) & line(o)
goal(black,100) :- ~line(x) & line(o)
goal(black,50) :- ~line(x) & ~line(o)
goal(black,0) :- line(x) & ~line(o)

Rules of Tic-Tac-Toe

Using this conceptualization of states, we can define the game of Tic Tac Toe with
a small set of logical sentences, as shown here. The game has thousands of
states, yet it can be described with just one page of rules. A similarly parsimony is
possible for other games. For example, Chess has more than 10^30 states and
yet it can be described in about four pages of rules of the sort shown here. ...
Let’s look at each of these groups of rules in more detail.

role(white)
role(black)

Roles

We first identify the two roles in the game, viz. white and black.

base(cell(X,Y,W)) :-
 index(X) &
 index(Y) &
 filler(W)

base(control(W)) :-
 role(W)

index(1)
index(2)
index(3)

filler(x)
filler(o)
filler(b)

Propositions

Next, we define the propositions. Since there are only 29 propositions, we could
do this by writing 29 ground atoms. However, we can do this more economically
by writing two rules, as shown here, together with six ground atoms. An
expression of the form cell(X,Y,W) is a proposition if X is an index and Y is an index
and W is a role. An index is either 1, 2, or 3. A filler is either an x, an o, or a b (for
blank).

input(W,mark(X,Y)) :-
 role(W) &
 index(X) &
 index(Y)

input(W,noop) :-
 role(W)

Actions

We can do the same with actions. An expression mark(X,Y) is an action for W if W
is a role, if X is an index, and if Y is an index. noop is also a possible action for
either player.

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Initial State

Next, we characterize the initial state by writing all relevant propositions that are
true in the initial state. In this case, all cells are blank; and the x player has control.

legal(W,mark(X,Y)) :-
 true(cell(X,Y,b)) &
 true(control(W))

legal(white,noop) :-
 true(control(black))

legal(black,noop) :-
 true(control(white))

Legality

Next, we define legality. A player may mark a cell if that cell is blank and it has
control. Otherwise, the only legal action is noop.

next(cell(M,N,x)) :-
 does(white,mark(M,N))

next(cell(M,N,o)) :-
 does(black,mark(M,N))

next(cell(M,N,b)) :-
 does(W,mark(J,K)) &
 true(cell(M,N,b)) & M!=J

next(cell(M,N,b)) :-
 does(W,mark(J,K)) &
 true(cell(M,N,b)) & N!=K

next(cell(M,N,Z)) :-
 does(W,mark(M,N)) &
 true(cell(M,N,Z)) & Z!=b

next(control(white)) :-
 true(control(black))

next(control(black)) :-
 true(control(white))

Physics

Next, we look at the update rules for the game, in other words, its “physics”. A cell
is marked with an x or an o if the appropriate player marks that cell. If a cell is
blank and is not marked on that step, then it remains blank. If a cell contains a
mark, it retains that mark on the subsequent state. Finally, control alternates on
each play.

row(M,W) :-!! ! diagonal(W) :-
 true(cell(M,1,W)) &! true(cell(1,1,W)) &
 true(cell(M,2,W)) &! true(cell(2,2,W)) &
 true(cell(M,3,W))! true(cell(3,3,W))

column(N,W) :-! ! diagonal(W) :-
 true(cell(1,N,W)) &! true(cell(1,3,W)) &
 true(cell(2,N,W)) &! true(cell(2,2,W)) &
 true(cell(3,N,W))! true(cell(3,1,W))

line(W) :- row(M,W)
line(W) :- column(N,W)
line(W) :- diagonal(W)

open :- true(cell(M,N,b))

Supporting Concepts

Before we get to rewards and termination, here are some supporting concepts. A
row of marks mean thats there three marks all with the same first coordinate. The
column and diagonal relations are defined analogously. A line is a row of marks of
the same type or a column or a diagonal. Finally, a game is open provided that
there is some cell containing a blank.

goal(white,100) :- line(x)
goal(white,50) :- ~line(x) & ~line(o)
goal(white,0) :- line(o)

goal(black,100) :- line(o)
goal(black,50) :- ~line(x) & ~line(o)
goal(black,0) :- line(x)

terminal :- line(W)
terminal :- ~open

Goals and Termination

Goals. The white player gets 100 points if there is a line of x marks and no line of o
marks. If there are no lines of either sort, white gets 50 points. If there is a line of o
marks and no line of x marks, then white gets 0 points. The rewards for black are
analogous.
And, finally, termination. A game terminates whenever either player has a line of
marks of the appropriate type or if the board is not open, i.e. there are no cells
containing blanks.

/42

/42

Game Simulation Example

role(white)
role(black)

role(white)
role(black)

Roles

As an exercise in logic programming and GDL, let's look at the outputs of the
ruleset defined in the preceding segment at various points during an instance of
the game. To start, we can use the ruleset to compute the roles of the game. This
is simple in the case of Tic-Tac-Toe, as they are contained explicitly in the ruleset.

base(cell(1,1,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(1,2,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(1,3,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(2,1,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(2,2,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(2,3,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(3,1,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(3,2,x)) base(cell(1,1,b)) base(cell(1,1,b))
base(cell(3,3,x)) base(cell(1,1,b)) base(cell(1,1,b))

 base(control(white))
 base(control(black))

base(cell(X,Y,W)) :- index(1)
 index(X) & index(2)
 index(Y) & index(3)
 filler(W)

base(control(W)) :- filler(x)
 role(W) filler(o)
 filler(b)

Base Propositions

Similarly, we can compute the possible propositions. Remember that this gives a
list of all such propositions; only a subset will be true in any particular state.

input(white,mark(1,1)) input(white,mark(2,1)) input(white,mark(3,1))
input(white,mark(1,2)) input(white,mark(2,2)) input(white,mark(3,2))
input(white,mark(1,3)) input(white,mark(2,3)) input(white,mark(3,3))

input(black,mark(1,1)) input(black,mark(2,1)) input(black,mark(3,1))
input(black,mark(1,2)) input(black,mark(2,2)) input(black,mark(3,2))
input(black,mark(1,3)) input(black,mark(2,3)) input(black,mark(3,3))

 input(white,noop)
 input(black,noop)

input(W,mark(X,Y)) :- index(1)
 index(X) & index(2)
 index(Y) & index(3)
 role(W)

input(W,noop) :-
 role(W)

Inputs

We can also compute the relevant actions of the game for each player. The
extension of the input relation in this case consists of the twenty sentences shown
here.

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Initial State

The first step in playing or simulating a game is to compute the initial state. We can
do this by computing the init relation. As with roles, this is easy in this case, since
the initial conditions are explicitly listed in the program.

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Initial State

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

Once we have these conditions, we can turn them into a state description for the
first step by asserting that each initial condition is true.

terminal :- line(W)
terminal :- ~open

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

Termination

Taking this input data and the logic program, we can check whether the state is
terminal. In this case, it is not.

goal(white,50)
goal(black,50)

goal(x,100) :- line(x) & ~line(o)
goal(x,50) :- ~line(x) & ~line(o)
goal(x,0) :- ~line(x) & line(o)
goal(o,100) :- ~line(x) & line(o)
goal(o,50) :- ~line(x) & ~line(o)
goal(o,0) :- line(x) & ~line(o)

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

Goals

We can also compute the goal values of the state. Since the state is non-terminal,
there is not much point in doing that; but the description does give us the values
shown here.

legal(white,mark(1,1))
legal(white,mark(1,2))
legal(white,mark(1,3))
legal(white,mark(2,1))
legal(white,mark(2,2))
legal(white,mark(2,3))
legal(white,mark(3,1))
legal(white,mark(3,2))
legal(white,mark(3,3))
legal(black,noop)

Legal Actions
legal(P,mark(X,Y)) :-
 true(cell(X,Y,b)) &
 true(control(P))

legal(x,noop) :-
 true(control(black))

legal(o,noop) :-
 true(control(white))

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

More interestingly, using this state description and the logic program, we can
compute legal actions in this state. The white player has nine possible actions (all
marking actions), and the black player has just one (noop).

does(white,mark(1,1))
does(black,noop)

Actions

Let's suppose that the white player chooses the first legal action and the black
player chooses its sole legal action noop. This gives us the dataset for does shown
here.

next(cell(1,1,x))
next(cell(1,2,b))
next(cell(1,3,b))
next(cell(2,1,b))
next(cell(2,2,b))
next(cell(2,3,b))
next(cell(3,1,b))
next(cell(3,2,b))
next(cell(3,3,b))
next(control(black))

Next State

does(white,mark(1,1))
does(black,noop)

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

next(cell(M,N,x)) :-
 does(white,mark(M,N))

next(cell(M,N,0)) :-
 does(black,mark(M,N))

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(M,J)

next(cell(M,N,b)) :-
 does(P,mark(J,K)) &
 true(cell(M,N,b)) &
 distinct(N,K)

next(cell(M,N,Z)) :-
 does(P,mark(M,N)) &
 true(cell(M,N,Z)) &
 distinct(Z,b)

next(control(white)) :-
 true(control(black))

next(control(black)) :-
 true(control(white))

Now, combining this dataset with the state description above and the logic
program, we can compute what must be true in the next state. For example, using
the first update rule and the first does fact, we can conclude the first fact about the
next state, viz. that there will be an x in cell 1,1.

next(cell(1,1,x))
next(cell(1,2,b))
next(cell(1,3,b))
next(cell(2,1,b))
next(cell(2,2,b))
next(cell(2,3,b))
next(cell(3,1,b))
next(cell(3,2,b))
next(cell(3,3,b))
next(control(o))

Next State

true(cell(1,1,x))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(o))

To produce a description for the resulting state, we substitute true for next in each
of these sentences and repeat the process. This continues until we encounter a
state that is terminal, at which point we can compute the goals of the players in a
similar manner.

/42

/42

Miscellaneous

Of necessity, game descriptions are logically
incomplete in that they do not uniquely specify the
moves of the players.

Every game description contains complete definitions
for initial state, legality, termination, goalhood, and
update in terms of the state and the does relation.

The upshot is that in every state every player can
determine legality, termination, goalhood and, given a
joint move, can update the state.

Completeness

Of necessity, game descriptions are logically incomplete in that they do not
uniquely specify the moves of the players. However, every game description does
contain complete definitions for initial state, legality, termination, goalhood, and
update. The upshot is that in every state every player can determine legality,
termination, goalhood and, given a joint move, can update the state.

A game description in GDL terminates if and only if all
infinite sequences of legal moves from the initial state of
the game reach a terminal state after a finite number of
steps.

Termination

A game terminates if all infinite sequences of legal moves from the initial state of
the game reach a terminal state after a finite number of steps. In General Game
Playing, we currently require that all games terminate in this way.

A game is playable if and only if every player has at
least one legal move in every non-terminal state.

Note that in chess, if a player cannot move, it is a
stalemate. Fortunately, this is a terminal state.

In GGP, we guarantee that every game is playable.

Playability

A game description in GDL is playable if and only if every role has at least one
legal move in every non-terminal state reachable from the initial state. Note that in
chess, if a player cannot move, it is a stalemate. Fortunately, this is a terminal
state. In GGP, we guarantee that every game is playable.

A game is strongly winnable if and only if, for some
player, there is a sequence of individual moves of that
player that leads to a terminating goal state for that
player.

A game is weakly winnable if and only if, for every
player, there is a sequence of joint moves of the
players that leads to a terminating goal state for that
player.

In GGP, every game is weakly winnable, and all single
player games are strongly winnable.

Winnability

A game is strongly winnable if and only if, for some player, there is a sequence of
individual moves of that player that leads to a terminating goal state for that player.
A game is weakly winnable if and only if, for every player, there is a sequence of
joint moves of the players that leads to a terminating goal state for that player. In
GGP, every game is at least weakly winnable, and all single player games are
strongly winnable.

What we see:

next(cell(M,N,x)) :-
 does(white,mark(M,N)) &
 true(cell(M,N,b))

What the player sees:

next(welcoul(M,N,himenoing)) :-
 does(himenoing,dukepse(M,N)) &
 true(welcoul(M,N,lorenchise))

Obfuscation

Obfuscation next. In order to prevent programmers from building in specialized
capabilities for specific words in game descriptions, it is common for game
managers to obfuscate descriptions. All words are consistently replaced by
nonsense words, as in the example shown here. The only exceptions are
variables and a selection of constants common to all games, such as next, does,
true, and so forth.

Syntax is prefix version of standard syntax.
Operators are renamed.
Case-independent. Variables are prefixed with ?.

r(X,Y) :- p(X,Y) & ~q(Y)

(<= (r ?x ?y) (and (p ?x ?y) (not (q ?y))))
or

(<= (r ?x ?y) (p ?x ?y) (not (q ?y)))

Semantics is the same.

Prefix GDL

Finally, there is an issue of syntax. The version of GDL presented here uses
traditional infix syntax. However, this is not the only version of the language. There
is also a version that uses prefix syntax. Although some general game playing
environments support Infix GDL, it is not universal. On the other hand, all current
systems support Prefix GDL. Fortunately, there is a direct relationship between the
two syntaxes, and it is easy to convert between them. There is just one issue to
worry about.

Prefix GDL is case independent.

(<= (cell ?x ?y) (rowIndex ?x) (colIndex ?y))
(<= (cell ?x ?y) (rowindex ?x) (colindex ?y))
(<= (CELL ?x ?y) (ROWINDEX ?x) (COLINDEX ?y))

Mapping to/from KIF might lose case information.

cell(X,Y) :- rowIndex(X) & colIndex(Y)
(<= (cell ?x ?y) (rowIndex ?x) (colIndex ?y))

cell(X,Y) :- rowindex(X) & colindex(Y)

Good practice to use just one case in naming constants.
Common practice to use lower case.

Case Independent

The issue is the spelling of constants and variables. Prefix GDL is case-
independent, so we cannot use capital letters to distinguish the two. Constants are
spelled the same in both versions; but, in prefix GDL, we distinguish variables by
beginning with the character '?'. Thus, the constant a is the same in both
languages while the variable X in Infix GDL is spelled ?x or ?X in Prefix GDL.
Unfortunately, mapping between the two can be tricky since a case-independent
system might discard case information. Hence, it is good practice to use just one
case in naming constants; and it is common practice to use lower case.

These are the same:

(cell a ?y)
(cell a ?y)
(cell a ?y)

(cell a ?y)

These are not the same:

(cell a ?y)
(ce ll a ?y)
(cell a ? y)

White Space

Finally, just to be clear on this, in Prefix GDL white space (spaces, tabs, carriage
returns, line feeds, and so forth) can appear anywhere other than in the middle of
constants, variables, and operator names. Thus, there can be multiple spaces
between the components of an expression; there can be spaces after the open
parenthesis of an expression and before the operator or relation constant or
function constant; and there can be spaces after the last component of an
expression and the closing parenthesis.

/42

