
General Game Playing



Game Description



General Game Players are systems able to play 
arbitrary games effectively based solely on formal 
descriptions supplied at “runtime”.

Translation: They don’t know the rules until the game 
starts.

General Game Playing

The defining characteristic of General Game Playing is that players do not know 
the rules of games before those games begin.  Game rules are communicated at 
"runtime", and the players must be able to read and understand the descriptions 
they are given in order to play legally and effectively.  This characteristic carries 
with it the requirement of  language for writing game rules.



Game Description Language (or GDL) is a formal 
language for encoding the rules of games.

GDL is widely used in the research literature and is used 
in virtually all General Game Playing competitions.

GDL extensions are applicable in real-world applications 
such as Enterprise Management and Computational Law.

Game Description Language

In general game playing, information about games is typically communicated to 
players in a formal language called Game Description Language, or GDL. As 
mentioned in the Introduction, GDL is widely used in the research literature and is 
used in virtually all General Game Playing competitions.  Moreover, it forms the 
basis for some more expressive variants that have significant  value in real-world 
applications, such as Enterprise Management and Computational Law.



role(x)
role(o)

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(x))

legal(P,mark(X,Y)) :-
  true(cell(X,Y,b)) &
  true(control(P))

legal(x,noop) :-
  true(control(o))

legal(o,noop) :-
  true(control(x))

next(cell(M,N,P)) :-
    does(P,mark(M,N))

next(cell(M,N,Z)) :-
    does(P,mark(M,N)) &
    true(cell(M,N,Z)) & Z!=b

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(M,J)

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(N,K)

next(control(x)) :-
    true(control(o))

next(control(o)) :-
    true(control(x))

terminal :- line(P)
terminal :- ~open

goal(x,100) :- line(x) & ~line(o)
goal(x,50) :- ~line(x) & ~line(o)
goal(x,0) :- ~line(x) & line(o)
goal(o,100) :- ~line(x) & line(o)
goal(o,50) :- ~line(x) & ~line(o)
goal(o,0) :- line(x) & ~line(o)

row(M,P) :-
    true(cell(M,1,P)) &
    true(cell(M,2,P)) &
    true(cell(M,3,P))

column(N,P) :-
    true(cell(1,N,P)) &
    true(cell(2,N,P)) &
    true(cell(3,N,P))

diagonal(P) :-
    true(cell(1,1,P)) &
    true(cell(2,2,P)) &
    true(cell(3,3,P))

diagonal(P) :-
    true(cell(1,3,P)) &
    true(cell(2,2,P)) &
    true(cell(3,1,P))

line(P) :- row(M,P)
line(P) :- column(N,P)
line(P) :- diagonal(P)

open :- 
true(cell(M,N,b))

Tic-Tac-Toe

GDL is a Logic Programming Language

As we shall see, GDL is a logic programming language.  Game descriptions are 
logic programs consisting of rules that define the key elements of games, such as 
initial conditions, move legality, game dynamics, rewards, and termination.



Logic Programs in GDL

Game Description Example
Game Simulation Example

Game Requirements
Prefix GDL

Programme

This lesson is an overview of GDL.  We begin with a detailed introduction to GDL. 
We then look at a sample game description, and we look at the use of this 
description in simulating a match of the game. Finally, we talk about additional 
requirements on games that ensure that they are interesting; and we summarize 
the prefix syntax for GDL used in most GGP competitions.
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Game Description Language



A logic program is a collection of logical rules that 
define relations either (1) directly by enumeration or (2) 
indirectly in the form of rules.

Logic Programs

A logic program is a collection of logical rules that define relations either (1) directly 
by enumeration or (2) indirectly in the form of rules.



Data:
parent(art,bob)
parent(amy,bob)
parent(bob,cal)
parent(bob,coe)

Rule: 
grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

Output:
grandparent(art,cal)
grandparent(art,coe)
grandparent(amy,cal)
grandparent(amy,coe)

Simple Example

Here is a simple example.  The first four sentences here define the parent relation 
by enumeration.  Art is the parent of Bob, and Amy is the parent of Bob.  Bob is the 
parent of Cal and Coe.  The rule in the middle defines the grandparent relation in 
terms of the parent relation.  X is the grandparent of Z if X is a parent of some 
person Y and Y is a parent of Z.  As we shall see, given these definitions of parent 
and grandparent, we can conclude that Art and Amy are the grandparents of Cal 
and Coe.



 Semantics is purely declarative
    No assert or retract
    No cut

Restrictions assure decidability of pertinent questions
    Safety
    Stratified Recursion
    Stratified Negation
    No nested functional terms

Reserved Words
    role, init, legal, next, goal, terminal, ...
    described in next segment

GDL Similar to Prolog but ...

GDL is a logic programming language and in many ways resembles Prolog, the 
most popular logic programming language.   However, there are several important 
differences.  (1) First of all, the semantics of GDL is purely declarative, i.e. there 
are no imperative features, such as assert, retract, and cut.  (2) Second, GDL has 
restrictions that ensure that all pertinent questions are decidable; in particular, all 
relations can be computed in finite time.  (3) Finally there are some reserved 
words, which tailor the language to the task of defining games.  Despite these 
restrictions, we frequently use the phrase logic program to refer to a game 
descriotion in GDL.



Components:
    Object Constants: a, b, c
    Function Constants: f, g, h
    Relation Constants: p, q, r
    Variables: X, Y, Z

The arity of a function constant or relation constant is the 
number of arguments that can be associated with the 
function constant or relation constant in writing complex 
expressions in the language.

Vocabulary

Logic programs in GDL are built up from four disjoint classes of symbols, viz. 
object constants, function constants, relation constants, and variables. In what 
follows, we write such symbols as strings of letters, digits, and a few non-
alphanumeric characters (e.g. "_"). Constants must begin with a lower case letter 
or digit. Variables must begin with an upper case letter.

The arity of a function constant or relation constant is the number of “arguments” 
that can be “associated” with the function or relation when writing expressions (as 
we shall see).



Terms:
    Object Constants: a, b
    Variables: X, Y, Z 
    Functional Terms: f(a), g(X,b)

In traditional logic programs, functional terms can be 
nested within other functional terms, but this is not 
permitted in GDL.

Syntax

A term is either an object constant, a variable, or a functional term. A functional 
term is an expression consisting of an n-ary function constant and n simpler terms. 
In what follows, we write functional terms in traditional mathematical notation - the 
function constant followed by its arguments enclosed in parentheses and 
separated by commas. For example, if f is a unary function constant and g is a 
binary function constant, if a and b are object constants, and if X is a variable, then 
f(a) is a functional term, and so is g(X,b).



Atoms
 p(a,b), p(a,f(a)), p(g(a,b),c)

Negations
~p(a,b)

A literal is either an atom or a negation of an atom.
p(a,b), ~p(a,b)

An atom is a positive literal.
A negations is a negative literal.

Atoms, Negations, and Literals

An atom is an expression consisting of an n-ary relation constant and n terms. In 
what follows, we write atoms in traditional mathematical notation - the relation 
constant followed by its arguments enclosed in parentheses and separated by 
commas. For example, if p is a binary relation constant and if a and b are object 
constants, then p(a,b) is an atom.  A negation is an expression formed using the 
negation sign ~ and an atom. For example, ~p(a,b).  A literal is either an atom or a 
negation.  An atom is sometimes called a positive literal, and a negation is 
sometimes called a negative literal.



                                  subgoal         …            subgoal
p(x1, ... , xn) :- [~]p1(x11, ... , x1n1) & ... & [~]pk(xk1, ... , xknk)

 
head	

 	

 	

    	

 	

 	

 	

      body

Rules

A rule is an expression consisting of a distinguished atom, called the head, and a 
conjunction of zero or more literals, called the body, separated by the :- operator. 
The literals in the body are called subgoals.  The intended meaning is that an 
instance of the head is true whenever corresponding instances of all of the positive 
subgoals are true and all of the negative subgoals are false.



A logic program is a finite set of atoms and rules 
(subject to conditions described shortly). 

Example:
p(X,Y) :- f(X,Y)
p(X,Y) :- m(X,Y)

Example:
g(X,Z) :- p(X,Y) & p(Y,Z)

Example:
a(X,Z) :- p(X,Z)
a(X,Z) :- p(X,Y) & a(Y,Z)

Example:
ra(X,Y) :- a(X,Y) & ~p(X,Y)

GDL Descriptions

A logic program in GDL is a finite set of atoms and rules of this form. In order to 
simplify our definitions and analysis, we occasionally talk about infinite sets of 
rules. While these sets are useful, they are not themselves logic programs.  Here 
are some examples.  In this first example, we define the parent relation p in terms 
of father f and mother m.  In the second example, we define grandparent in terms 
of parent.  In the third, we define ancestor in terms of parent.  Note that the 
definition in this case is recursive.  Finally, we define remote ancestor as any 
ancestor that is not a parent.

Although every GDL description is a finite set of atoms and rules, not every finite 
set of atoms and rules is a GDL description.  As mentioned earlier, there are some 
restrictions to ensure that such descriptions have desirable properties.



A rule is safe if and only if every variable in the head 
appears in some positive subgoal in the body.  

Safe Rule:
r(X,Z) :- p(X,Y) & q(Y,Z) & ~r(X,Y)

Unsafe Rule:
r(X,Z) :- p(X,Y) & q(Y,X)

Unsafe Rule:
r(X,Y) :- p(X,Y) & ~q(Y,Z)

In GDL, we require all rules to be safe.

Safety

The first of these restrictions is called safety.  A rule in a logic program is safe if 
and only if every variable that appears in the head or in any negative literal in the 
body also appears in at least one positive literal in the body.  The first rule shown 
here is safe.  Variables X and Z appear in the head and Y appears in a negative 
subgoal.  Fortunately, all three of those variables appear in positive subgoals as 
well, and so the rule is safe.  The second is not safe because variable Z appears in 
the head but not in any positive subgoal.  The third rule is not safe because the 
variable Z appears in a negative subgoal but not in a positive subgoal. In GDL, we 
require all rules to be safe.



The dependency graph for a set of rules is a directed graph in 
which (1) the nodes are the relations mentioned in the head and 
bodies of the rules and (2) there is an arc from a node p to a 
node q whenever p occurs with the body of a rule in which q is 
in the head.

     r(X,Y) :- p(X,Y) & q(X,Y)
    s(X,Y) :- r(X,Y)
    s(X,Z) :- r(X,Y) & t(Y,Z)
    t(X,Z) :- s(X,Y) & s(Y,X)

A set of rules is recursive if it contains a cycle.  Otherwise, it is 
non-recursive.

r

p q

s

t

Dependency Graph

The next two restrictions on GDL descriptions have to do with recursion.  The 
restrictions are best defined using the notion of dependency graphs.  The 
dependency graph for a set of rules is a directed graph in which (1) the nodes are 
the relations mentioned in the head and bodies of the rules and (2) there is an arc 
from a node p to a node q whenever p occurs with the body of a rule in which q is 
in the head.  A set of rules is recursive if and only if its dependency graph contains 
a cycle.



The recursion in a set of rules is said to be stratified if 
and only if every variable in a subgoal relation occurs in 
a subgoal with a relation at a lower stratum.

Stratified Recursion:
r(X,Z) :- p(X,Y) & q(Z) & r(Y,Z)

Recursion that is not stratified:

r(X,Z) :- r(X,Y) & r(Y,Z)

In GDL, we require that all recursions be stratified.

Stratified Recursion

A recursion in a set of rules is said to be stratified if and only if every variable in a 
subgoal relation occurs in a subgoal with a relation at a lower stratum.  The 
recursion in the first rule shown here is stratified because all of the variables 
involved in the recursion occur in relations that are not defined in terms of r.  The 
recursion in the second rule is not stratified because the variables involved in the 
recursion do not appear in other relations.  In GDL, we require that all recursions 
be stratified.



The negation in a set of rules is said to be stratified if 
and only if there is no recursive cycle in the dependency 
graph involving a negation.  

Negation that is not stratified:
	

 r(X,Z) :- p(X,Y,Z)
! r(X,Z) :- p(X,Y,Z) & ~r(Y,Z)

Stratified Negation:
	

 t(X,Y) :- q(X,Y) & ~r(X,Y)
! r(X,Z) :- p(X,Y)
! r(X,Z) :- r(X,Y) & r(Y,Z)

In GDL, we require that all negations be stratified.

Stratified Negation

A negation in a set of rules is said to be stratified if and only if there is no recursive 
cycle in the dependency graph involving a negation.  For example, the first rule set 
shown here is not stratified because there is a cycle involving a negative 
occurrence of r.  By contrast, the second set of rules is stratified.  The rule set is 
recursive, but there is no negation in the cycle.  The only negative occurrence of r 
occurs in the definition of t and is not part of any recursion.  In GDL, we require all 
negations to be stratified.



The Herbrand universe for a logic program is the set of 
all ground terms in the language.

Example 1:
    Object Constants: a, b
    Herbrand Universe: a, b

Example 2:
    Object Constants: a, b
    Unary Function Constants: f
    Binary Function Constant: g 
    Herbrand Universe: a, b, f(a), f(b), g(a,a), …

Herbrand Universe

With these definitions behind us, we can formalize the semantics, i.e. the meaning, 
of GDL descriptions. We start with the notion of a Herbrand universe.  The 
Herbrand universe is the set of all ground terms in the language.  In the case of a 
language without function constants, the Herbrand universe is exactly the set of all 
object constants.  In the presence of function constants, we add in the functional 
terms that can be formed using those function constants.  Since nested functional 
terms are forbidden in GDL, the Herbrand universe is always finite.



The Herbrand base for a logic program is the set of all 
ground atoms in the language.

Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q
Herbrand Universe: a, b

Herbrand Base:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Herbrand Base

The Herbrand base for a logic program is the set of all ground atoms that can be 
formed from the relation constants in the language and the elements of its 
Herbrand universe.  For example, given the language shown here, the Herbrand 
base consists of the six atoms p(a), p(b), q(a,a), and so forth.



An interpretation for a logic program is an arbitrary 
subset of the Herbrand base for the program.

Herbrand Base:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Interpretation 1:
{p(a), q(a,b), q(b,a)}

Interpretation 2:
{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)}

Interpretation 3:
{}

Herbrand Interpretations

A Herbrand interpretation is an arbitrary subset of the Herbrand base for a 
program.  Intuitively, we can think of a Herbrand interpretation as listing the atoms 
that are true in that interpretation.  Given the Herbrand base we just saw, here are 
three different interpretations.  Since there are 6 atoms in the Herbrand base, there 
are 2^6 or 64 distinct interpretations.



An interpretation Δ satisfies a ground sentence (i.e. it is a 
model) under the following conditions:

    Δ satisfies an atom ϕ iff ϕ∈Δ.

    Δ satisfies ~ϕ iff Δ does not satisfy ϕ.

    Δ satisfies ϕ1 & … & ϕn iff Δ satisfies every ϕi.

    Δ satisfies ϕ2 :- ϕ1 iff
            Δ satisfies ϕ2 whenever it satisfies ϕ1.

An interpretation satisfies a non-ground sentence if and 
only if it satisfies every ground instance of that sentence.

Herbrand Models

We say that an interpretation Delta satisfies an expression under the following 
conditions.  Delta satisfies a ground atom phi if and only if phi is in Delta.  Delta 
satisfies ~phi if and only if phi is *not* in Delta.  Delta satisfies phi1 and phi2 and 
so forth if and only if it satisfies every phi_i.  Finally, Delta satisfies a rule if and 
only if it satisfies the head or fails to satisfy the body.  Equivalently, Delta satisfies a 
rule if and only if it satisfies the head whenever it satisfies the body.  Finally, we 
say that Delta satisfies a rule with variables if and only if it satisfies very ground 
instance.



In general, a logic program can have more than one 
model.

Logic Program:
{p(a,b), q(X,Y):-p(X,Y)}

Model 1: {p(a,b), q(a,b)}

Model 2: {p(a,b), q(a,b), q(b,a)}

Multiple Models

In general, a logic program can have more than one model.  Consider the program 
consisting of p(a,b) and the rule q(X,Y) if p(X,Y).  This program has one model with 
just p(a,b) and q(a,b), and it has another model with p(a,b) and q(a,b) and q(b,a).  
And it has other models as well.  However, it is worth noting that the first model is a 
subset of the second.  It is clear that p(a) and q(a,b) must be in any model of this 
program, but q(b,a) is optional.



To eliminate ambiguity, we adopt a minimal model 
semantics.  A model D is a minimal model of a program 
O iff no proper subset of D is a model of O.

Logic Program:
{p(a,b), q(X,Y):-p(X,Y)}

 Good  Model 1: {p(a,b), q(a,b)}
 Bad    Model 2: {p(a,b), q(a,b), q(b,a)}

Theorem: Given our various restrictions, every logic 
program has a unique minimal model.  Therefore, 
unambiguous answers.  Also, all models are finite!

Minimality

To eliminate such ambiguities, we usually adopt a minimal model semantics for 
logic programs.  A model D of a program O is minimal if and only if no proper 
subset of D is a model of O.  One interesting property of our language is that every 
logic program has a unique minimal model.  Also all models are finite.



Logic programs as just defined are closed in that they fix 
the meaning of all relations.

In open logic programs, some of the relations are given 
as inputs (rather than being defined) and other relations 
are produced as outputs (defined in terms of the inputs).  
In other words, open logic programs can be used with 
different input datasets to produce different output 
datasets.

Open versus Closed Logic Programs

Logic programs as just defined are closed in that they fix the meaning of all 
relations in the program. In open logic programs, some of the relations (the inputs) 
are undefined, and other relations (the outputs) are defined in terms of these. The 
same program can be used with different input relations, yielding different output 
relations in each case.



An open logic program is a logic program together with 
a partition of the relations into two types - input 
relations and output relations.

Output relations can appear anywhere in the program, 
while input relations can appear only in the bodies of 
rules (never in the heads of rules).

Open Logic Programs

Formally, an open logic program is a logic program together with a partition of the 
relation constants into two types - input relations and output relations. Output 
relations can appear anywhere in the program, but input relations can appear only 
in the subgoals of rules, not in their heads.  The input base for an open logic 
program is the set of all atoms that can be formed from the base relations of the 
program and the entities in the program's domain. An input model is an arbitrary 
subset of its input base.  The output base for an open logic program is the set of all 
atoms that can be formed from the output relations of the program and the entities 
in the program's domain. An output model is an arbitrary subset of its output base.



An overall model of an open logic program O with an 
input model D is is the minimal model of O∪D.

The output of an open logic program for input D is the 
subset of the overall model of O and D that mentions 
only output relations.

Inputs and Outputs

Given an open logic program P and an input model D, we define the overall model 
corresponding to D to be the minimal model of P U D. The output model 
corresponding to D is the intersection of the overall model with the program's 
output base; in other words, it consists of those sentences in the overall model that 
mention only the output relations.



Base Relations: p, q
View Relations: r
Rules: {r(X,Y) :- p(X,Y) & ~q(Y)}

Input 1: {p(a,b), p(b,b), q(b)}
Output 1: {r(a,b)}

Input 2: {p(a,b), p(b,b)}
Output 2: {r(a,b), r(b,b)}

Example

Finally, we can think of the meaning of an open logic program as a function that 
maps each input model for the program into the corresponding output model.  For 
example, the simple logic program shown here gives different outputs for different 
inputs.  Given p(a,b) and p(b,b) and q(b), the output is r(a,b).  Given just p(a,b) and 
p(b,b), the output is r(a,b) and r(b,b).



f(a)

p(a)
p(b)
q(b,a)

p(b)
q(b,a)

p(a)
q(b,a)q(b,a)

p(a)
p(b)
q(a,b)

p(b)
q(a,b)

p(a)
q(a,b)q(a,b)
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f(b) f(a)

f(a)f(b)

f(b) f(b)

0 50 50 100

0 25 25 50

f(b) f(b)f(b) f(b)f(b) f(b)

Structured State Machine

Okay, now back to game description.  As mentioned in the introduction, we can 
conceptualize a game as a structured state graph, like the one shown here.  GDL 
gives us a way of describing such graphs in compact form.



Relation Constants:
  role(role)
  base(proposition)
  input(role,action)
  init(proposition)
  true(proposition)
  next(proposition)
  legal(role,action)
  does(role,action)
  goal(role,number)
  terminal

Object Constants:
  0, 1, 2, 3, … , 100 - numbers (i.e. entities)

Game-Independent Vocabulary

The content of a structured state graph can be expressed in GDL using some 
reserved, game-independent vocabulary.  The vocabulary is game-independent in 
that the same words are used in describing all games.  There are ten game-
independent relation constants, viz. the ones shown here.  For example, role(a) 
means that a is a role in the game.  base(p) means that p is a proposition in the 
game.  action(a) means that a is an action in the game.  init(p) means that the 
proposition p is true in the initial state. true(p) means that the proposition p is true 
in the current state.  does(r,a) means that player r performs action a in the current 
state.  next(p) means that the proposition p is true in the next state.  legal(r,a) 
means it is legal for role r to play action a in the current state.  goal(r,n) means that 
player the current state has utility n for player r.  terminal means that the current 
state is a terminal state.   GDL has no game-independent function constants.  
However, there are 101 game-independent object constants in GDL, viz. the base 
ten representations of the integers from 0 to 100, inclusive, i.e. 0, 1, 2, ... , 100.  
These are included for use as utility values for game states, with 0 being low and 
100 being high.



Object constants:
  Roles: white, black
  Entities in propositions and actions: a, b, c

Function Constants:
  Relationships in propositions: p, q
  Operations in actions: f, g

Relation Constants:
  Helper relations: r, s

Game-Specific Vocabulary

The first step in writing a game description is to select some game specific 
vocabulary to capture the structure of states and actions.  For example, here we 
have object constants white and black as names for the two roles of our game.  
We use a, b, and c to refer to primitive entities in the game.  We have names p and 
q for relationships among primitive entities and we have f and g as operations that 
can be performed on primitive entities.  Finally, we have some helper relations r 
and s.



Propositions and actions are terms in GDL.

Object constants: a, b, c
Relationship functions: p, q
Action functions: f, g

Propositions as terms: p(a), q(b,c)
Actions as terms: f(a), g(b,c)

Logic program rules say which propositions are true and 
which actions are performed (as shown in what follows) 
and specify the results of performing actions in states.

Propositions and Actions

The propositions comprising states can be thought of as either object constants or 
functional terms in our language formed using relationship functions.  Similarly, 
actions can be either object constants or functional terms formed using action 
functions.  For example, applying relationship functions p and q to primitive objects 
a, b, and c, we end up with propositions like p(a) and q(b,c).  And applying 
operations f and g to these objects, we end up with actions f(a) and g(b,c) and so 
forth.  The rules in a game description say which propositions are true and which 
actions are performed (as shown in what follows) and specify the results of 
performing actions.



A game description in GDL is an open logic program using 
GDL’s game-independent and the game’s game-specific 
vocabulary subject to the following constraints.

Inputs: true, does
Outputs: role, base, input, init, legal, next, goal, terminal

(1) role, base, input, init - independent of true and does
(2) legal, goal, terminal - depend on true
(3) next - depends on true and does

GDL Descriptions

Finally, we define a game description as an open logic program using GDL’s game-
independent vocabulary together with the game’s game-specific vocabulary 
subject to the following restrictions.  true and does are the input relations to the 
program.  (1) A GDL game description must give complete definitions for role, 
action, base, init. (2) It must define legal and goal and terminal in terms of an input 
true relation.  (3) It must define next in terms of input true and does relations.   
Since does and true are treated as inputs, there must not be any rules with either 
of these relations in the head.

Okay, that’s a lot to digest.  In the abstract, these concepts are difficult to master, 
and they are not well-motivated.  In practice, things are much simpler.  In the next 
couple of segments, we illustrate these notions by looking at a specific game 
description and how it is used in simulating a game.
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Game Description Example



Object constants:
  white, black - roles
  1, 2, 3 - indices of rows and columns
  x, o, b - marks
  noop - no-op action

Function Constants:
  cell(index,index,mark) --> proposition
  control(role) --> proposition
  mark(index,index) --> action

Relation Constants:
  row(index,mark)
  column(index,mark)
  diagonal(mark)
  line(mark)
  open

Game-Specific Vocabulary

Let's look at GDL in the context of a specific game, viz. Tic-Tac-Toe. As 
fundamental entities, we include white and black (the roles of the game), 1, 2, 3 
(indices of rows and columns on the Tic-Tac-Toe board), and x, o, b (meaning 
blank).
We use the ternary function constant cell together with a row index and a column 
index and a mark to designate the proposition that the cell in the specified row and 
column contains the specified mark. For example, the datum cell(2,3,o) asserts 
that there is an o in the cell in row 2 and column 3. We use control to say whose 
turn it is to mark a cell. For example, the proposition control(white) asserts that it is 
white's turn.
In Tic-Tac-Toe, there only two types of actions a player can perform - it can mark a 
cell or it can do nothing (which is what a player does when it is not his turn to mark 
a cell). The binary relation mark together with a row m and a column n designates 
the action of placing a mark in row m and column n. The mark placed there 
depends on who does the action. The object constant noop refers to the act of 
doing nothing.  Finally, we have some helper vocabulary, whose purpose will soon 
become clear.



! ! ! ! ! cell(1,1,x)
! ! ! ! ! cell(1,2,b)
! ! ! ! ! cell(1,3,b)
! ! ! ! ! cell(2,1,b)
! ! ! ! ! cell(2,2,o)
! ! ! ! ! cell(2,3,b)
! ! ! ! ! cell(3,1,b)
! ! ! ! ! cell(3,2,b)
! ! ! ! ! cell(3,3,x)
! ! ! ! ! control(black)

X
O

X

State Representation

A state of a game is an arbitrary subset of the system's propositions. The 
propositions in a state are assumed to be true whenever the game in is that state, 
and all others are assumed to be false. For example, we can describe the Tic-Tac-
Toe state shown here on the left with the set of propositions shown on the right.



role(white)
role(black)

base(cell(M,N,Z)) :-
  index(M) &
  index(N) &
  filler(Z)

base(control(W)) :- role(W)

input(W,mark(X,Y)) :-
  role(W) &
  index(X) &
  index(Y)

input(W,noop) :- role(W)

init(cell(X,Y,b)) :-
  index(X) &
  index(Y)

init(control(white))

legal(P,mark(X,Y)) :-
  true(cell(X,Y,b)) &
  true(control(P))

legal(x,noop) :-
  true(control(black))

legal(o,noop) :-
  true(control(white))

terminal :- line(P)
terminal :- ~open

row(M,P) :-
    true(cell(M,1,P)) &
    true(cell(M,2,P)) &
    true(cell(M,3,P))

column(N,P) :-
    true(cell(1,N,P)) &
    true(cell(2,N,P)) &
    true(cell(3,N,P))

diagonal(P) :-
    true(cell(1,1,P)) &
    true(cell(2,2,P)) &
    true(cell(3,3,P))

diagonal(P) :-
    true(cell(1,3,P)) &
    true(cell(2,2,P)) &
    true(cell(3,1,P))

line(P) :- row(M,P)
line(P) :- column(N,P)
line(P) :- diagonal(P)

open :- true(cell(M,N,b))

index(1)      filler(x)
index(2)      filler(o)
index(3)      filler(b)

next(cell(M,N,x)) :-
    does(white,mark(M,N))

next(cell(M,N,0)) :-
    does(black,mark(M,N))

next(cell(M,N,Z)) :-
    does(P,mark(M,N)) &
    true(cell(M,N,Z)) & Z!=b

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(M,J)

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(N,K)

next(control(white)) :-
    true(control(black))

next(control(black)) :-
    true(control(white))

goal(white,100) :- line(x) & ~line(o)
goal(white,50) :- ~line(x) & ~line(o)
goal(white,0) :- ~line(x) & line(o)
goal(black,100) :- ~line(x) & line(o)
goal(black,50) :- ~line(x) & ~line(o)
goal(black,0) :- line(x) & ~line(o)

Rules of Tic-Tac-Toe

Using this conceptualization of states, we can define the game of Tic Tac Toe with 
a small set of logical sentences, as shown here.  The game has thousands of 
states, yet it can be described with just one page of rules.  A similarly parsimony is 
possible for other games.  For example, Chess has more than 10^30 states and 
yet it can be described in about four pages of rules of the sort shown here.  ...  
Let’s look at each of these groups of rules in more detail.



role(white)
role(black)

Roles

We first identify the two roles in the game, viz. white and black.



base(cell(X,Y,W)) :-
  index(X) &
  index(Y) &
  filler(W)

base(control(W)) :-
  role(W)

index(1)
index(2)
index(3)

filler(x)
filler(o)
filler(b)

Propositions

Next, we define the propositions.  Since there are only 29 propositions, we could 
do this by writing 29 ground atoms.  However, we can do this more economically 
by writing two rules, as shown here, together with six ground atoms.  An 
expression of the form cell(X,Y,W) is a proposition if X is an index and Y is an index 
and W is a role.  An index is either 1, 2, or 3.  A filler is either an x, an o, or a b (for 
blank).



input(W,mark(X,Y)) :-
  role(W) &
  index(X) &
  index(Y)

input(W,noop) :-
  role(W)

Actions

We can do the same with actions.  An expression mark(X,Y) is an action for W if W 
is a role, if X is an index, and if Y is an index.  noop is also a possible action for 
either player.



init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Initial State

Next, we characterize the initial state by writing all relevant propositions that are 
true in the initial state. In this case, all cells are blank; and the x player has control.



legal(W,mark(X,Y)) :-
    true(cell(X,Y,b)) &
    true(control(W))

legal(white,noop) :-
    true(control(black))

legal(black,noop) :-
    true(control(white))

Legality

Next, we define legality. A player may mark a cell if that cell is blank and it has 
control. Otherwise, the only legal action is noop.



next(cell(M,N,x)) :-
    does(white,mark(M,N))

next(cell(M,N,o)) :-
    does(black,mark(M,N))

next(cell(M,N,b)) :-
    does(W,mark(J,K)) &
    true(cell(M,N,b)) & M!=J

next(cell(M,N,b)) :-
    does(W,mark(J,K)) &
    true(cell(M,N,b)) & N!=K

next(cell(M,N,Z)) :-
    does(W,mark(M,N)) &
    true(cell(M,N,Z)) & Z!=b

next(control(white)) :-
    true(control(black))

next(control(black)) :-
    true(control(white))

Physics

Next, we look at the update rules for the game, in other words, its “physics”. A cell 
is marked with an x or an o if the appropriate player marks that cell. If a cell is 
blank and is not marked on that step, then it remains blank. If a cell contains a 
mark, it retains that mark on the subsequent state. Finally, control alternates on 
each play.



row(M,W) :-!! ! diagonal(W) :-
  true(cell(M,1,W)) &!   true(cell(1,1,W)) &
  true(cell(M,2,W)) &!   true(cell(2,2,W)) &
  true(cell(M,3,W))!   true(cell(3,3,W))

column(N,W) :-! ! diagonal(W) :-
  true(cell(1,N,W)) &!   true(cell(1,3,W)) &
  true(cell(2,N,W)) &!   true(cell(2,2,W)) &
  true(cell(3,N,W))!   true(cell(3,1,W))

line(W) :- row(M,W)
line(W) :- column(N,W)
line(W) :- diagonal(W)

open :- true(cell(M,N,b))

Supporting Concepts

Before we get to rewards and termination, here are some  supporting concepts. A 
row of marks mean thats there three marks all with the same first coordinate. The 
column and diagonal relations are defined analogously. A line is a row of marks of 
the same type or a column or a diagonal.  Finally, a game is open provided that 
there is some cell containing a blank.



goal(white,100) :- line(x)
goal(white,50) :- ~line(x) & ~line(o)
goal(white,0) :- line(o)

goal(black,100) :- line(o)
goal(black,50) :- ~line(x) & ~line(o)
goal(black,0) :- line(x)

terminal :- line(W)
terminal :- ~open

Goals and Termination

Goals. The white player gets 100 points if there is a line of x marks and no line of o 
marks. If there are no lines of either sort, white gets 50 points. If there is a line of o 
marks and no line of x marks, then white gets 0 points. The rewards for black are 
analogous.
And, finally, termination. A game terminates whenever either player has a line of 
marks of the appropriate type or if the board is not open, i.e. there are no cells 
containing blanks.
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Game Simulation Example



role(white)
role(black)

role(white)
role(black)

Roles

As an exercise in logic programming and GDL, let's look at the outputs of the 
ruleset defined in the preceding segment at various points during an instance of 
the game.  To start, we can use the ruleset to compute the roles of the game. This 
is simple in the case of Tic-Tac-Toe, as they are contained explicitly in the ruleset.



base(cell(1,1,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(1,2,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(1,3,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(2,1,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(2,2,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(2,3,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(3,1,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(3,2,x))      base(cell(1,1,b))      base(cell(1,1,b))
base(cell(3,3,x))      base(cell(1,1,b))      base(cell(1,1,b))

   base(control(white))
   base(control(black))

base(cell(X,Y,W)) :-                   index(1)
  index(X) &                           index(2)
  index(Y) &                           index(3)
  filler(W)

base(control(W)) :-                    filler(x)
  role(W)                              filler(o)
                                       filler(b)

Base Propositions

Similarly, we can compute the possible propositions. Remember that this gives a 
list of all such propositions; only a subset will be true in any particular state.



input(white,mark(1,1))      input(white,mark(2,1))      input(white,mark(3,1))
input(white,mark(1,2))      input(white,mark(2,2))      input(white,mark(3,2))
input(white,mark(1,3))      input(white,mark(2,3))      input(white,mark(3,3))

input(black,mark(1,1))      input(black,mark(2,1))      input(black,mark(3,1))
input(black,mark(1,2))      input(black,mark(2,2))      input(black,mark(3,2))
input(black,mark(1,3))      input(black,mark(2,3))      input(black,mark(3,3))

 input(white,noop)
 input(black,noop)

input(W,mark(X,Y)) :-                   index(1)
  index(X) &                            index(2)
  index(Y) &                            index(3)
  role(W)

input(W,noop) :-
  role(W)

Inputs

We can also compute the relevant actions of the game for each player. The 
extension of the input relation in this case consists of the twenty sentences shown 
here.



init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Initial State

The first step in playing or simulating a game is to compute the initial state. We can 
do this by computing the init relation. As with roles, this is easy in this case, since 
the initial conditions are explicitly listed in the program.



init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

init(cell(1,1,b))
init(cell(1,2,b))
init(cell(1,3,b))
init(cell(2,1,b))
init(cell(2,2,b))
init(cell(2,3,b))
init(cell(3,1,b))
init(cell(3,2,b))
init(cell(3,3,b))
init(control(white))

Initial State

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

Once we have these conditions, we can turn them into a state description for the 
first step by asserting that each initial condition is true.



terminal :- line(W)
terminal :- ~open

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

Termination

Taking this input data and the logic program, we can check whether the state is 
terminal. In this case, it is not.



goal(white,50)
goal(black,50)

goal(x,100) :- line(x) & ~line(o)
goal(x,50) :- ~line(x) & ~line(o)
goal(x,0) :- ~line(x) & line(o)
goal(o,100) :- ~line(x) & line(o)
goal(o,50) :- ~line(x) & ~line(o)
goal(o,0) :- line(x) & ~line(o)

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

Goals

We can also compute the goal values of the state.  Since the state is non-terminal, 
there is not much point in doing that; but the description does give us the values 
shown here.



legal(white,mark(1,1))
legal(white,mark(1,2))
legal(white,mark(1,3))
legal(white,mark(2,1))
legal(white,mark(2,2))
legal(white,mark(2,3))
legal(white,mark(3,1))
legal(white,mark(3,2))
legal(white,mark(3,3))
legal(black,noop)

Legal Actions
legal(P,mark(X,Y)) :-
  true(cell(X,Y,b)) &
  true(control(P))

legal(x,noop) :-
  true(control(black))

legal(o,noop) :-
  true(control(white))

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

More interestingly, using this state description and the logic program, we can 
compute legal actions in this state. The white player has nine possible actions (all 
marking actions), and the black player has just one (noop).



does(white,mark(1,1))
does(black,noop)

Actions

Let's suppose that the white player chooses the first legal action and the black 
player chooses its sole legal action noop. This gives us the dataset for does shown 
here.



next(cell(1,1,x))
next(cell(1,2,b))
next(cell(1,3,b))
next(cell(2,1,b))
next(cell(2,2,b))
next(cell(2,3,b))
next(cell(3,1,b))
next(cell(3,2,b))
next(cell(3,3,b))
next(control(black))

Next State

does(white,mark(1,1))
does(black,noop)

true(cell(1,1,b))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(white))

next(cell(M,N,x)) :-
    does(white,mark(M,N))

next(cell(M,N,0)) :-
    does(black,mark(M,N))

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(M,J)

next(cell(M,N,b)) :-
    does(P,mark(J,K)) &
    true(cell(M,N,b)) &
    distinct(N,K)

next(cell(M,N,Z)) :-
    does(P,mark(M,N)) &
    true(cell(M,N,Z)) &
    distinct(Z,b)

next(control(white)) :-
    true(control(black))

next(control(black)) :-
    true(control(white))

Now, combining this dataset with the state description above and the logic 
program, we can compute what must be true in the next state.  For example, using 
the first update rule and the first does fact, we can conclude the first fact about the 
next state, viz. that there will be an x in cell 1,1.



next(cell(1,1,x))
next(cell(1,2,b))
next(cell(1,3,b))
next(cell(2,1,b))
next(cell(2,2,b))
next(cell(2,3,b))
next(cell(3,1,b))
next(cell(3,2,b))
next(cell(3,3,b))
next(control(o))

Next State

true(cell(1,1,x))
true(cell(1,2,b))
true(cell(1,3,b))
true(cell(2,1,b))
true(cell(2,2,b))
true(cell(2,3,b))
true(cell(3,1,b))
true(cell(3,2,b))
true(cell(3,3,b))
true(control(o))

To produce a description for the resulting state, we substitute true for next in each 
of these sentences and repeat the process. This continues until we encounter a 
state that is terminal, at which point we can compute the goals of the players in a 
similar manner.
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Miscellaneous



Of necessity, game descriptions are logically 
incomplete in that they do not uniquely specify the 
moves of the players.

Every game description contains complete definitions 
for initial state, legality, termination, goalhood, and 
update in terms of the state and the does relation.

The upshot is that in every state every player can 
determine legality, termination, goalhood and, given a 
joint move, can update the state.

Completeness

Of necessity, game descriptions are logically incomplete in that they do not 
uniquely specify the moves of the players.  However, every game description does 
contain complete definitions for initial state, legality, termination, goalhood, and 
update.  The upshot is that in every state every player can determine legality, 
termination, goalhood and, given a joint move, can update the state.



A game description in GDL terminates if and only if all 
infinite sequences of legal moves from the initial state of 
the game reach a terminal state after a finite number of 
steps.

Termination

A game terminates if all infinite sequences of legal moves from the initial state of 
the game reach a terminal state after a finite number of steps.  In General Game 
Playing, we currently require that all games terminate in this way.



A game is playable if and only if every player has at 
least one legal move in every non-terminal state.

Note that in chess, if a player cannot move, it is a 
stalemate.  Fortunately, this is a terminal state.

In GGP, we guarantee that every game is playable.

Playability

A game description in GDL is playable if and only if every role has at least one 
legal move in every non-terminal state reachable from the initial state.  Note that in 
chess, if a player cannot move, it is a stalemate.  Fortunately, this is a terminal 
state.  In GGP, we guarantee that every game is playable.



A game is strongly winnable if and only if, for some 
player, there is a sequence of individual moves of that 
player that leads to a terminating goal state for that 
player.

A game is weakly winnable if and only if, for every 
player, there is a sequence of joint moves of the 
players that leads to a terminating goal state for that 
player.

In GGP, every game is weakly winnable, and all single 
player games are strongly winnable.

Winnability

A game is strongly winnable if and only if, for some player, there is a sequence of 
individual moves of that player that leads to a terminating goal state for that player.  
A game is weakly winnable if and only if, for every player, there is a sequence of 
joint moves of the players that leads to a terminating goal state for that player.  In 
GGP, every game is at least weakly winnable, and all single player games are 
strongly winnable.



What we see:

next(cell(M,N,x)) :-
    does(white,mark(M,N)) &
    true(cell(M,N,b))

What the player sees:

next(welcoul(M,N,himenoing)) :-
    does(himenoing,dukepse(M,N)) &
    true(welcoul(M,N,lorenchise))

Obfuscation

Obfuscation next.  In order to prevent programmers from building in specialized 
capabilities for specific words in game descriptions, it is common for game 
managers to obfuscate descriptions.  All words are consistently replaced by 
nonsense words, as in the example shown here.  The only exceptions are 
variables and a selection of constants common to all games, such as next, does, 
true, and so forth.



Syntax is prefix version of standard syntax.
Operators are renamed.
Case-independent.  Variables are prefixed with ?.

r(X,Y) :- p(X,Y) & ~q(Y)

(<= (r ?x ?y) (and (p ?x ?y) (not (q ?y))))
or

(<= (r ?x ?y) (p ?x ?y) (not (q ?y)))

Semantics is the same. 

Prefix GDL

Finally, there is an issue of syntax.  The version of GDL presented here uses 
traditional infix syntax. However, this is not the only version of the language. There 
is also a version that uses prefix syntax.  Although some general game playing 
environments support Infix GDL, it is not universal. On the other hand, all current 
systems support Prefix GDL. Fortunately, there is a direct relationship between the 
two syntaxes, and it is easy to convert between them. There is just one issue to 
worry about.



Prefix GDL is case independent.

(<= (cell ?x ?y) (rowIndex ?x) (colIndex ?y))
(<= (cell ?x ?y) (rowindex ?x) (colindex ?y))
(<= (CELL ?x ?y) (ROWINDEX ?x) (COLINDEX ?y))

Mapping to/from KIF might lose case information.

cell(X,Y) :- rowIndex(X) & colIndex(Y)
(<= (cell ?x ?y) (rowIndex ?x) (colIndex ?y))

cell(X,Y) :- rowindex(X) & colindex(Y)

Good practice to use just one case in naming constants.  
Common practice to use lower case.

Case Independent

The issue is the spelling of constants and variables. Prefix GDL is case-
independent, so we cannot use capital letters to distinguish the two. Constants are 
spelled the same in both versions; but, in prefix GDL, we distinguish variables by 
beginning with the character '?'. Thus, the constant a is the same in both 
languages while the variable X in Infix GDL is spelled ?x or ?X in Prefix GDL.  
Unfortunately, mapping between the two can be tricky since a case-independent 
system might discard case information.  Hence, it is good practice to use just one 
case in naming constants; and it is common practice to use lower case.



These are the same:

(cell a ?y)
( cell a ?y)
(cell a ?y )

(cell     a     ?y)

These are not the same:

(cell a ?y)
(ce ll a ?y)
(cell a ? y)

White Space

Finally, just to be clear on this, in Prefix GDL white space (spaces, tabs, carriage 
returns, line feeds, and so forth) can appear anywhere other than in the middle of 
constants, variables, and operator names. Thus, there can be multiple spaces 
between the components of an expression; there can be spaces after the open 
parenthesis of an expression and before the operator or relation constant or 
function constant; and there can be spaces after the last component of an 
expression and the closing parenthesis.
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